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Abstract: Human gait recognition (HGR) is the process of identifying a sub-
ject (human) based on their walking pattern. Each subject is a unique walking
pattern and cannot be simulated by other subjects. But, gait recognition is not
easy and makes the system difficult if any object is carried by a subject, such as
a bag or coat. This article proposes an automated architecture based on deep
features optimization for HGR. To our knowledge, it is the first architecture
in which features are fused using multiset canonical correlation analysis
(MCCA). In the proposed method, original video frames are processed for all
11 selected angles of the CASIA B dataset and utilized to train two fine-tuned
deep learning models such as Squeezenet and Efficientnet. Deep transfer
learning was used to train both fine-tuned models on selected angles, yielding
two new targeted models that were later used for feature engineering. Features
are extracted from the deep layer of both fine-tuned models and fused into one
vector using MCCA. An improved manta ray foraging optimization algorithm
is also proposed to select the best features from the fused feature matrix
and classified using a narrow neural network classifier. The experimental
process was conducted on all 11 angles of the large multi-view gait dataset
(CASIA B) dataset and obtained improved accuracy than the state-of-the-art
techniques. Moreover, a detailed confidence interval based analysis also shows
the effectiveness of the proposed architecture for HGR.
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1 Introduction

Gait refers to the movement and stability of the human body when walking straight, which is the
plain movement style of the inferior limbs [1]. Human identification using biometric techniques has
become a major issue in recent years, and these biometric techniques are used to solve the problem of
human gait recognition from a distance [2]. Fingerprint, handwriting, ear, iris, and face detection are
all human identification techniques that are used to identify humans based on their unique individual
features. Every person on the planet has unique iris patterns and fingerprints that are used to identify
them [3]. The primary application of gait recognition is in security systems. In today’s technological era,
a creative and forward-thinking biometric application is required, and the gait is an ideal methodology
for recognizing people. Human gait recognition has the advantage over other techniques in that it
produces positive results while avoiding identification from low-resolution videos [4]. Human gait
recognition (HGR) is a critical biometric technique because each individual has distinct characteristics
such as walking style, clothing variations, carrying condition, and angle variations [5].

Human gait is increasingly inspiring researchers as a biometric technique. It is more important
than fingerprint and face recognition technologies [5]. The HGR has developed an active study zone
and significant attention in the field of Computer Vision (CV) [6,7]. Every human has common
and familiar gait patterns. HGR is a complicated method because it relates to examination points.
HGR has two approaches: model-based approach and model-free approach [4,8]. The model-based
approach directs human movement based on prior knowledge, whereas the model-free approach
creates human body sketches [9,10]. To investigate human activities based on upper/lower body parts
and joint movements, a model-based approach is used. The model-free approach, on the other hand,
requires less computational time and is easier to implement. Numerous computer-based techniques
have been introduced into the literature by CV researchers [11]. The methods presented are based on
traditional and deep learning techniques. Traditional techniques involve a number of steps, including
data preprocessing [12], region of interest (ROI) detection, feature extraction, and classification [13].
The extraction of the ROI is a critical step in traditional gait recognition techniques. The main goal of
this step is to extract features from only the most important region [14]. The following step is feature
reduction, which has the primary goal of removing redundant features. Principle component analysis
(PCA), entropy, and other techniques are used for feature reduction.

Many deep learning-based HGR methods are discussed in the literature. Convolutional neural
network (CNN) is a deep learning model used for a wide range of tasks such as object recognition [15],
action recognition [16], gait recognition, medical imaging [17], and many more [18,19]. A convolutional
layer, an activation layer, a feature extraction layer, and a classification layer comprise the CNN model
[20]. Bari et al. [21] presented a deep learning based framework for HGR. They used several deep
learning methods and at the end performed features fusion and features selection. Khan et al. [2]
presented a framework with four major steps. In the first step, the dataset is normalized from a video
frame. In the second step, transfer learning (TL) is used to fine-tune and train pre-trained InceptionV3
and ResNet101 deep models. In the following step, features are extracted and improved ant colony
optimization is performed to select the best features. The experiment was carried out on the CASIA
B dataset and yielded notable accuracy. Wang et al. [11] introduced an convolutional longer shortest
memory (Conv-LSTM) architecture for human gait recognition. In this method, gait energy images
(GEI) is presented frame by frame, and then volume is expended to reduce gait cycle constraints. For
the cross covariance analysis, only one subject is used in the experimental process. HGR is completed
in the final step using the Conv-LSTM model. The CASIA B and large-scale gait (OU-ISIR) datasets
were used for validation, with accuracy rates of 93% and 95%, respectively.
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Arshad et al. [1] presented a framework for HGR based on feature fusion and optimal feature
selection. For feature extraction, two pre-trained deep learning models named Alexnet and very deep
network (VGG19) are used. On both deep feature vectors, a new approach called entropy controlled
skewness (FEcS) is used to select the best features. The experiments were carried out on several
datasets and yielded accuracy rates of 99.8%, 99.7%, 93.3%, and 92.2%. The disadvantage of this
method is that it ignores a few important features that could improve the accuracy of the CASIA
B dataset. Mehmood et al. [8] presented a deep learning-based HGR system. The presented method
consists of four steps: video frame preprocessing, deep learning feature extraction, feature selection,
and classification. The selection of best features using the firefly algorithm was the work’s strength.
The presented method was tested on the CASIA B dataset and achieved accuracy of 94.3%, 93.8%,
and 94.7%, respectively. Anusha et al. [22] extracted texture, spatial, and gradient information from
video frames for HGR, which is known as low level features. The experiments were carried out on
five datasets and yielded improved accuracy. Sharif et al. [23] extract features and regions of interest
(ROI). They also performed multilevel feature fusion to gain a better understanding of human gait.
Wu et al. [24] presented a graph-based HGR approach. They used Spiderweb graph connections to
connect angles in this approach. The experiments were carried out on the sdu gait dataset, the Multi-
View Large Population Dataset (OU-MVLP) dataset, and the CASIA B dataset, with accuracies of
98.54%, 96.91%, and 98.77%, respectively. In summary, the methods described above aimed to improve
the accuracy of HGR through the use of multiple datasets. However, there is a discrepancy in the
accuracy of the CASIA B dataset, and these methods did not take the entire dataset into account
during the experimental process. They also used feature selection techniques but didn’t mention the
computational time based comparison. In this paper, we proposed a new architecture based on the
fusion of deep learning models, information fusion, and an improved manta ray foraging optimization
(MRFO) algorithm.

2 Proposed Methodology

The proposed human gait recognition architecture is depicted in Fig. 1. This diagram depicts how
the original video frames are processed and fine-tuned deep learning models such as Squeezenet and
Efficientnet are trained for all 11 selected angles. Deep transfer learning was used to train both fine-
tuned models on gait datasets, resulting in two new targeted models used for feature engineering.
Using multi-set canonical correlation analysis, features are extracted from the deep layer of both fine-
tuned models and fused into a single vector (MCCA). The fused feature vector is then optimized with
an improved manta ray foraging optimization algorithm to select the best features, which are then
classified with a narrow neural network classifier. Each substep in this diagram is described in detail
below.

2.1 CASIA B Dataset

In this work, we utilized CASIA B dataset for the experimental process. This dataset contains 124
subjects and for each subject, 10 samples are captured from 11 viewing angles such as 0, 18, 36, 54, 72,
90, 108, 126, 144, 162 and 180. Each subject performed these 11 angles for three different scenarios
such as normal walk (6 videos), walk with carrying a bag (2 videos), and walk with wearing a coat (2
videos). Each video is recorded under the image resolution of 352 × 240 × 3 (rgb) and with 25 fps [25].
A few sample images are shown in Fig. 2.
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Figure 1: Proposed architecture of human gait recognition using deep learning and features optimiza-
tion

Figure 2: Sample frames of CASIA B dataset for all 11 viewing angles
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2.2 Convolutional Neural Network (CNN)

Convolutional neural network (CNN) is a powerful type of artificial neural network (ANN) that
can handle large datasets with improved performance. Thus, for accurate pattern recognition tasks,
networks encode image features better than ANN. A CNN network is made up of several layers,
including an input layer, a convolutional layer, a pooling layer, a batch normalization layer, a fully
connected layer, and a softmax classification layer.

The convolutional layer’s primary function is to learn how to represent the input based on its
features. Several different feature maps can be computed in the convolutional layer by using different
convolution kernels. Every previous layer’s neurons are precisely connected to each of the current
feature layer’s corresponding neurons. According to the previous neuron, this is known as a neuron’s
receptive field. It is worth noting that every single feature map is generated by sharing the kernel with
all of the input data’s special locations. We can calculate the value of the feature at (p, q) location in
the mth feature map of the nth layer.

an
p,q,m = wnT

m xn
p,q + bn

m (1)

In the above equation wn
m and bn

m these are the weight vector and the bias term of the mth feature
map of the nth layer respectively. xn

p,q is the input area at the center of the (p, q) location of the nth
layer. It is worth noting that kernel wn

m is shared, which produces the an
: , : ,m feature map. There are

numerous benefits to this weight-sharing technique, for example, it makes the training of the model
much easier and can reduce its complexity. The nonlinearities to CNN is presented by the activation
function, the nonlinear features are identified by the multi-layer networks. Here the i(.) represent the
nonlinear activation function, hence the activation value in

p,q,m of the convolutional feature an
p,q,m can be

calculated by:

in
p,q,m = i

(
an

p,q,m

)
(2)

Generally tanh and rectified layer unit (ReLU) are the sigmoid activation functions. We can reduce
the resolution of the feature maps by using the pooling layers in order to achieve shift-invariance. In
the between the two convolutional layers the pooling layer is placed. Every single of a pooling layer is
linked to its matching feature map of the previous convolutional layer. The pool(·), is representing the
pool fuction and in

p,q,m is representing the each feature map.

Kn
p,q,m = pool

(
in
g,h,m

)
, ∀ (g . h) ∈ Npq (3)

In the above equation Npq is the local neighborhood around (p, q) location. In order for the pooling
operation to work, generally max pooling and [26] average pooling are used. Fig. 2b demonstrations
in the 1st convolutional layer the edges and curves that are consider as low-level features and these are
detected through the kernels, while more abstract features are detected through the kernels in higher
layers. Some convolutional and pooling layers are used increasingly for extract of the higher-level
features.

After the convolutional and pooling layers for performing the high-level reasoning one or more
FC-layer can be added. In order to generate global semantic information, they connect all neurons
of the current layer with the corresponding neurons of the previous layer [27]. The last layer is the
softmax layer which is the output layer, used for classification. Support vector machine (SVM) is also
used for classification, combined with CNN features [28]. Let μ represent the CNN parameters. We
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can minimize the loss function in order to obtain the optimum parameters [29,30]. Let’s assume that
there are M preferred input-output relations.

We have M preferred input-output relations.
{(

i(n), j(n)
)

; n ∈ [1, . . . , M]
}
, where i(n) is the nth input

data and j(n) is its corresponding target data. Let the output of the CNN is O(n). The loss of CNN can
be calculate as:

L = 1
M

∑M

n=1
l(μ; j(n), O(n)) (4)

Global Optimization can be obtained by training CNN. The best matching set of parameters can
be found by minimizing the loss function. A usual explanation for the optimizing the CNN network
is the Stochastic Gradient.

2.3 Deep Learning Models for Features Extraction

SqueezeNet: The SqueezeNet is the convolution network which gives the better performance than
the AlexNet [31,32]. There are fifteen layer on which SqueezeNet based, these layers consist of; the
convolution layers are two, the max pooling layers are three, fire layers are eight, the global average
pooling is one, and the one softmax layer. Here, K × K represents the field size of the filter; the length
of the feature map is 1 and the size of the stride s, respectively. The dimensions and input size of the
SqueezeNet is 227 × 227 with rgb channels. The convolution layer is used to generalized the input
images, after that the max pooling is applied. In the input volume the convolution layer convolutes
between the weights and small regions, with the kernels of 3 × 3. The positive part of its argument every
convolution layer performed activation function by element wise. The fire layers, which constructed
of squeeze and expansion phases and utilized by the SqueezeNet.

EfficientNetB0: In the baseline network the layer operators does not change by model scaling, it
is critical of having good baseline network [33]. Convolutional network is used to evaluate the scaling
methods, A new mobile size baseline, called EfficientNet is developed for the better demonstration and
effective scaling methods. The EfficientNet is inspired by [34] in this paper author develop a baseline by
the leveraging a multi-objective neural architecture search that optimizes both accuracy and floating
point operations per second (FLOPS) [34].

Fine-Tuning of Pre-Trained CNN Models: In the fine-tuning process, the last fully connected
and successive connected layers have been removed. After that, new fully connected layer and
connected classification layers have been added and assign weights. The deep transfer learning
process is employed as a learning of both fine-tuned models from the scratch, as illustrated in Fig. 3.
Mathematically, the definition of deep transfer learning is defined as follows:

Given a transfer learning task {�s, �s, �t, �t, fτ (.)}. It represent the deep transfer learning task
where fτ (.) is a non-linear function that reflected a deep neural network.

For the training process, several hyper parameters have been assigned such as learning rate of
gradient descent is 0.00001, momentum is 0.6, number of epochs are 100, batch size is 32, activation
function is sigmoid, dropout rate is 0.5, and loss function for features extraction is cross entropy.

Deep Features Extraction: Consider, we have two new trained fine-tuned deep models are Δ1 and
Δ2. The sigmoid function is utilized as an activation function for features extraction; hence deep
features from global average pooling layer is computed for both models as follows:

V1 = ξ
(
Δ1, Lgap

)
(5)
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V2 = ξ
(
Δ2, Lgap

)
(6)

The dimension of extracted deep features for both models is N × 1280 and N × 512, respectively.
The obtained feature vectors are fused in single matrix using a modified multi-set canonical correlation
analysis.

Figure 3: Deep transfer learning based training of pre-trained CNN modes for human gait recognition

2.4 Modified MCCA Based Features Fusion

Assume that modality datasets P
{
X (r) = [

x(r)
1 , x(r)

2 , . . . , x(r)
N

] ∈ Y vr×N
}P

r=1
and this represent the

sample of mth and the modality of rth dataset X r. The multi-modal feature fusion method belongs
to MCCA, and its goal is finding the association projection direction �(r) ∈ Y vr×1 association to
X (r) (p = 1, 2, . . . , P). The optimization function MCCA’s is shown below:

max
{�r}P

r−1

�P
r=1�

P
s=1�

(r)LC(rs)�(s)

�P
r=1�

(r)LC(rr)�(r)
(7)

Here C(rs) = 1
N

�N
m=1

(
x(r)

m − x−(r)
) (

x(s)
m − x−(s)

)L
present covariance matrix for the X (r) and X (s), also

the C(rr) = 1
N

�N
m=1

(
x(r)

m − x−(r)
) (

x(s)
m − x−(s)

)L
, this present the variance matrix X (r) (p = 1, 2, . . . , P).

In the above equation, the optimization function is transformed to the problem of constraint-based
optimization.

max
{�r}P

r−1

�P
r=1�

P
s=1�

(r)LC(rs)�(s) (8)

s.t.�P
r=1�

(r)LC(rr)�(r) = 1 (9)
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In [28], �(r)LC(rr)�(r) these are the constrains between the modal and correlation features �(r)LX (r),
�(s)LX (s) and �(r)LC(rr)�(r). The correlation features �(r)LX (r) can reveal by global scatter. The final
features are fused in the descending order using the following equation:

Fd (i) = {DS (� > μ)} (10)

The fused vector contains some irrelevant information that further optimized using improved
Manta Ray Foraging Algorithm (IMRF).

2.5 IMRF Based Features Selection

Features selection is an important research topic now a days for several application but especially
biometric. In this work, our main purpose is to propose an improved method for best feature
selection from the input feature vector. The aim of this method is to improve the accuracy and
reduce the computational time. We proposed an improved Manta Ray Foraging (IMRF) optimization
algorithm for the best feature selection. The original Manta Ray Foraging Algorithm (MRFO) is
inspired through three different foraging behaviors that includes cyclone foraging, chain foraging,
and somersault foraging.

In MRF optimization, the manta rays judge the location or position of the plankton and then
swim toward plankton. The position is better if concentration of the plankton in the position is high,
while the best solution is unknown. The plankton is approaches and eaten by the manta rays, with
higher concentration of that MRFO assume for the best solution. Manta rays from the foraging chain
by line up by head-to-tail. In their movement, move is not towards the food only but toward also the
one who is present in front of them. It happens in all the iterations and every solution is updated by the
individual in front of it and best solution found so far. Mathematically, the chain foraging is defined
as follows:

wa
j (s + 1) =

{
wa

j (s) + c .
(
wa

b (s) − wa
j (s)

) + β .
(
wa

b (s) − wa
j (s)

)
j = 1

wa
j (s) + c .

(
wa

j−1 (s) − wa
j (s)

) + β .
(
wa

b (s) − wa
j (s)

)
j = 2, . . . , N

(11)

β = 2 . c .
√|log(c)| (12)

Here, wa
j (s) represent about the location of jth individuals when the time s in ath dimension, c

represent the random vector whose range is within [0,1], and Plankton with higher concentration are
wa

b (s). The updated position of each individual (jth) is described by the position wj−1 (s) of the current
individual (j − 1)

th and the position of food is wb (s).

Cyclone Foraging: When a spot of plankton recognized in deep water by manta rays of school, and
they forms a long foraging chain and start swimming toward the food in the form of spiral. Whale
optimization (WOA) found this similar spiral foraging strategy [35]. Although for strategy of cyclone
foraging of the manta ray swarms, they are moves toward the food spirally, the manta rays are always
swimming towards those who are in front of it. Foraging is performed by developing a spiral by manta
rays. The movement of every individual towards the food along a spiral path but not only follows the
one in front of it. In Eq. (13), the behavior of manta ray of spiral movement is defined as follows:{

Mj (s + 1) = Mb + c .
(
Mj−1 (s) − Mj (s)

) + f pd . cos (2πd) . (Mb − Mj (s))
Nj (s + 1) = Nb + c .

(
Nj−1 (s) − Nj (s)

) + f pd . sin (2πd) . (Nb − Nj (s))
(13)
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where w is a random number between [0, 1]. The model of cyclone foraging is mathematically defined
as follows:

wa
j (s + 1) =

{
wa

b + c .
(
wa

b (s) − wa
j (s)

) + α .
(
wa

b (s) − wa
j (s)

)
j = 1

wa
b + c .

(
wa

j−1 (s) − wa
j (s)

) + α .
(
wa

b (s) − wa
j (s)

)
j = 2, . . . , N

(14)

α = 2f c1
Z−z+1

Z . sin (2πc1) (15)

Here the coefficient of weight is α, maximum number of the iterations are represented by s, and the
c1 represent random numbers between [0,1]. Every individual from the reference position performed
random search to the food. Eq. (16) shows the mathematical model for the achievement of wide global
search.

wa
r = Rpa + c . (Vpa − Rpa) (16)

wa
j (s + 1) =

{
wa

b + c .
(
wa

b (s) − wa
j (s)

) + α .
(
wa

r − wa
j (s)

)
j = 1

wa
r + c .

(
wa

j−1 (s) − wa
j (s)

) + α .
(
wa

r − wa
j (s)

)
j = 2, . . . , N

(17)

where w, a, r are the produced randomly position in the search space. The lower and upper limits of
the a are Rpa and Vpa, respectively.

Somersault Foraging: In somersault behavior, the pivot is viewed as a position of the food. They
are swimming to the new position based on pivot. When the best position found, then they update
their positions as follows:

wa
j (s + 1) = wa

j (s) + W .
(
c2 . wa

b − c3 . wa
j (s)

)
(18)

Here, W is the somersault factor and initialized as 2, c2 and c3 are consist of two random numbers
between [0,1]. In the above equation, this is feasible for everyone to move toward some position.
The randomly distribute sampled points examined this locations and their balanced situations around
the wb, and the distance of sample points is reduce. Like other metaheuristic optimization methods,
In the MRF it is started from generating population randomly in the problem domain. At every
repetition, the position is updated by every individual updated the with respect to front and reference
position. The worth of s/Z diminishes from 1/Z to 1, performed exploratory and exploitative search.

We improved this algorithm output based on opposition based learning. According to this, each
individual is updated as: (w−a+

j > w−a+
j−1 ). In the opposite when w, (w−a+

j < w−a+
j−1 ), its means that for the

current population only the best individuals are consider for the further iterations, and the remaining
population is removed. Based on the following formulation the effective solution is generated:

w−a
j = wmax

j + wmin
j − wa

j (19)

where, w−a
j denotes the opposing location for the wa

j , wmax
j , and wmin

j . These are signifying minimum and
maximum constraints. The size is transformed by the primary individual:

wa
j (s) = 10 × N (20)

Here N shows the number of parameters. The size of the updated individuals for the further
iterations is got from the following formulation:

w−a+
j = round

(
wa

j × (1 + &)
)

(21)
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The final selected features w−a+
j of dimensional N × 726 are finally passed to machine learning

classifiers for classification.

3 Experimental Results and Analysis

The experimental results of proposed method are discussed under this section.

3.1 Experimental Setup

The results of proposed HGR architecture are presented in this section in terms of numerical
values and graphs. The proposed architecture is tested on CASIA B dataset. The detail of dataset
is given under Section 4.1. In this work, we utilized 50% video frames for the training purpose and
rest of the 50% for testing the proposed architecture. All results are computed using 10-Fold cross
validation. The recognition accuracy is computed for each angle of CASIA B datasets (11 angles)
and also finds the mean accuracy. As mentioned in Section 2.1, three different angles have been
involved for each angle; therefore, the separate accuracy of each angle is also computed. Narrow neural
network is selected for the classification purpose and compared the accuracy with few other well-
known methods such as extreme learning machine, Bi-Layered neural network, Tri-Layered neural
network, and multiclass support vector machine (SVM). The entire proposed architecture is tested on
MATLAB 2021b using personal computer with 16 GB of RAM and 8 GB graphics card.

3.2 Results

The proposed architecture results are presented in Table 1. In this table, the results of several
classifiers are given for all 11 angles. For each angle, accuracy is computed for each class, separately.
Narrow neural network attained average accuracy of 96.67%, 93.65%, and 84.24%, respectively for
normal walk (NM), walk with carrying a bag (BG), and walk with wearing a coat (CL). The second
selected classifier is extreme learning machine (ELM) and attained average accuracy of 96.56%,
93.47%, and 83.50%, respectively. The third selected classifier is Bi-Layered Neural Network and
attained accuracy of 93.63%, 88.85%, and 78.42%, respectively. The fourth selected classifier is Tri-
Layered Neural Network and attained accuracy of 93.16%, 89.87%, and 79.22%, respectively. The fifth
selected classifier is multiclass SVM and attained accuracy of 90.4%, 86.15%, and 76.52%, respectively.
Based on these results, it is observed that the overall accuracy of proposed gait recognition architecture
is better for Narrow Neural Network, The values given in Table 1 also presents that the accuracy of
each class for all 11 angles is better for this classifier.

Table 1: Proposed classification accuracy of human gait recognition using CASIA B dataset

Method Class 0° 18° 36° 54° 72° 90° 108° 126° 144° 162° 180° Mean

Narrow
Neural
Network

NM 97.7 98.4 94.2 94.6 97.6 96.2 98.6 98.1 97.5 96.2 97.5 96.67
BG 95.4 95.8 93.2 93.1 92.8 90.2 93.6 92.9 94.6 92.4 96.2 93.65
CL 80.1 82.6 83.2 85.1 79.8 92.1 86.2 81.8 83.1 88.0 84.7 84.24

Extreme
Learning
Machine

NM 97.1 96.4 96.5 93.5 96.7 97.1 97.2 97.8 97.9 94.5 97.5 96.56
BG 93.7 94.2 94.1 92.8 95.0 89.2 94.3 94.1 93.5 93.1 94.2 93.47
CL 80.5 83.2 82.7 86.5 79.4 86.2 84.4 82.8 81.3 88.2 83.4 83.50

Bi-Layered
Neural
Network

NM 93.2 94.5 92.9 93.1 94.6 91.8 93.5 94.8 94.5 93 94.1 93.63
BG 87 89.1 90.5 89.6 91.4 82.6 90.8 89.4 87 89.3 90.7 88.85
CL 73.5 78.4 77.2 81.6 75.3 82.2 80 77.5 76.1 82.4 78.5 78.42

(Continued)
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Table 1: Continued
Method Class 0° 18° 36° 54° 72° 90° 108° 126° 144° 162° 180° Mean

Tri-Layered
Neural
Network

NM 93.1 93.6 91.2 92.4 95.7 93.2 93.3 92.3 94.5 93.9 91.6 93.16
BG 89.7 88.1 91.4 91.0 92.3 83.5 92.2 93.6 84.4 89.0 93.4 89.87
CL 74.1 82.4 78.5 83.6 72.5 82.4 81.9 77.0 77.4 82.3 79.4 79.22

Multiclass
SVM

NM 88.2 89.4 91.5 92.3 93.4 91.2 86.3 92.4 90.1 88.2 91.4 90.4
BG 82.3 81.5 88.2 84.9 91.6 81.2 90.4 88.3 84.2 83.9 91.2 86.15
CL 71.2 70.4 76.5 77.1 70.5 83.5 79.8 74.9 73.1 81.2 83.6 76.52

The proposed architecture accuracy is compared with individual steps such as modified
Squeezenet CNN, modified EfficientNet, and MCCA based fusion. Table 2 presents the accuracy of
Narrow Neural Network (NNN) for Squeezenet and attained an average accuracy of 91.47%, 87.28%,
and 74.18%, respectively. Table 3 presents the accuracy of NNN for Efficientnet and attained an
average accuracy of 91.71%, 87.20%, and 74.54%, respectively. This table shows that the performance
of Efficientnet is better than the SqueezeNet. After the fusion process, accuracy is significantly
improved and average accuracy is reached to 93.53%, 89.44%, and 77.29%, respectively, as presented
in Table 4.

Table 2: Recognition results for modified Squeezenet CNN using CASIA B dataset

Method Class 0° 18° 36° 54° 72° 90° 108° 126° 144° 162° 180° Mean

Narrow
Neural
Network

NM 91.2 92.5 87.6 90.0 92.5 92.1 93.2 92.6 91.7 91.8 91.0 91.47
BG 91.0 91.3 89.0 88.2 86.4 85.7 88.1 86.9 85.2 82.9 85.4 87.28
CL 72.3 72.5 73.8 74.8 70.0 72.6 76.5 73.0 74.8 79.5 76.2 74.18

Table 3: Recognition results for modified EfficientNet CNN model using CASIA B dataset

Method Class 0° 18° 36° 54° 72° 90° 108° 126° 144° 162° 180° Mean

Narrow
Neural
Network

NM 91.8 91.9 88.4 91.1 92.8 92.6 92.5 91.9 92.4 92.0 91.5 91.71
BG 91.4 90.8 88.5 88.0 86.2 86.9 88.4 85.6 85.7 83.6 84.2 87.20
CL 70.1 74.2 72.6 75.6 71.2 73.4 75.9 74.6 76.9 78.2 77.3 74.54

Table 4: Recognition results for MCCA based features fusion using CASIA B dataset

Method Class 0° 18° 36° 54° 72° 90° 108° 126° 144° 162° 180° Mean

Narrow
Neural
Network

NM 93.6 93.5 91.4 92.0 93.9 94.2 95.1 93.2 94.2 94.1 93.7 93.53
BG 92.9 92.9 90.5 89.9 88.7 88.5 90.2 87.2 88.3 87.0 87.8 89.44
CL 75.8 77.3 76.2 78.1 73.5 76.2 77.0 77.8 78.5 80.3 79.5 77.29

Moreover, the proposed feature selection algorithm performance is also analyzed based on
different selection parameter value such as T = 0.3, T = 0.4, T = 0.5, T = 0.6, and T = mean value.
The performance of each one is presented in Fig. 4. In this figure, it is shown that the accuracy of
selection algorithm with T = 0.3 is 91.56%, 89.04%, and 78.65%, respectively. For T = 0.4, the attained
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accuracy is 92.5%, 90.68%, and 81.36%, respectively. This shows that the accuracy is improved after the
change of T = 0.4. Similarly, the accuracy for T = 0.5 is 93.56%, 91.46%, and 82.04%, respectively. For
T = 0.6, the obtained accuracy is 92.52%, 90.04%, and 80.14%, respectively. The increase in threshold
value indicated that the accuracy is little reduced than the previous values. For T = mean value, the
accuracy is little improved of 92.58%, 91.5%, and 82.36%, respectively. The proposed architecture
obtained the improved accuracy than all values and obtained an accuracy of 96.67%, 93.65%, and
84.24%, respectively.

Figure 4: Comparison of different threshold values for features selection with proposed framework

3.3 Confidence Interval Based Analysis and Comparison

A confidence interval (CI) based analysis is also conducted of proposed architecture using values
of all 11 angles (given in Tables 5–7). Table 5 presents the CI based analysis of normal walk. In this
table, the confidence level is defined and for each level, margin of error of (MoE) is computed. In this
table for confidence level 95%, 1.960σ x̄, the obtained MoE is 96.9636 ± 0.835 (±0.86%). For 90%,
1.645σ x̄, the MoE is 96.9636 ± 0.701 (±0.72%). This shows that the accuracy is consistent and reliable
of proposed architecture for normal walk.

Table 5: Confidence interval based analysis of normal walk

Confidence level Margin of error

68.3%, σ x̄ 96.9636 ± 0.426 (±0.44%)
90%, 1.645σ x̄ 96.9636 ± 0.701 (±0.72%)
95%, 1.960σ x̄ 96.9636 ± 0.835 (±0.86%)
99%, 2.576σ x̄ 96.9636 ± 1.097 (±1.13%)
99.9%, 3.291σ x̄ 96.9636 ± 1.402 (±1.45%)
99.99%, 3.891σ x̄ 96.9636 ± 1.657 (±1.71%)
99.999%, 4.417σ x̄ 96.9636 ± 1.881 (±1.94%)
99.9999%, 4.892σ x̄ 96.9636 ± 2.083 (±2.15%)
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Table 6: Confidence interval based analysis of walk with carrying a bag

Confidence level Margin of error

68.3%, σ x̄ 93.6545 ± 0.501 (±0.53%)
90%, 1.645σ x̄ 93.6545 ± 0.824 (±0.88%)
95%, 1.960σ x̄ 93.6545 ± 0.982 (±1.05%)
99%, 2.576σ x̄ 93.6545 ± 1.29 (±1.38%)
99.9%, 3.291σ x̄ 93.6545 ± 1.648 (±1.76%)
99.99%, 3.891σ x̄ 93.6545 ± 1.949 (±2.08%)
99.999%, 4.417σ x̄ 93.6545 ± 2.212 (±2.36%)
99.9999%, 4.892σ x̄ 93.6545 ± 2.45 (±2.62%)

Table 7: Confidence interval based analysis of walk with wearing clothes

Confidence level Margin of error

68.3%, σ x̄ 84.2455 ± 1.031 (±1.22%)
90%, 1.645σ x̄ 84.2455 ± 1.696 (±2.01%)
95%, 1.960σ x̄ 84.2455 ± 2.021 (±2.40%)
99%, 2.576σ x̄ 84.2455 ± 2.656 (±3.15%)
99.9%, 3.291σ x̄ 84.2455 ± 3.393 (±4.03%)
99.99%, 3.891σ x̄ 84.2455 ± 4.011 (±4.76%)
99.999%, 4.417σ x̄ 84.2455 ± 4.553 (±5.40%)
99.9999%, 4.892σ x̄ 84.2455 ± 5.043 (±5.99%)

Time based comparison is also conducted, as illustrated in Fig. 5. In this figure, it is shown that
the modified Squeezenet deep model consumes less time than the modified efficientnet. Later on, the
fusion process consumes higher time than the previous two steps, but based on the above tables, it is
also noted that the accuracy is improved for this step (fusion). Finally, the proposed selection step is
also employed and it is shown that the time is significantly reduced. At the end, a brief comparison
with some recent techniques is also conducted (Table 8). From this table, it is shown that the proposed
method achieved improved accuracy on selected dataset for all three angles. The average accuracy of
proposed method is 91.52 (sec), which is previously 89.66 by Li et al. [36].
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Figure 5: Time based comparison of proposed approach with middle steps

Table 8: Proposed method accuracy comparison with existing techniques

Reference Year Datasets NM BG CL Mean (%)

[37] 2018 CASIA B 68.1 54.7 31.5 51.4
[38] 2019 CASIA B 95.0 87.2 70.4 84.2
[39] 2022 CASIA B 96.0 91.6 74.8 87.5
[36] 2022 CASIA B 96 92 81 89.66
Proposed 2022 CASIA B 96.67 93.65 84.24 91.52

4 Conclusion

This work proposes a fusion of the deep best-selected features method for human gait recognition.
The recent studies focused on feature extraction and then performed reduction, further utilized for
final classification. Moreover, they also concentrated on a few angles instead of all 11 angles. In this
work, we performed improved MCCA (IMCCA) based deep features fusion, further refined using
an improved optimization technique. In the classification phase, the Narrow Neural Network gives
better recognition accuracy. The experimental process was conducted on all 11 angles of the CASIA
B dataset and achieved an average accuracy of 91.52%. As per our knowledge, it is the first gait
recognition framework in which improved MCCA is applied for deep features fusion. The proposed
method results are also compared with some recent techniques and show an improvement in accuracy.
Overall, we concluded that the fusion of features improves the accuracy, but the jump is noted in
the computational time. The selection of the best features using the proposed method improves the
accuracy and reduces the testing classification time. The limitation of this work is that only raw images
are sent to deep models rather than silhouette images. The raw images extract a lot of irrelevant and
redundant information, which not only reduces accuracy but also lengthens the processing time. In
the future, dynamic optimization techniques shall be opted for the best feature selection.
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