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Abstract: The sewer system plays an important role in protecting rainfall
and treating urban wastewater. Due to the harsh internal environment and
complex structure of the sewer, it is difficult to monitor the sewer system.
Researchers are developing different methods, such as the Internet of Things
and Artificial Intelligence, to monitor and detect the faults in the sewer
system. Deep learning is a promising artificial intelligence technology that
can effectively identify and classify different sewer system defects. However,
the existing deep learning based solution does not provide high accuracy
prediction and the defect class considered for classification is very small, which
can affect the robustness of the model in the constraint environment. As a
result, this paper proposes a sewer condition monitoring framework based
on deep learning, which can effectively detect and evaluate defects in sewer
pipelines with high accuracy. We also introduce a large dataset of sewer defects
with 20 different defect classes found in the sewer pipeline. This study modified
the original RegNet model by modifying the squeeze excitation (SE) block
and adding the dropout layer and Leaky Rectified Linear Units (LeakyReLU)
activation function in the Block structure of RegNet model. This study
explored different deep learning methods such as RegNet, ResNet50, very
deep convolutional networks (VGG), and GoogleNet to train on the sewer
defect dataset. The experimental results indicate that the proposed system
framework based on the modified-RegNet (RegNet+) model achieves the
highest accuracy of 99.5 compared with the commonly used deep learning
models. The proposed model provides a robust deep learning model that can
effectively classify 20 different sewer defects and be utilized in real-world sewer
condition monitoring applications.
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1 Introduction

Sewer monitoring is essential to support urban subterranean infrastructure. There are approxi-
mately more than 800,000 miles of municipal sewage pipelines and 500,000 miles of residential sewage
pipelines in the U. S. alone [I]. While governments have extended sewage lines to accommodate
expansion and upgrade water systems, sewer monitoring has received much less attention [2]. The
Clean Watersheds Needs Survey points out that there isn’t enough money to monitor wastewater
infrastructure [3,4]. Moreover, towns throughout the United States are dealing with aging sewage
infrastructure that has to be maintained, repaired, or replaced. Additionally, these sewage lines must
be examined regularly to minimize pipe breakage or reduced sewer efficiency [5].

Sewer condition monitoring is presently carried out on-site by a qualified investigator who
operates a remote-controlled robot with a camera through the sewage line at the same time. The
investigators must watch a video stream for an extended period of time, which is difficult and
exhausting labor. This may lead to inaccurate assessments, contributing to sewage structural damage
in the worst-case scenario. In order to minimize maintenance expenses and enhance the performance
of a computerized assessment, robots and scanning equipment have been widely employed in recent
years to monitor and manage different structures [6—8]. Consequently, there is fierce competition
between many leading industrial robot companies to develop a more advanced inspection robot. One
example is ETRI’s utility hole condition monitoring robot, which uses a 360-degree field of vision
to accurately examine utility holes up to a distance of 50 feet in sewerage systems. Furthermore, the
robot’s high-quality sensor allows it to accurately record the internal characteristics of the medium
and big sewer lines. Furthermore, closed-circuit video taken by robots is a budget and appropriate
method of monitoring the condition of the sewer in environmentally fragile or challenging monitoring
scenarios.

Researchers recently utilized deep learning techniques to automatically extract sewer defect
information from a given image. Although deep learning based solutions provide promising results
to classify the sewer defects, it needs a large dataset to achieve state-of-the-art accuracy. The accuracy
of existing deep learning based sewer classification models are not as high as other classification prob-
lems. Moreover, the overfitting issue of the current available solution affects the model’s robustness
when applied in real-world sewer condition monitoring applications. The lack of a large dataset with
extensive classes of defects also affects the performance of the existing solutions. Therefore, a large
dataset with more defect classes and a robust deep learning model must be introduced, which can be
implemented in the constraint environment.

This paper utilized a dataset that was generated using the Closed Circuit Television (CCTV)
video frames provided by the Korea Institute of Civil Engineering and Building Technology. The
datasets for the sewer condition monitoring comprise many defect classes, each of which has multiple
photos collected from the footage and thoroughly checked by the inspection officer. Due to a large
number of CCTYV recordings, an automated sewer condition monitoring system must be developed
to automatically identify defects and obtain relevant information regarding the sewer condition.
An automated sewer condition monitoring system has several advantages, including (1) reducing
investigation mistakes caused by tiredness, perceptions, and varying skill levels of investigators, (2)
detecting defects that go undetected by the naked eye, and (3) allowing rapid assessments and process
monitoring of CCTV footage to maintain monitoring system robustness [9]. The contribution of our
proposed sewer defect classification system are as follows,

1. A large manually collected sewer defect dataset with 20 different sewer defect classes can be
used to train deep learning models to provide a robust sewer defect classification solution.
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2. The original RegNet deep learning model is modified by introducing the dropout layer to
the sequence excitation block to reduce overfitting issues and the activation function of the
sequence excitation block also changed to LeakyReLLU from ReLLU to increase the performance
of the model.

3. The extensive experiments show that our proposed model outperforms other state-of-the-art
deep learning in all evaluation metrics, which can be implemented in the constraint sewer
condition monitoring application to classify sewer defects effectively.

This study proposes a deep learning based sewer condition monitoring framework that supports
automated defect monitoring in sewer frames extracted from CCTYV inspection videos. We have
implemented different deep learning-based image classification techniques such as RegNet, ResNet50,
VGG16, VGGI19, and GoogleNet to evaluate the performance of detecting defects in the sewer [10—13].
We have found that the proposed RegNet+ model outperforms other deep learning-based methods in
detecting sewer defects.

2 Related Works

Due to technological advancements, notably in computer vision there is an expanding number of
deep learning-based sewage monitoring methods available in the literature [14]. Myrans et al. provided
an automated system for recognizing different kinds of defects in CCTV recordings [15]. First, they
calculate each frame’s feature representation before analyzing with other methods. The information
from each frame was then analyzed using two machine learning methods. The Hidden Markov Model
and the filter approach were used to gather data from a sequence of images to enhance the model’s
performance. Their model has achieved an accuracy of more than 80%. However, the dataset employed
in this study was insufficient, with just 1000 photos, and more than half of the sample fell into the no
defects class. Ye et al. proposed feature extraction and machine learning methods for detecting sewer
defects [16]. They used a support vector machine (SVM) model to classify seven classes of sewer pipe
issues. The performance of the model was measured at 84.1% after being applied to 28,760 m of sewage
lines. Fang et al. presented a system for defect detection that employed an unsupervised machine
learning-based defect detection method on CCTYV data [17]. The achieved accuracy was over 90%
for the proposed model. Although machine learning approaches have been widely utilized for sewer
monitoring, they depend significantly on pre-processing techniques and proper feature extraction in
particular scenarios.

Deep learning, a subset of machine learning (ML) that uses multi-layered artificial neural
networks, has delivered state-of-the-art results in detection, classification, and other domains.
Hassan et al. presented a convolutional neural network-based model for identifying sewage cracks
using pictures taken from CCTYV recordings [18]. The presented method used in their study is able to
achieve 96.33% accuracy in classifying six basic forms of defects. However, the inequitable distribution
of data throughout the class impacted the model’s performance. Cheng et al. proposed an automated
detection of sewage cracks using the Faster R-CNN technique [19]. Several tests were conducted
to assess the model’s performance, including accuracy and computing costs. The high detection
accuracy was attributed to changes in variables such as stride parameters and filter sizes, resulting
in an 83% mean average precision (mAP). The presented model was used for still photos; hence it is
necessary to study video analysis. Xie et al. used a deep convolutional neural network (CNN) model
to automatically extract sewer defect features [20]. Several trials demonstrated that the framework
generalized the new data effectively, yielding a classification accuracy of more than 94% on state-of-
the-art datasets. However, the system had high processing costs and was unable to identify common
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features such as defect deformation and deflections. Meijer et al. presented a collection of sewer crack
photos taken from CCTYV video that included more than 21,000 photos [21]. The authors then used
the acquired dataset to conduct a deep learning method for crack detection. They also introduced
a leave-two-inspections-out cross-validation method, substantially avoiding data leakage bias. The
proposed classifier didn’t meet state-of-the-art crack classification criteria. Moreover, their paper
lacks authority by using the recall value as an experimental indicator because the accuracy rate is
the most important basis for judging the model’s performance in practical use. Oh et al. proposed a
novel automated framework for identifying sewage pipe faults using the enhanced you only look once
v5 (YOLOVS) architecture for CCTV footage [22]. Their proposed model achieved a mAP of 75.9%
for real-time sewer defect detection outperforming other traditional methods. Although the proposed
method achieved very good accuracy, the model is not lightweight, affecting the performance of the
resource-constrained system used to monitor the underground sewer pipeline, such as CCTV camera
devices. Li et al. introduced pipe segmenting objects by locations (SOLO), a new automated instance
defect segmentation model that can segment six different classes of sewage pipe defects. Their proposed
model outperformed other traditional methods for segmenting sewer defects, achieving a mAP of
59.3%. However, the proposed segmentation can only be implemented on the still images, which is
not suitable for analyzing the real-time CCTV video analysis. Dang et al. introduced an effective
and sustainable deep learning-based system for automatically detecting and evaluating sewer defects
23]. In addition, an ensemble-based methodology and a cost-sensitive learning-based approach were
presented to address the unbalanced data issue. They were able to identify seven different types of
sewage defects with an overall accuracy of 97.6%. However, the proposed system cannot detect more
than one defect in a single image, which is not suitable for a real-time CCTV sewer defect classification
system where one image can contain multiple defect classes. Zhou et al. proposed a CNN based
automated sewer defect classification model to classify six common sewer defects [24]. They achieved
an average accuracy of 90% during the training and the prediction accuracy was over 95% during
prediction of the different sewer defects. However, the feature difference of different objects in an
image such as obstacles and walls may deteriorate the proposed model’s performance. Moreover, the
classification accuracy of the proposed model is comparatively low compared to the other classification
model discussed earlier. Ma et al. proposed Style generative adversarial network (GAN) and sharpness
discrimination model to generate the sewer defect images to classify multiple sewer defects [25]. They
used Fusion CNN model to classify the sewer defects and achieved a mean accuracy of 95.64%. They
only considered four types of sewer pipeline defects in their research, Moreover, there is a certain
difference between the generated images and the real images, which can affect the performance of the
classification model.

3 Materials and Methods

Fig. 1 shows the detailed architecture of the proposed sewer condition monitoring system using
deep learning models. The system framework consists of four parts: Image collection, data aug-
mentation, model training, and defect classification output. The sewer defect images are obtained
by examining the images which were retrieved from Closed Circuit videos. The images are then
classified into twenty defect classes by manual inspection. The training dataset is fine-tuned using
data augmentation approaches before training the proposed model. The dataset is then utilized for
training several deep learning models to assess their performance, then the best model is chosen to
classify sewer pipeline defects.
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Figure 1: The comprehensive structure of the automated sewer condition monitoring system includes
four major parts. (1) image collection from videos; (2) data augmentation on the acquired images; (3)
CNN classification is used to train a different class of defects; (4) defect classification; and different
models are trained to evaluate the performance of the proposed model with state of the models

3.1 Data Preparation

The robot-based solution was used to collect the data since the inspectors may check the sewage
system remotely using a remote camera. This study used 7733 CCTYV videos of sewers, which ranged
in duration from 30 s to 15 min and had a pixel of 1280 x 720. The dataset was initially collected by
the Korea Institute of Civil Engineering and Building Technology, and we have used their dataset in
our study.

The robot was equipped with a 1.3-megapixel Exmor complementary metal-oxide-semiconductor
(CMOS) camera and could rotate fully 360 degrees, tilt up or down, and observe 240 degrees of side
views. In addition, six 35 W high-power led bulbs were attached to the robot, which enabled the robot
to take videos in different scenarios.

Sewer defect datasets were developed by manually analyzing CCTV footage from the original
collection with a total of twenty classes. Then different data augmentation methods are used to pre-
process data before training the sewer monitoring model. The distribution of images per class extracted
from the CCTYV footage is given in Table 1.

Table 1: The description of the proposed underground sewer defect classification dataset

Defect name Code Before augmentation  After augmentation
Buckling BC 200 510
Broken pipe BK 400 510
Crack, circumferential CcC 400 510
Crack, longitudinal CL 400 510

(Continued)
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Table 1: Continued

Defect name Code Before augmentation  After augmentation
Crack, multiple CM 453 510
Deformation DF 170 510
Debris, greasy DG 85 510
Deposits, silty DS 400 510
Hole HL 391 510
Joint, displaced JD 400 510
Joint, faulty JF 400 510
Joint, separated JS 400 510
Lining defect LD 93 510
Lateral, protruding LP 400 510
Lateral, sealing defective LS 236 510
Permanent obstruction PO 122 510
Root intrusion RI 158 510
Surface damage SD 400 510
Sags SG 150 510
Temporary obstruction TO 75 510

3.2 Data Augmentation

Data augmentation refers to approaches for enhancing the quantity of data in a dataset based
on various alterations in order to increase the number of instances in the entire dataset. Data
augmentation not only contributes to the expansion of the dataset but also enhances its variety.
Data augmentation serves as a regularizer and prevents overfitting in training deep learning-based
classification models. The data augmentation method for the classification model involves crop, clip,
flip, perspective, rescale, and rotation; among them, clip, flip, and perspective methods are used in this
study.

Fig. 2 shows the data augmentation performed on our sewer datasets, enhancing the datasets’
variety and robustness to overfitting methods. We have selected three augmentation techniques such
as clip, flip and perspective, where the flip and perspective are done randomly. The processed images
are then utilized for training the sewer monitoring classification model to classify different defects.

3.3 Underground Sewer Defect Classification Model

Neural architecture search (NAS) [26] has recently gained much popularity, despite its high
computational cost. Some major drawback of the conventional NAS technique is its inflexibility,
generalizability, and interpretability issues. The conventional NAS approach relies on sampling indi-
vidual networks. So, researchers have presented a global estimate of network design space. Naturally,
we can determine the optimal network size if we can establish the functional correlations between
different network features, such as network dimensions. This is because we will better understand
how these elements operate together. EfficientNet’s design concept is used to extend the network
dimension using a simple and efficient composite factor. This approach does not randomly modify the
network’s dimensions as the conventional method does. NAS uses neural structure search technology



CMC, 2023, vol.75, no.3 5457

to seek out the optimal model within a certain computing expense and find the optimal combination
of parameters.

(@Ol ~ (b)Clip (c) Fiip (d) Perspective

Figure 2: The data augmentation method used in our proposed dataset to enhance the quality of the
dataset, where three common augmentation technique such as clip, flip and perspective

RegNet incorporates NAS technology as well, although not in the same way as other prior NAS
systems (such as MobileNetV3 and EfficientNet). Conventional NAS employed search techniques
to determine the optimal set of parameters within a specified search frame. RegNet, on the other
hand, investigates the construction of regions and the particular network design principles instead of
just combining parameters. In contrast to EfficientNets, RegNet does not concentrate on a particular
network or collection of networks. RegNet outperforms the present available EfficientNet in terms of
accuracy while also being five times quicker on the Graphics processing unit.

The RegNet network is divided into three components, as shown in Fig. 3a: stem, body, and head.
In this network, the body’s architecture takes priority over the stem and head of the network.
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Figure 3: RegNet general network structures for deep learning models which consists of stem, body,
and head part
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A regular convolution layer serves as the stem (including batch normalization and Relu). Fig. 3b
depicts the body’s structure, which is categorized into four stages, similar to a stack. There will be a
50% reduction in the input feature matrix’s height and width after each step, as depicted in Fig. 3c.
A stage is comprised of a number of block stacks. Every stage’s initial block consists of two shortcut
layers and two main convolution layers. The classification network’s head classifier is comprised of a
global average pooling layer and a fully connected layer.

Fig. 4 illustrates the architecture of the block, with Fig. 4a illustrating the instance of step stride,
which is equal to 1, and Fig. 4b illustrating the instance of step stride, which is equal to 2. We can see in
Fig. 4 that the RegNet block is quite similar to the ResNet block. It consists of two 1 x 1 convolution
layer and a 3 x 3 convolutional layer, including batch normalization and ReLU. The model does not
process further when the stride is equal to 1 on the shortcut connection. A 1 x 1 convolution layer is
used for downsampling when the stride is 2. The input and output resolution (r) stay constant if s = 1;
if s =2, the output resolution is reduced input to 50%.

Wi, I, I W, I, I
t t
@ @
t t
1x1, s=1 1x1, s=1
t t
wy/by, 1, 1} wy/b, 1, 1
3><3s s s=1 3><3, i =2 lxl., =2
t t t
wib, . 1; wyb;, 2r;, 2r;
t
1x1, s=1 1x1, s=1
t t
Wi I, I Wiy, 21, 2r;

(a) X block, s=1

(b) X block, s=2

Figure 4: RegNet block structure based on the residual bottleneck block, where w represents the
characteristic matrix’s channel, g represents each group’s group width, and b represents the bottleneck
ratio

Figs. 5 and 6 show the proposed RegNet+ structure and block diagram used in this study to
classify different sewer pipeline defects. The proposed structure consists of three parts: stem, body, and
head. The stem part is consisting of a 3 x 3 convolution layer, batch normalization, and LeakyReLU
activation function. 12 convolution layers and 4 2D convolution blocks are used in the structure’s
body part. The block section of the original RegNet is modified to reduce overfitting and improve the
performance of the model. The block consists of two 1 x 1 convolutional layer, one 3 x 3 convolutional
layer, a squeeze excitation (SE) block, and a dropout layer. The adaptive average pooling is removed
from the SE block and we have changed squeeze channel calculation method by multiplying the input
channel with squeeze ratio whereas the original the SE block divide the input channel by the squeeze
ratio. The squeeze ratio is set to 0.25 to provide a constant ratio to the model. The shortcut connection
is used to solve the gradient divergence problem. The LeakyReLU activation function is used as it
performs better than other methods such as the sigmoid function.



CMC, 2023, vol.75, no.3 5459

= >
<85 BE: EE:EEE :E:is:. :
gﬁz.BSS_uUUIBSS uSUﬂ.gg'UE-
.Emn-g"'""""'"""""""""""wse“a
X xxxxxxxxxxxx;hn (=]
c‘:ﬁ-—mnnmunmﬁnmﬂ

Figure 5: The proposed model is based on the RegNet structure, where FC represents fully connected
layer, BN represents batch normalization
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Figure 6: The block diagram of the proposed RegNet+ structure where s represents stride, SE
represents sequence excitation block

The overall prediction procedure of the sewer defect classification can be seen in algorithm 1. The
system first obtains CCTV videos from the remote robot. Then the system automatically extracts every
frame from the sewer defect videos. The extracted images are then fed into the CNN classifier model
one by one to predict the defect for each frame. However, the system shows error message if it does
not find any defect image dataset.

Algorithm 1: The proposed sewer defect classification system

Input :CCTV video from remote robot
Output:Sewer defects classification for every frame

1 Image collection «+— CCTV video

2 forall the frame in CCTV videos do

3 | Sewer images « Extracted frames

4 end

s if Sewer images is # NuLL then

6 | for Sewer image x in Sewer images do

7 CNN + Sewer Image (x)

8 Prediction result <~ CNN

9 end
10 else

1 | No defect image
12 end
13
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4 Results and Discussion

An extensive experiment was performed on the sewer defect classification dataset to evaluate the
performance of the proposed model. Different available deep learning models were used to train on
the proposed dataset, and then they were evaluated using the standard multiclass evaluation metrics
such as accuracy precision, F1-score, and recall. The best model is then trained again by optimizing
the hyperparameters to achieve highest performance from the model. The hyperparameter optimized
model is then used on the different noisy sewer images to predict the sewer defects and evaluate the
performance of the model. Lastly, the proposed model is compared with the available sewer defect
classification solutions found in the literature.

4.1 Classification Evaluation Metrics Experiments

The data augmentation method was implemented on the proposed dataset to increase the images
of the sewer defect. We randomly selected 12000 images from the augmented dataset, where every class
was distributed to 600 images. The proposed dataset is then split into train and validation sets using the
85:15 method. The training set contained 10200 images, and the validation set contained 1800 images.
The deep learning models were trained in the Pytorch library, which is one of the most popular libraries
for training deep learning models. We have implemented five mostly used deep learning models to
train on our datasets and evaluate these models’ performance. A stochastic gradient descent optimizer
was utilized for training the model. The initial learning rate for all deep learning models used in this
experiment was set to 0.001. The batch size and epochs for all the models were set to 64 and 200,
respectively. The image sizes for both training and validation were set to 224 x 224. Fig. 7 shows the
training and validation accuracy of all the models used in this experiment. It can be seen from the Fig. 7
that most of the model’s accuracy becomes stable around 40 epochs. However, the proposed RegNet+
model’s training accuracy became stable around 25 epochs and achieved the highest accuracy among
other deep learning models for both training and testing. Table 2 illustrates the accuracy in terms of
training and testing for all deep learning models. It can be seen that the accuracy of our proposed
model for both training and test was 99.1 and 98.79, respectively.

Train and Test accuracy Train and Test accuracy Train and Test accuracy
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Figure 7: (Continued)
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Figure 7: Training and testing results of the implemented deep learning models, (a) VGGI16, (b)
VGG19, (c) GoogleNet, (d) ResNet50, (e) Original RegNet, (f) RegNet+

Table 2: Training and testing accuracy of the implemented deep learning models

Model name

Training accuracy

Testing accuracy

VGG16
VGGI19
GoogleNet
ResNet50
RegNet
RegNet+

94.5
94.8
94.8
98.1
98.9
99.1

82.3
83.5
82.5
86.6
98.68
98.79

The confusion matrix is also calculated to evaluate the performance of our proposed model. 1800
images with 20 classes were utilized to calculate the confusion matrix of the proposed model. The
detailed confusion matrix for two best deep learning models are given in the Fig. §. It can be seen that
the classwise performance of the proposed model is very high.

We utilized standard multiclass classification evaluation metrics. In each classification test, we
computed true positive (TP), true negative (TN), false negative (FN), and false-positive (FP). Using
the given formula, we obtained the average classification accuracy (A), average recall (R), average

precision (P), and F-1 score (F-1).

B TP+ TN
" TP+ TN + FP+ FN
TP
R=—
TP+ FN
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Figure 8: The confusion matrix of the implemented RegNet and RegNet+ deep learning model. (a)
represents the RegNet model, (b) represents the RegNet+ model
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Table 3 shows the metric evaluation results used in this study, where average precision, recall,
F1-score, and average were calculated for the five deep learning models. It can be seen that GoogleNet
performs worse than other methods which were 69.97, 51.67, 59.44, 57.38 in terms of precision, recall,
f1-score and accuracy, respectively. On the other hand, our proposed model outperforms other models
for all the performance metrics. The proposed model’s average precision, recall, F1-score, and accuracy
were 98.83, 98.85, 98.83, and 98.79, respectively.

Table 3: The average performance metrics of the multi class classification used in this study

Model name Precision  Recall F1-score Accuracy
VGG16 65.94 61.09 51.30 64.40
VGGI19 67.57 69.06 68.30 69.85
GoogleNet 69.97 51.67 59.44 57.38
ResNet50 86.99 84.90 85.93 86.69
RegNet 98.82 98.83 98.82 98.68

RegNet+ 98.83 98.83 98.83 98.83
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4.2 Hyperparameters Experiment

The hyperparameters play an important role in achieving a particular model’s highest accuracy.
The hyperparameters for the classification model include the learning rate and optimization algo-
rithms. When a model’s learning rate is not optimized, the loss varies and convergence speed also
becomes slow [27,28]. The two most common optimizer methods, Adam and SGD, are also used to
determine the optimized hyperparameters for our proposed model.

Table 4 shows the effect of different hyperparameters on the performance of the model. We
have trained different deep learning models along with our proposed model using Adam and SGD
optimizers. We selected three learning such as 0.01, 0.005 and 0.001 for every optimizer. Then we
calculate the testing accuracy for all deep learning models to compare the results to choose best model
for further evaluation. It can be seen that the proposed RegNet+ model achieved the highest accuracy
using the SGD optimizer, with a 0.005 learning rate and 0.9 momentum. Therefore, we have selected
the learning rate of 0.005 and SGD optimizer for our proposed model.

Table 4: The effect of model performance using different hyperparameters for defect classification
system. Two optimizer such as adaptive moment estimation (Adam) and stochastic gradient descent
(SGD) with three learning rate such as 0.01, 0.005, 0.001 were used to train the model on our proposed
dataset

Optimizer Learning rate VGGI16 VGGI19 GoogleNet ResNet50 RegNet RegNet+

0.01 16.3 16.3 71.5 76.7 98.5 80.8
Adam 0.005 16.3 16.3 77.9 78.3 98.4 85.1
0.001 60.4 60.1 83.5 83.4 96.6 80.2
0.01 82.6 83.5 83.8 83.5 98.6 99.2
SGD 0.005 82.7 83.3 83.1 86.1 98.5 99.5
0.001 82.3 83.5 82.5 86.6 98.6 98.7

4.3 Model Evaluation for Constraint Environment

The acquired images from different sewers with different equipment can contains images with
noise. Therefore, the robustness of the defect classification toward different noises should be evaluated
prior to implementation in the real time sewer condition monitoring application. In this paper, we
considered four common noises that can be found in the sewer images to evaluate the performance of
our proposed model. These four common noises are crop, rotate, partial overlapping and block noise
which can occur due to the constraint environment and monitoring equipment as well.

Fig. 9 shows the prediction score of the proposed model on the random cropped sewer images.
The original image can be seen in Fig. 9a, which was then randomly cropped and fed into classifier to
predict the defect. It can be seen that the proposed model accurately predicts the defect class with high
prediction score. The average prediction score for crop image was over 90% with one exception which
can be seen in Fig. 9d. This is due to the lack of the defect surface distribution to the different images.



5464 CMC, 2023, vol.75, no.3

class: CM  prob: 0.909 prob: 0.999

class: CM
o

class: CM  prob: 0.979

]

100 100

200
200

300
300

(c) Crop(CM:97.9%) 200

8

400
class: CM  prob: 0.83
500 0 500
600 100 600
5 & 200
(a) Original Image (CM) T O 4D 60 B0 100 200 b g0 200 30
(b) Crop(CM:90.9%) (d) Crop(CM:83%) () Crop(CM:99.9%)

Figure 9: The prediction results of our proposed model on the cropped images. (a) represents the
original image from the crack multiple class. (b—¢) are the predicted results using our proposed model
on randomly cropped images

Fig. 10 shows the prediction score of the surface damage sewer defect with random rotation. It
can be seen that the predicted accuracy of our proposed classification model was more than 95 for
rotated images. The proposed model achieved high prediction score for rotated images because the
distribution of defect did not change when the image was rotated. Nonetheless, our proposed model
could classify the defects for constrained underground sewer defect images, demonstrating that the
proposed model can be implemented in the different constraint environments to detect and classify
the underground sewer defect.
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Figure 10: The prediction results of our proposed model on the rotated images. (a) represents the
original image from the surface damage class. (b—¢) are the predicted results using our proposed model
on the rotated images
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We have also evaluated our proposed sewer defect classification model against various noises
which can be found in the real-world surveillance camera footage. We have utilized images from
the lateral protruding class and put the images on other images to make the image partially overlap
to check the prediction’s performance. Fig. 11 shows the proposed model’s predicted results on the
partially overlapping images. Random overlapping was done for the same image, and the proposed
model predicted all the images correctly. The lowest accuracy was achieved in Fig. 11b, which was
83.4%, whereas the highest accuracy was achieved in Fig. 11d, which was 97.5%.

) Partial overlapping (LP: 88.8%)

‘
i'

(b) Partial overlapping (LP: 83.4%)

(c) Partial overlapping (LP: 96.3%) (d) Partial overlapping (LP: 97.5%)

Figure 11: The prediction results of our proposed model on the partially overlapping images

The noisy images were also fed into the proposed model to evaluate the prediction performance
of the proposed model. Fig. 12 shows the predicted result on different block noise images with good
accuracy. Different block noises were added to Figs. 12b—12d prior to being fed into the classifier.
The proposed model predicted all the images correctly for lateral protruding class, where the lowest
accuracy among them was achieved for Fig. 12¢c, which was 91.3%. Figs. 12¢ and 12f represent the
partial defect block images, where some or major sections of the defect were blocked with a black
screen and sent to the proposed model for prediction. We have observed that the proposed model can
accurately classify the defect images, but the accuracy is not as high as other images. We observed the
lowest accuracy of 46.1% for Fig. 12e, where a major part of the defect was blocked. After analyzing
the result, it is evident that the proposed model is robust to the different noises and constrained
environments that can be found in the real world.
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Figure 12: The prediction results of our proposed model on the noisy images

4.4 Comparison with Other Works

This section’s primary objective is to show that our modified RegNet+ model outperforms the
previous model for sewer defect classification. This section provides a comprehensive analysis and
comparison of the recent sewer condition monitoring approaches. Dang et al. used a fine-tuned
VGGI19 deep learning model to classify 12 different defects [23]. They achieved the highest accuracy
of 97.6% for sewer defect classification. Ma et al. proposed a StyleGAN-SDM-based method to
pre-process the small dataset and then introduced a multi-defect classification model based on the
multi-defect classification model (MDCM) to classify sewer defects [25]. They achieved an accuracy
of 95.6% using 14451 images with 4 different defect classes. Li et al. introduced modified ResNet18
on the imbalanced sewer classification dataset [29]. They used images of 7 classes to train and validate
the model and achieved an accuracy of 64.8%. Kumar et al. proposed a CNN-based deep learning
model on a dataset having 8 common defect classes [30]. They achieved the highest classification
accuracy of 86.2% for sewage defects. Situ et al. also utilized StyleGAN to generate defect images
to train the synthetic images with different classifier model [31]. They used a variant of StyleGAN
cascaded with adaptive discriminator augmentation (ADA) to prepare the datasets. They found out
that Inception_v3 deep learning model performs well in classifying different sewer defect, where the
model achieved an accuracy of 94% for four defect classes. On the other hand, the proposed method
used a small dataset with 20 different defect classes to classify sewer defects in a sewage system. Despite
having a small dataset, the proposed model outperforms state-of-the-art sewer classification models
in terms of accuracy. The proposed model achieved an accuracy of 99.5%, which demonstrates that
the proposed model has the highest performance in sewer defect classification compared to previous
methods. The comprehensive comparisons with different method available in the literature are shown
in Table 5.
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Table 5: Comparisons between the proposed method and the recent sewer defect classification found
in the literature

Classification approach Defect class number Accuracy
Fine-tuned VGG19 [23] 12 97.6
StyleGAN-SDM+MDCM [25] 4 95.6
Modified ResNet18 [29] 7 64.8
CNN [30] 8 86.2
StyleGAN-ADA+CNN [31] 4 94.0
Our method 20 99.5

5 Conclusion

This study proposed a defect classification framework using a CNN-based deep learning model
on the collected CCTV underground sewer dataset. A large dataset of sewer defects dataset contains 20
different classes is proposed to classify various defects found in the sewer. The dataset was prepared by
manually extracting the CCTV video frame from a remote robot. The data quality is also enhanced by
applying data augmentation, which further improves the classification model’s performance. Finally,
we have modified the original RegNet by adding the dropout layers in the RegNet structure block
to reduce the model’s overfitting. Moreover, the LeakyReLU activation function was used instead of
ReLU to achieve the highest accuracy by optimizing the model network.

An extensive experiment was performed to evaluate the performance of our proposed model.
The experimental results demonstrated that the proposed model outperforms other models in terms
of precision, recall, Fl-score, and accuracy, which are 98.83, 98.85, 98.83, 98.79, respectively. The
hyperparameter optimization is performed to further improve the proposed model’s accuracy. We have
achieved a testing accuracy of 99.5% by optimizing the hyperparameters such as learning rate-0.005
with SGD optimizer. Moreover, we have added different noises to the testing images which can occur
in the real-world scenarios to evaluate the prediction score of the proposed model. The result shows
that the proposed model can effectively predict the correct class with an overall prediction score of
90%, whereas the lowest prediction score of the correct class is 46.1%. Therefore, the proposed model
can be used for underground sewer condition monitoring and defect classification tasks.

Although our proposed model performs well in the single defect class-based images, the proposed
model performance deteriorates when predicting multiclass images. Different methods such as meta
heuristic learner, object detection method can be implemented to detect multi defects in a single image.
The dataset introduced in this paper also has limitations, such as the distribution of the images for all
classes are not the same. More images can be extracted to balance dataset for every defect classes. In the
future, more challenging experiments can be done to evaluate the performance of the proposed model.
The proposed dataset should be extended further to acquire more images from the CCTV videos to
accommodate more defect classes. The proposed system can be extended to the real-time classification
of CCTV images, which can help investigators detect multiple defects in less time.
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