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Abstract: As the fundamental problem in the computer vision area, image
matching has wide applications in pose estimation, 3D reconstruction, image
retrieval, etc. Suffering from the influence of external factors, the process
of image matching using classical local detectors, e.g., scale-invariant feature
transform (SIFT), and the outlier filtering approaches, e.g., Random sample
consensus (RANSAC), show high computation speed and pool robustness
under changing illumination and viewpoints conditions, while image matching
approaches with deep learning strategy (such as HardNet, OANet) display
reliable achievements in large-scale datasets with challenging scenes. However,
the past learning-based approaches are limited to the distinction and quality
of the dataset and the training strategy in the image-matching approaches. As
an extension of the previous conference paper, this paper proposes an accurate
and robust image matching approach using fewer training data in an end-to-
end manner, which could be used to estimate the pose error This research
first proposes a novel dataset cleaning and construction strategy to eliminate
the noise and improve the training efficiency; Secondly, a novel loss named
quadratic hinge triplet loss (QHT) is proposed to gather more effective and
stable feature matching; Thirdly, in the outlier filtering process, the stricter
OANet and bundle adjustment are applied for judging samples by adding
the epipolar distance constraint and triangulation constraint to generate
more outstanding matches; Finally, to recall the matching pairs, dynamic
guided matching is used and then submit the inliers after the PyRANSAC
process. Multiple evaluation metrics are used and reported in the 1st place
in the Track1 of CVPR Image-Matching Challenge Workshop. The results
show that the proposed method has advanced performance in large-scale and
challenging Phototourism benchmark.
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1 Introduction

The image matching task aims to find correspondences in pixel-level [1] in the same real area of the
image pair that has a co-visible view [2], the correspondences are established through the similarity and
consistency of texture, feature, structure, etc. Image matching method is the basic process of further
3D high-level computer vision problems, such as object detection, video compression and tracking,
vision-based localization, etc. Traditional image-matching algorithms are affected by environmental
changes in practical applications, the main challenge is from the local features trained and tested on the
small datasets couldn’t serve downstream tasks [3,4]. In recent years, with the continuous progress of
deep learning technology and increment in data scale, the application of convolutional neural networks
in the image matching process has become popular to suit long-term large-scale environment tasks.

The image matching method with deep learning strategy could apply multi-stage problems [5,6],
and thus can be used in augmenting the performance on large-scale datasets using multiple evaluation
metrics. However, the performance for accuracy and robustness also suffers from variable environment
features, e.g., lighting variation, perspective change, and repetitive textures, especially in outdoor
scenes where the scale and conditions change significantly. To tackle the common issue, end to
end algorithms and modified description networks are proposed for the merits of learning more
robust features from image pairs. Features using log-polar sampling are generated for improving scale
invariance [7]. Further works [8,9] jointly learn feature detectors and descriptors and description to
achieve higher accuracy and robustness in image matching.

Based on the previous conference paper [10], in the extended version more constraints are added in
three-step processing, which includes extracting features, matching features, and pre-filtering outliers
stages, to obtain the image pair corresponding pixels, as illustrated in Fig. 1. Each stage is added
constraints to learn better image matching from the algorithm. Not the same as previous methods, this
proposed pipeline builds a light-weighted model in an end-to-end manner without separate training on
multi-braches. Compared to the previous paper, this study proposes a method which adds triangulation
constraint and bundle adjustment optimization in the outlier filtering stage combined with OANet,
and describes how the dynamic guided matching (DGM) method recalls matching pairs in detail. Lots
of related experiments are also supplemented to verify the effectiveness of the proposed method.

Figure 1: Visualization of the correspondence of SIFT and this proposed method under extreme
illumination variation and viewpoint changes (green and red each show correct and wrong matches)

This paper provides a detailed understanding of how the proposed data processing algorithm,
feature matching network (based on HardNet [11] network) and modified outlier filtering method
(based on OANet [2] combined with a guided matching algorithm (GM) [3]) could serve the pipeline
to improve matching performance in accuracy and robustness and validate the method by estimating
the pose error. The main contributions are:
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• This study proposes a novel patch dataset construction on the basis of the provided Photo-
tourism images, as well as the sparse models, that is with similar formats to UBC Phototour
and [4] the pre-trained models;

• This study proposes the modified QHT loss based on feature-description HardNet method, also
improves OANet coupled by adding triangulation, bundle adjustment constraint and guided
matching algorithm to obtain more reliable feature matches and outlier filterings;

• This research experimentally shows that the proposed algorithm surpasses previous methods
and achieves advanced results in large-scale environments and under challenging conditions,
ranking 1st on both stereo task and multi-view task with the evaluation of Phototourism
benchmark [12].

2 Related Work

Feature extraction, matching, as well as outlier pre-filtering play important roles in image match-
ing, nowadays traditional and neural network based methods have been attempted and implemented.

2.1 Local Features in Image Matching

Image matching algorithms can be divided into region-based methods and feature-based methods
(including global features and local features), according to whether the matching target is a region
similar to the search image information or the structural features in the image. The Region-based image
matching methods usually are not robust to image noise and deformation and have high computational
complexity and slow matching speed. The global feature-based matching method extracts the overall
low-pixel-level features of the image, but it is not available for the situation where the image has
occlusion and overlap.

Local features become popular because the simple and stable features are robust to changes in
noise, deformation, illumination, etc. Classical solutions apply handcrafted algorithms, such as scale-
invariant feature transform (SIFT) [13], Root SIFT [14], Speeded Up Robust Features (SURF) [15],
Oriented FAST and Rotated BRIEF (ORB) [16], and AcceleratedKAZE (A-KAZE) [17]. Following
keypoints from SIFT, learnable descriptors trained on pre-cropped patches, in that LogPolar [7] depicts
better relative pose performance compared to ContextDesc [18]. SOSNet [19] and HardNet exceed
Group Invariant Feature Transform (GIFT) [20] in public validation dataset. SIFT-like detectors are
replaced to learn keypoints by training networks, such as Temporally Invariant Learned Detector
(TILDE) [21], QuadNet [22], and Key.Net [23]. According to the feature detection and description
orders, end-to-end approaches, e.g., SuperPoint [24], R2D2, D2-Net, DEep Local Feature (DELF)
[25], are all in an end-to-end manner. However, these methods are with low efficiency in matching and
storing or poor performance in challenging conditions.

2.2 Outlier Pre-Filtering for Robust Matching

Classical outlier filtering approaches conclude ratio-test [13], Grid-based motion statistics (GMS)
[26], guided match [3], etc. Deep learning based methods judge and filter the outlier matches by
regressing the pose relationships through convolutional networks, however, the network is hard to
converge when training. Another approach converts the pose to a judgement of if the matching is
an inlier or outlier by applying the epipolar constraints, which transforms the regression task to a
classification task, in which the model applies binary-cross entropy loss in the training process.

Deep learning based methods are required to be not sensitive and thus could obtain transfor-
mations with the unordered input image pairs. Inspired by PointNet [27], CNe [2] uses multi-layer
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weight sharing perception strategy to make this network unrelated to the correspondence sequence.
Every input match pair shares a same perceptron for iteration processing, which leads to the separate
process of every matching pair and lacks circulating information, thus couldn’t integrate the useful
information from all matched image pairs. Context normalization [28] is instantly frequently applied in
image-style transferring tasks [29] and Generative Adversarial Network (GAN) [30], which normalizes,
exchanges and circulates the correspondence outputs. However simply using the mean-variance
couldn’t make use of the global features with high-complexity, thus couldn’t obtain the correlation
data across separate modules.

OANet [2] proposes to apply DiffPool, as well as DiffUnPool modules to speed up data circulation
and conenction with network neurons. Guided matching [3] could increase automated matching
percentage and recall matching pairs in the image pairs with few corresponding points, guided
matching, triangulation constraint and bundle adjustment optimization can be used as a supplement
to OANet to further improve matching performance.

3 Method

In order to compute more precise and reliable pose from the provided image matches or 3D
reconstruction in large-scale challenging conditions through image matching based method, the
following aspects should be improved: 1) stable and accurate keypoints need to be obtained invariably;
2) reliable and distinct descriptors from different environmental conditions should be provided; 3)
Powerful outlier pre-filtering ability to filter wrong matches and recall correct matches. This network
uses HardNet as the baseline model and re-training it on training scenes of the Phototourism dataset.
The SIFT method is used to extract keypoints and patches and reconstruct 3D models with known
poses from given sparse models. In particular, this study proposes a dataset construction method for
hyperparameters optimization ahead of the network training with small-scale datasets and proposes
the QHT loss function for feature descripting on the basis of the HardNet in the outlier filtering period,
this study combines the dynamic guided matching with a modified stricter OANet to learn matches
with higher accuracy.

Fig. 2 shows an overview architecture of the pose estimation method on the basis of image
matching, containing several public approaches, as well as the selected algorithms. Firstly, each scene
inputs N = 100 images into the pipeline. Then, HardNet extracts the 32 × 32 image patches into the
128 dimensional features. Next, image feature correspondences are generated for each image pair in
the set of 1/2N (N − 1) = 4950 pairs. Afterwards the image matching period, with the help of stricter
OANet, the matches are converted into a K binary output to show whether the matching is an inlier or
outlier, the process is permutation invariant, which is applicative to convolution layers. In the end, the
pre-filtered matches could be input to calculate pose information via the process for model estimation
(E) containing triangulation and bundle adjustment optimization.

3.1 Data Construction
3.1.1 The UBC Dataset Generation for Pretraining

For faster training a light-weighted pipeline, as well as searching for appropriate hyperparameters
for further use in the pre-trained models, UBC Phototour is applied in the pre-training process, whose
patch images are very suitable for HardNet training. Table 1 shows the construction information of
UBC Phototour.
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Figure 2: Architecture overview: pose estimating method overview based on image matching, the green
box specifies the selected methods to improve, a SIFT feature detector is used with the improved
HardNet to generate a 128-dimensional descriptor, the correspondences are generated through nearest
neighbour matching and outlier filtering to compute the pose estimation

Table 1: The construction data of UBC phototour

Scene Patches 3dPoints Reference
images

meanTrack
length

stdTrack
length

Image
mean

Image std

Liberty 450092 161072 198 2.79435284 1.20730 0.4437 0.2019
Notredame 468159 147471 100 3.17458348 1.53127 0.4854 0.1864
Yosemite 633587 236230 195 2.68207679 0.95623 0.4844 0.1818
LibND 918251 397302 393 / / 0.4650 /

3.1.2 Phototourism Dataset Construction for Training

This research constructs a low-noise and less-redundancy dataset through the Phototourism
dataset with the pre-training process on the reconstructed UBC Phototour in order to quicker hyper-
parameter selection in the training process. Eliminating the unnecessary data could speed up the
training process to a great extent while reducing noise labels optimizes the gradient descent and could
improve the pipeline’s performance.

A discard threshold is set to decrease the noise label when images have low confidence by tracking
at least 25% 3d points. While eliminating redundant data, the 3d-points are sampled if results are
tracked over 5 times. By repeating the sampling process for ten times while the Normalized Cross-
Correlation (NCC) number is computed for every sample, and result with the smallest NCC is reserved.
Additionally, data enhancement strategies with random-flip and random-rotation are employed in
both pre-training and training periods.

3.2 The Feature Extraction and Feature Matching by Improved HardNet

When extracting features, which consists of feature detection and description processes, SIFT
[13] is the first method that extracts the input image’ positional and scale information of the chosen
keypoint. This model adopts SIFT (implemented by the OpenCV) with a small detection threshold by
obtaining not larger than 8000 points with a fixed-orientation.

The real-valued convolutional HardNet network is selected to describe the keypoint of input
images. For describing the keypoint and its surrounding information, the keypoint is clipped into a
patch with aligning to the scale size (32 × 32), then patches are extracted to descriptors from HardNet
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network. Through the seven-layers HardNet, the feature with a 128-dimensional vector is generated
from the input patch. The network retains Visual Geometry Group Network (VGG) [31] style network
structure which contains convolutional layers with batch normalization and ReLU activation and
makes progressions to the loss function to train the pipeline on the large-scale reconstructed dataset
in a stable and efficient way.

To measure the performance of the local feature description task, HardNet applies the triplet
margin loss [32] to learn closer positive corresponding patches than noncorresponding patches, which
embeds the difficult sample mining. To decrease the difference of the descriptors in the internal class
while increasing the difference of the descriptors in the external classes, as well as make the model
training more effective and stable, a QHT loss on the basis of triplet loss is proposed by adding a
square term. The corresponding positive descriptor pairs are denoted as

(
xi, x+

i

)
{i=1,...,N} for a training

batch, a batch of size n consists of n pairs of matching patches. d (u, v) stands for the Euclidean distance
(L2 norm), the description loss Ldes in training time could be expressed as:
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where the margin M is set to 1, dpos
i stands for the difference between the target and positive descriptors,

dneg
i is the minimal difference between the target and negative descriptors. Positive samples show the

patches are from the same 3D-point within the given target in the real-world. In contrast, negative
samples mean these patches are from different 3D-points. The loss value would be zero when dneg

i −dpos
i

is larger than M.

Quadratic Hinge triplet loss weights the network’s gradients regarding the parameters through
the value of the QHT loss. In comparison to HardNet, QHT loss improves the training gradient’s
sensitiveness, and also makes the model more stable. A larger dpos

i −dneg
i leads to a smaller loss gradient

and the effectiveness and stability of the model training. Furthermore, the modified model is very
sensitive to the data noise. Incorrect label settings for positive or negative samples would result in the
model result degrades, which can be eliminated by removing data noises.

3.3 Outlier Filtering with Stricter OANet and Bundle Adjustment

When the input data is unordered, traditional filtering algorithms are not feasible with convolu-
tional or fully-connected layers for training. CNe network uses multi-layer weight-sharing perceptrons
and context norms to individually process each keypoint, which cannot capture the local context and
overlooks the underlying complex relations among different points. To solve the above problem and
make the output permutation-invariant, training scenes of the Phototourism dataset provided by the
organizers are utilized to generate a training dataset with stricter labels. When generating the ground
truth for the classification of matches, this study first defines the positive samples by constraining the
symmetric epipolar distance [33] of the correspondences less than the threshold of 1e−6. Further, this
study calculates the reprojection errors of the matches and marks the matches with an error of greater
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than 10 pixels as negative samples. The two constraints on labels above greatly improve the accuracy
of the ground truth.

The OANet can filter out most outliers due to its great ability to capture the local and global
context, which jointly uses Diffpool layers, as well as DiffUnPool layers to serve the data circulation
and calculation in the internal neurons. Features including N × D matching pairs are fed into the CNe
network’s to get the intermediate result with the same dimensions. OANet network uses the Diffpool
to decrease the dimension of input matching pairs to M × D, then uses DiffUnpool to increase the
dimension into N × D. The information are aggregated by mapping the N matches and M matches
through learning a soft distribution of learning weights with the Diffpool layer, while the information
are reorganized into N with the DiffUnpool layer. OANet network is not sensitive to disturbances that
are not in order and could directly interact between points. Fig. 3 shows the OANet outlier filtering
process.

Figure 3: OANet filtering outliers process with deep networks

This research learns the image matching accuracy and then converts it to calculate the pose
accuracy. The following improvements have been made to make OANet more capable and effective
to learn positive matches and filter exception points, which could improve the accuracy of the
matching judgements and the pose estimation performance. This research decreases the geometric
error threshold from 1e−4 to 1e−6, and adds the point-to-point strategy apart from the point-to-line
strategy used in OANet. The negative points are only determined if the distance of projecting is over
10-pixels.

In the process of solving the relative pose of the two images, only 7–8 points of information are
used to calculate the motion model E. Using more point information can obtain a more accurate
motion model and inliers. The input of the bundle adjustment optimization is the image pair, image
feature and corresponding image pair (after brute forcing and ratio-test process, before the geometric
verification process), and the output is the optimized image point pairs, which could be utilized for
further model estimation.

3.4 Matching Pairs Recall with Dynamic Guided Matching

Generally, inadequate matches may lead to inaccurate Random sample consensus (RANSAC)
and pose estimation. Except for OANet, the dynamic guided matching (DGM) is also proposed to
enhance the matching ability when the matching number of image pairs is less than 100. Contrary
to conventional guided-match [3], a dynamic threshold is employed with the Sampson difference
limitation in relation to the amount of image pair matchings. This work argues that smaller matches
needs higher dynamic threshold. The threshold th could be determined by the following pattern:

th = thinit − n
15

(6)
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where thinit is set to 6 and n represents the amount of image pair matches. When the image pairs include
more than 100 matches, a degeneracy check using homographies (DEGENSAC) [15] is directly applied
to obtain the inliers for submission.

The problem of inaccurate pose estimation of image pairs caused by insufficient matching and
too few matching pairs can be solved by increasing the number of matching pairs by guided matching,
which can further improve the accuracy. The specific calculation process is divided into the following
steps:

• Calculate the L2 distance matrix of the image pair’s feature descriptor through brute force
matching;

• Check the epipolar geometry constraint discrimination on the elements in the distance matrix F ,
which is shown below. p1 and p2 represent the pixel coordinate, if the distance is greater than the
threshold th, set the corresponding distance to a relatively large value. The element in the matrix
F would only be selected when the distance d is smaller than a set value, which is dynamically
set by Eq. (7);

d = (pT
1 Fp2)

2

∣∣∣∣Fp1

∣∣∣∣2

[1]
+ ∣∣∣∣Fp1

∣∣∣∣2

[2]
+ ∣∣∣∣FTp

2

∣∣∣∣2

[1]
+ ∣∣∣∣FTp2

∣∣∣∣2

[2]

(7)

• Filter feature points on the filtered distance matrix through ratio-test and crosscheck, in which
the ratio test is the expand ratio test based on the brute force match, usually set as 0.01 to 0.05,
and could be adjusted;

• The matching finally needs to be submitted as inliers through the PyRANSAC (a general-
purpose RANSAC framework written in Python) process.

3.5 Implementation Details

The proposed model is trained by improved SIFT, HardNet, and OANet on the Phototourism
dataset, 8000 SIFT keypoints and improved HardNet descriptors are first extracted. In improved
HardNet training, the training dataset is constructed by using the Phototourism training set provided
by organizers as depicted in Section 3.2 and Yosemite from UBC Phototour is adopted as a validation
set. Similarly, in stricter OANet training, this work uses the training scenes of the Phototourism dataset
and 3 of them (Reichstag, Sacre Coeur and Saint Peter’s Square) are selected for validation.

By cropping the input patch into 32 × 32 through mean and variance normalization, as well as
the random flip and rotation in the feature description process. The dropout value p is set to 0.3.
Optimization is applied by a Stochastic Gradient Descent (SGD) [33] solver, the learning-rate is set
to 10 and decreases to 0 in the first 15 epochs with a weight-decay of 0.0001 with a linear way. A
dynamic learning rate strategy is employed in the outlier removal training process, where the learning
rate is raised from 0 to the maximum 1e−5 linearly during the beginning 10000 epochs then decreased
step-by-step with a decay-rate of 1e−8. Moreover, geo_loss_margin is set to 0.1, the threshold for ratio-
test [13] is 0.8 and a mutual-check is applied in training process. In the testing period, the result from
the network employs a DEGENSAC for eliminating undependable matchings, which has the same
configuration as in dynamic guided matching for 100000 iterations with the Sampson error type, inlier
threshold is 0.50, confidence is 0.99, and degeneracy check is also applied.

The proposed pipeline is trained on PyTorch platform [34] with an NVIDIA TitanX card in an
end-to-end manner without pre-training models. The co-visible threshold is limited to 0.1 in the stereo
task while the minimal number of 3D points is to be set to 100 in the multi-view task, and set the
maximum number of evaluation images is 25 in the meanwhile.
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4 Experiments

This section evaluates the proposed method on the public Phototourism benchmark. The pose
estimation result is computed and submitted using the online system. The experiment first conducts
the performance of different proposed modules, and then analyzes the effectiveness of this approach
in a qualitative and quantitative way.

4.1 Experimental Settings
4.1.1 Datasets

The performance of local descriptors could be verified on multiple datasets, in which, the datasets
[4,12] contain not only image sequences but also keypoint correspondences which are suitable for the
training and evaluation in the image matching task. This section describes the datasets in this research.

UBC Phototour dataset1 (Brown dataset) [4] involves corresponding patches from the point cloud
3D reconstructions and dense maps by Bundler [35] and Structure from Motion (SfM) in the city
of Liberty, Notre Dame and Yosemite. Each scene includes various images with the high-definition
resolution (1024 × 1024), in which every bitmap consists of 16 × 16 image patches. Besides, the dataset
separately provides the matching statistics (patch 3D point index) and keypoints’ statistics.

Phototourism dataset (IMW Phototourism 2020 dataset) [12] is collected in 26 famous tourism
attractions with multi-sensors for the evaluation of the CVPR Image Matching Workshop 2020, where
the ground truth of 3D reconstruction is computed by Structure from Motion (SfM) using Colmap
with verified patch correspondences. The ground truth contains poses, co-visibility estimations, depth
maps and 2D to 3D point correspondences. This dataset includes a training dataset with 13 scenes,
a validation set with 3 scenes and a test set with 10 scenes, which varies from different lighting and
viewpoints conditions so as to be widely used as a benchmark dataset on a large scale.

4.1.2 Stereo Task and Multiview Task

This experiment implements and compares the proposed pipeline with multiple methods to
evaluate the intermediate results regarding two tasks: stereo and multi-view reconstruction with SfM
for further evaluation on pose estimation. The downstream tasks take varying dataset formats as input
and evaluate the performance using different ways. The stereo task evaluates a pair of images and
applies random sampling consensus method (RANSAC) [36] for obtaining the correspondences with
motion consistency, and decompose both rotation and translation value of the pose. Multi-view task
computes a cosine distance between the vectors of estimated and ground truth pose in angle, and
recovers each image’s pose rotation R and translation t from the 3D reconstruction.

4.1.3 Evaluation Protocols

Given two images as a pair with a co-visible view, this research could calculate the following
metrics in both stereo or the 3D reconstruction experiments. The performance for the stereo task
is evaluated with the metric of Mean Average Accuracy (mAA), keypoint repeatability (Rep.) and
descriptor matching score (MS) while the multiview tasks utilize three metric of mAA and Mean
absolute trajectory error (mATE). The final results are evaluated in terms of Mean Average Accuracy
(mAA) as the primary metric in both tasks.

• False positive rate (%FPR) measures a percentage of the value of wrong items that are
incorrectly classified as correct and the whole value of real wrong items at a preset recall value.

1Available at http://matthewalunbrown.com/patchdata/patchdata.html.

http://matthewalunbrown.com/patchdata/patchdata.html
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Having little correlation with the actual performance of the descriptor, this metric is usually used
in checking the convergence while training. FPR95 (FPR at 0.95 recall) used in the experiments
is defined as follows:

FPR95 = FP
FP + TN

, s.t.
TP

TP + FN
= 0.95 (8)

• Mean Average Accuracy (%mAA), analogously to the mean Average Precision (mAP) com-
monly used in object detection, is measured by the under-the-curve area with a maximal
threshold, which indicates the difference of the true and computed pose vector in angle. As
the stereo task is defined up to a scale factor problem, the error metric of stereo task mAA
is computed from difference errors between the estimated and ground truth pose vectors in
angular degrees. If the error is less than the set angle threshold, it means that the estimation is
correct, so a binary judgment result of 0 or 1 is obtained, the average accuracy of all matching
pairs is the final mAA value. This mAA (@x◦) metric could be formulated as the result of
the average accuracy integral from 0 degree to x degree, which is the area under the average
accuracy curve. The Average Accuracy (AA) for a set of image pairs at the threshold @i could
be calculated as:

AAi = 1
N

N∑
j=1

∇r
(
pj, p̂j

)@i
(9)

The formula of mAA metric is calculated as follows:

mAA =
∫ x

i=1

AAi (10)

where N is the number of total image pairs, ∇ denotes the difference in degree between ground
truth pose and estimated pose vectors, and x stands for the multiple error thresholds with a 1-degree
resolution from 0, usually, the value is set to 10◦ in practice. Similarly in the scale-agnostic multiview
task, the mAA is computed by taking the mean of the accuracy for every pair of cameras. The pose
error of the camera pair containing unregistered views is set to ∞.

• Keypoint repeatability (%Rep.) is often used to evaluate the quality of keypoint detectors, which
measures the ratio of the number of corresponding point feature points in the common part of
a pile of matched images to the number of feature points that appear in the smaller of the two
images in the common area. Specifically, for images A and B to be matched, the homography-
matrix of the transformation between the two images is known, and two feature points N1 and
N2 are respectively detected in the figure. Since images A and B are partially non-overlapping,
first pass the homography-matrix calculates the feature’s coordinates in Figure A in B, and
removes the unqualified feature points whose calculation results exceed the coordinate range
of Figure B. The number of remaining feature points is recorded as N1, and the remaining
number of feature points in Figure B is obtained using the same method N2, Calculate the
distance between the feature point of map A and the feature point of map B after mapping.
If the coordinate distance is less than the threshold s, it is considered to be repeatable, and the
number of repeating feature points is recorded as N3, and the repeatability calculation formula
is shown as:

Repeatability = N3

min (N1, N2)
(11)
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• Descriptor matching score (%MS) describes the mean rate of correctly matched pairs with
the minimal value of detected keypoints in a common perspective. The criterion for a correct
matching pair is that the distance between the feature vectors of the two is the smallest in the
descriptor space.

• Mean Absolute Trajectory Error (%mATE) reports the mean divergence of the ground-truth
trajectory of each image by scaling the reconstructed model to that of the ground truth and
then align different models by using the minimal point.

4.2 Qualitative and Quantitative Results

The Phototourism dataset construction details are listed in Table 2, which can be viewed as the
capability of reducing the number of images, 3d points and patches on a large scale, thus the training
speed could be highly increased, which improves the pipeline’s performance. Fig. 4 illustrates the
performance under different combinations of training and validation sets in the metric of FRP95 of
the UBC Phototour, from that we can conclude that the loss is stable and know the data trend that
false matches or difficult matches lead to higher FRP95 values. Fig. 5 compares the correspondence
performance between traditional Root SIFT based and the proposed matching approach, with more
accurate matches, the proposed method shows an accurate and effective way of image matching.

Table 2: Dataset construction results of several cities in the Phototourism dataset

Item Images 3dPoints Patches

Scene Original Sampled Original Sampled Original Sampled

Palace_of_westminster 982 735 125680 122849 2088733 445057
Taj_mahal 1312 984 114064 111187 3530412 427812
Temple_nara_japan 904 678 100847 99372 2317301 496860
Grand_place_brussels 1080 810 209550 207124 3206171 390540
Westminster_abbey 1059 794 183151 175793 5357152 878965
Sacre_coeeur 1177 882 153795 152682 3458802 763410
Buckingham_palace 1676 1257 246035 242575 4352977 1212875
Pantheon_exterior 1400 1050 182848 179987 4996327 899935
St_peters_square 2504 1877 251614 247470 7266908 1237350
Brandenburg_gate 1362 1021 153779 149648 3410282 559531
Reichstag 75 56 16854 16754 154929 63954
Hagia_sophia_interir 887 665 181499 178702 2958788 893510
Colosseum_exterior 2063 1547 262845 257912 7172600 1289560
Prague_old_town_square 2314 1735 601159 591475 8310882 1954823
Notre_dame_front_facade 3762 2821 486182 470667 16504208 4920593

In order to facilitate the selection of training models and data sources, this study has compared
different model training results. Table 3 shows the experimental results on different datasets and
methods with the metrics of an average number of matches (#matches), an average number of inliers
(#geom), a matching score (M.S.), and an inlier matching score (MS_inl), etc. The experimental results
indicate that: (1) The results of the self-trained model on the imw2020 validation set under the same



4796 CMC, 2023, vol.75, no.3

data set will be higher than the results of the open source model; (2) The Liberty and NotreDame
separately trained models in the UBC data set to have better results. Compared with the HardNetBr6-
trained results, all three data sets have a poor effect; (3) Simply increasing the data set does not help
the experimental performance, the method of joining the imw2020 training set needs to be carefully
selected; (4) It can be seen that the experimental effect is strongly related to the distribution of the data
set, and it is not simply the use of patch data.

Figure 4: The experimental results on FRP95 metric with different combined training and validation
sets on UBC phototour dataset

Figure 5: Visualization comparison of the correspondence from traditional root SIFT and proposed
method (green indicates right correspondences, yellow shows the match error within 5 pixels, and red
represents wrong matching results)
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The effectiveness of the guided matching method is evaluated in Table 4, in which it could be
found that the optimal ratio test without guided matching could be used as the initial value of the
guided matching tuning parameter. From Table 5 it could be seen that under different initial ratio tests,
increasing the ratio test threshold in the guided matching could help to increase the mAA metric. The
dynamic guided matching could increase the mAA of the multiview tasks by import expand ratio test,
which is indicated by the matching increasing number. There is little difference between the dynamic
geometric distance threshold and the fixed threshold. Taking into account the self-adaptability, the
dynamic threshold is selected in subsequent experiments.

Table 4: Guided matching mAA results on Phototourism dataset with the HardNet model based on
imw2020patches dataset, the initial ratio of stereo task is 0.9, the initial ratio of multi-view task is 0.85

Initial ratio Method Stereo task Multi-view task

No GM Ratio 0.9 (0.9 Stereo task, 0.85 Multi-view task) 0.7537 0.8250
0.9 GM: ratio expand 0.01 0.7579 0.6436
0.9 GM: ratio expand 0.02 0.7569 0.8485
0.9 GM: ratio expand 0.03 0.7569 0.8470
0.9 GM: ratio expand 0.04 0.7561 0.8400
0.9 GM: ratio expand 0.05 0.7575 0.8415

Table 5: Guided matching mAA results on Phototourism dataset with the HardNet model based on
lib dataset retraining and with QHT loss

Method Matching
number

HardNet + Retraining on Lib
dataset

HardNet + QHT loss

Stereo task Multi-view task Stereo task Multi-view task

No GM / 0.7317 0.7924 0.7294 0.8025
GM: ratio
expand 0.01

406.10 0.7302 0.8436 0.7313 0.8398

GM: ratio
expand 0.025

408.25 0.7302 0.8432 / /

GM: ratio
expand 0.03

/ / / 0.7329 0.8415

GM: ratio
expand 0.05

412.76 0.7255 0.8396 0.7334 0.8434

Custom match / / / 0.7398 0.8446

Through these experiments it could be found that guided matching can effectively increase the
matching pair number and improve the performance of the HardNet descriptor, which has little
impact on the Stereo task, and the improvement is within 0.5 percentage points. For Multiview tasks,
the improvement is obvious, which can be increased by 2–5 percentage points. The optimal ratio
parameters of HardNet descriptors are generally 0.9 and 0.85 for stereo and multiview tasks, and the
optimal matching parameters of the guided match are generally 0.9. On this basis, the ratio expansion
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is performed, and the optimal guided match parameters can be obtained by testing different ratio
expands. This study also uses guided matching and OANet at the same time, as shown in Table 6, but
how to improve the generalization ability on the test set needs further experiments.

Table 6: mAA results on Phototourism dataset combining OANet and guided matching (The epipolar
constraint used by OANet is adjusted from 1e−4 to 1e−6, the triangulation constraint is added)

Model Stereo task Multi-view task

OANet 0.7801 0.8713
OANet + GM (ratio:0.03) 0.7808 0.8646
OANet + GM (ratio:0.05) 0.7798 0.8659

To evaluate the performance of different loss algorithms, Table 7 records the results of correspon-
dence FPR95 on the UBC Phototour dataset, which implies the effectiveness and promotion of the
novel QHT loss in comparison to HT (hinge triplet) loss. Table 8 presents the final submissions on
Phototourism challenge Track1, this research ranks the best performance on the task.

Table 7: Patch correspondence evaluation FPR95 performance with multiple loss functions using
HardNet for description on the UBC Phototour dataset (∗indicates the network is implemented by us)

Train Liberty NotreDame

Test NotreDame Yousemite Liberty Yousemite

HardNet 0.62 2.14 1.47 2.67
HardNet + HT 0.53 1.96 1.49 1.84
HardNet + HT∗ 0.50 1.96 1.48 1.61
HardNet + QHT∗ 0.45 1.83 1.23 1.52

Table 8: The online submitted results on the stereo and multi-view tasks on the Phototourism dataset
with the metrics of repeatability, matching score, mean absolute trajectory error and mean Average
Accuracy

Method Stereo task Multi-view task

%Rep.@3pix MS@3pix mAA@10◦ rank† mATE mAA@10◦ rank†

[37] 0.442 0.828 0.58300 12 0.361 0.77056 3
[12] 0.487 0.846 0.57826 17 0.367 0.77041 5
[12] 0.486 0.871 0.58870 5 0.386 0.75127 14
This paper 0.486 0.823 0.61081 1 0.358 0.78288 2

4.3 Ablation Research

To separately understand how different module contributes to the proposed pipeline, each module
is evaluated on the Phototourism dataset to validate its performance. In Table 9, the proposed method
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is in comparison to several variants to validate the gain that dataset construction and proposed
HardNet can provide in the feature description process and thus benefit the evaluation in both multi-
view and stereo sub-tasks. This experiment evaluates the next four versions for the feature description
when other components keep invariant: 1) Root SIFT; 2) pre-trained HardNet; 3) the modified
HardNet method; 4) the modified HardNet with the dataset construction and cleaning strategy. With
the modified HardNet and its constraints in loss functions, the mAA shows an 8% increment in
mAA of stereo and multi-view tasks compared to the traditional feature descriptors. Furthermore,
the data construction and cleaning strategy help the mAA obtain mAA of 0.7894, which yields the
best performance.

Table 9: Ablation experiments of improved HardNet (with the data clean and construction strat-
egy) and stricter OANet on the Phototourism validation dataset (#means the pretrained HardNet
method,∗ means the improved HardNet method)

Methods mAA@10◦ Methods mAA@10◦

Stereo Multiview Avg. Stereo Multiview Avg.
Root SIFT 0.670 0.726 0.698 Root SIFT + RT + CC 0.670 0.726 0.698
HardNet# 0.732 0.792 0.762 HardNet# + RT + CC 0.732 0.792 0.762
HardNet∗ 0.729 0.816 0.772 HardNet∗ + RT + CC 0.754 0.825 0.789
HardNet∗ + DataClean 0.754 0.825 0.789 HardNet∗ + OANet 0.792 0.866 0.829

To validate the efficiency that the novel stricter OANet can improve the performance in outlier
pre-filtering stage, Table 9 compares the mAA results under different outlier pre-filtering conditions:
1) employ Root SIFT in feature description, and ratio test and cross-check in outlier removing; 2)
apply the pre-trained HardNet using the ratio test with cross-check; 3) apply modified HardNet with
ratio test with cross-check; 4) apply modified HardNet with the proposed improved OANet. The
comparison of several outlier pre-filtering specifies that the results of the revised OANet exceeds the
ratio test using cross-check strategy for 4% in the evaluation protocol of mean Average Accuracy
(mAA).

5 Conclusion

A novel image matching pipeline is proposed in this research by adding constraints for obtaining
the accurate and robust correspondence of image pairs, thus could adapt outdoor datasets with
challenging environments and further estimating pose error. The following improvements are proposed
to strengthen the constraints 1) the data cleaning and construction processing to reduce noise and
improve the efficiency of data training; 2) the proposed QHT loss in the HardNet description
network to improve the noise perceptivity of gradient descent; 3) the stricter OANet by decreasing
the symmetrical epipolar distance threshold and adding the triangulation constraint and bundle
adjustment optimization to filter incorrect outliers; 4) the guided matching strategy to improve
the ability of pre-filtering outliers. Under rich experiments, this research shows advanced results in
the Phototourism dataset. In the extended experiment, the feasibility of using OANet and Guided
matching methods together are also verified to improve the matching performance. In the future, the
research will furtherly explore and enhance the generalization ability of the hybrid methods.
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