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Abstract: The imbalance of dissolved gas analysis (DGA) data will lead

to over-fitting, weak generalization and poor recognition performance for

fault diagnosis models based on deep learning. To handle this problem,

a novel transformer fault diagnosis method based on improved auxiliary

classifier generative adversarial network (ACGAN) under imbalanced data

is proposed in this paper, which meets both the requirements of balancing

DGA data and supplying accurate diagnosis results. The generator combines

one-dimensional convolutional neural networks (1D-CNN) and long short-

term memories (LSTM), which can deeply extract the features from DGA

samples and be greatly beneficial to ACGAN’s data balancing and fault

diagnosis. The discriminator adopts multilayer perceptron networks (MLP),

which prevents the discriminator from losing important features of DGA

data when the network is too complex and the number of layers is too large.

The experimental results suggest that the presented approach can effectively

improve the adverse effects of DGA data imbalance on the deep learning

models, enhance fault diagnosis performance and supply desirable diagnosis

accuracy up to 99.46%. Furthermore, the comparison results indicate the

fault diagnosis performance of the proposed approach is superior to that of

other conventional methods. Therefore, the method presented in this study

has excellent and reliable fault diagnosis performance for various unbalanced

datasets. In addition, the proposed approach can also solve the problems of

insufficient and imbalanced fault data in other practical application fields.

Keywords: Power transformer; dissolved gas analysis; imbalanced data;

auxiliary classifier generative adversarial network

1 Introduction

Oil-immersed power transformers, as one of the power grid’s core pieces of equipment, play

a critical role in power transmission and distribution. The operation of an oil-immersed power

transformer is often affected by the harsh operating environment, and once the fault occurs, there will

be many accidents of various sizes, ranging from small-scale power outages to fires and explosions,
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resulting in immeasurable economic losses and casualties [1,2]. Therefore, whether the oil-immersed

transformer can be judged accurately in time has an important practical significance [3].

When there are electrical and thermal faults in the oil-immersed transformer, a chemical reaction

will occur in the fault area leading to cracking, which will produce characteristic gases related to the

type of transformer fault and gradually dissolve in the transformer oil,mainly including hydrogen (H2),

methane (CH4), acetylene (C2H2), ethylene (C2H4), and ethane (C2H6), which are the five characteristic

gases [4,5]. If the dissolution rate of oil is less than the production rate of characteristic gas, excess

characteristic gas will diffuse inside the transformer. DGA technology is used to judge whether

there are faults and fault types in transformers by monitoring the composition and concentration of

characteristic gases generated during the operation of oil-immersed transformers, which has become

the preferred method for monitoring on line in China and abroad [6].

For the past decades, Various diagnostic methods have been developed based onDGA techniques,

including the international electrotechnical commission (IEC), the improved three ratios method

(ITR), the Duval triangle method (DTM), etc. The above traditional DGA methods mainly use

empirical assumptions and the practical experience of experts to establish a diagnosis rule based on

the “code-type of fault” relationship between the concentration or ratio of the characteristic gas and

the type of transformer fault. The lack of diagnostic accuracy.With the rapid development of artificial

intelligence (AI) and machine learning (ML), intelligent models based on the combination of DGA

technology and shallowmachine learning are directly or indirectly used in transformer fault diagnosis,

such as the artificial neural network (ANN), the fuzzy system (FS), the support vectormachine (SVM),

etc. Yang et al. combines the bat algorithm (BA) and probabilistic neural networks (PNN) to propose

a transformer fault diagnosis model based on BA-PNN, which has significant advantages in pattern

classification [7]. Malik et al. proposed a fuzzy reinforcement learning (RL) based intelligent classifier

for power transformer incipient faults that can progressively learn to identify faults with high accuracy

for all fault types, thus solving the problem of low recognition accuracy of existing fault classifiers [8].

Hong et al. proposed a new SVM-based framework for transformer fault diagnosis that applied a

multi-step feature extraction process composed of characteristic gas concentrations and their ratios.

Based on the characteristic distribution of each sample, a suitable support vector machine multi-

classification method was proposed using a hierarchical decision tree structure. It solves the problem

that the traditional SVMmulti-classification method and parameter optimization algorithm have low

training efficiency [9]. Although the above methods have improved the accuracy of transformer fault

diagnosis to a certain extent, it has been confirmed that the learning abilities of shallow machine

learning methods are ultimately limited as convention machine learning methods are difficult to dig

out the deeper microfeatures in DGA data due to weak feature extraction ability. In 2006, Professor

Hinton et al. proposed the concept of deep learning (DL), which has since set off the third wave of

artificial intelligence [10]. Nowadays, deep learning algorithms like CNN and LSTM, which are the

most popular data-driven model algorithms, have a high demand for the number of training samples.

When most deep learning models deal with fault classification problems, they will make the training

samples of each fault type reach equilibrium to avoid the problem that a certain fault type is ignored

by the neural network due to a lack of samples [11]. However, the oil-immersed transformer has a

low fault incidence and rare fault type samples, which limits the operation efficiency and research

directions for transformer fault diagnosis at present. Generalization ability of the diagnosis model is

limited and it cannot guarantee accurate transformer fault assessment [12]. Therefore, one of the key

issue is how to use the generative model to solve the adverse effects of imbalanced data.

At present, the methods to deal with unbalanced data can be divided into two categories: one

is to achieve the data set balance by changing the data distribution before training the classifier,
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among which the sampling method is the most commonly used; the other is to improve the learning

algorithm to make it suitable for unbalanced data classification, and the most common method is

Boosting. Samplingmethodsmainly include the common samplingmethod and the synthetic sampling

method. The normal sampling methods include undersampling and oversampling. Undersampling

balances the data by discarding some of the majority of the oversampling samples, but does so at

the loss of potentially useful information. Oversampling reduces the disequilibrium of the dataset

by simply replicating a few class samples, but increases the overfitting risk of the model. Therefore,

the synthetic minority oversampling technique (SMOTE) is put forward. This method avoids the

overfitting problem in random oversampling, but SMOTE does not take into account the overall

distribution of the data. So the sample generation mechanism has a certain blindness. The most

common improvement method based on Boosting is the AdaBoost algorithm, which can be directly

used for classifying unbalanced data sets. In each iteration process, AdaBoost will increase the weight

of the samples that are not correctly classified and decrease the weight of the samples that are correctly

classified. This makes the classifier trained by the system in the next iteration pay more attention to

the wrong samples classified by the existing classifiers and improve the classification effect of these

samples. Because small class samples are more likely to be misclassified, the AdaBoost algorithm can

improve the classification performance for small class samples. However, the AdaBoost algorithm

does not take the influence of unbalanced samples from different categories into account and adopts

identical weighting strategy for wrong classified samples. When the data set contains samples that are

hard to be classified correctly frommajority classes, the assignedweights for those samples will become

larger as the increasing of training iterations. As a result, the obtained classifier will become more

sensitive to those samples and result in poor classification performance for samples from minority

classes.

In October 2014, Goodfellow et al. of the University of Montreal proposed an emerging implicit

density generationmodel, the generative adversarial network (GAN), which is based on the traditional

generation network [13]. Since its introduction, GAN has been widely used in computer vision [14],

text generation [15], and target detection [16]. However, at the same time, GAN will be difficult to

control training and prone to mode collapse. In response to these problems, researchers have proposed

hundreds of GAN variant models in just a few years, such as Wasserstein GAN (WGAN) [17],

conditional GAN (CGAN) [18], and deep convolution GAN (DCGAN) [19], and applied them to

fault diagnosis. Li introduced the strategy gradient algorithm in GAN to realize the expansion of the

transformer oil chromatographic case and put the expanded data into the back propagation neural net-

work (BPNN) for fault classification [20]. Liu et al. introduced the Wasserstein distance and gradient

penalty algorithm into CGAN to guide the generation process ofmulti-class transformer fault samples

and established a stack self-encoder diagnostic model for fault diagnosis [21]. Fang et al. proposed to

build a GAN to generate synthetic samples for a small subset of labeled samples, which solved the

problem that traditional supervised learning methods could not learn information from unlabeled

sample data and improved the accuracy of transformer fault classification [22]. Although the above

method can generate part of the data through GAN to solve the imbalance of data and then use the

classificationmodel for fault diagnosis, this will lead to more complexity of the fault diagnosis process.

In addition, themodel training time will get longer and a suitable classifier is needed to tackle the value

of the balanced data.

Since the constraint of generators on discriminators in GAN and variant models leads to a

reduction in the final diagnostic accuracy, most GAN researchers abandon the use of discriminators

as the final fault classifier. In view of the above problems, a novel transformer fault diagnosis method

based on improved ACGAN under imbalanced data is proposed in this paper, which meets both
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the requirements of balancing DGA data and supplying accurate diagnosis results. The generator

combines 1D-CNNandLSTM,while the discriminator adoptsMLP. The experimental results indicate

that the presented method can effectively mitigate the adverse effects of data imbalance on the deep

learning model and improve the accuracy of the transformer fault diagnosis test. Moreover, it can

also fully tap the potential of the discriminator as the main classifier in ACGAN and provide a new

approach for handling imbalance and insufficient of data in practical application.

The rest of this paper is organized as follows: Section 2 introduces the relevant technical

background and proposes a fault diagnosis model. Section 3 introduces the DGA data processing

process. Section 4 presents six sets of comparative experiments, with analysis and discussion of the

results. Finally, we conclude this paper in Section 5.

2 Basic Theory of Fault Diagnosis Model

2.1 Theory of Basic GAN

The basic structure of the GAN model is shown in Fig. 1, which consists of a generator network

(G) and a discriminator network (D). Both of them adopt fully-connected layer neural networks and

are independent of each other, which has the advantages of a small calculation and dataset training

process. The input of G is a random noise z, which applies Gaussian noise vector generally. There are

two inputs for discriminator D, one of which is real sample X real, and the other is pseudo sample X fake

generated by G. In GAN, the tasks for G and D are described as follow: the task of G is to generate

X fake of the similarity approximation X real by learning the distribution of X real to deceive D.While the

task ofD is to identify as much as possible whether the input sample isX real orX fake generated byG and

then output a probability value by D as the identification result [23]. When the input of D is equal to

X real, the output of D will be equal to 1. Otherwise, the output of D is set to 0. D feedbacks the output

results to G and D to update the network parameters in turn to enhance the ability of G and D.

z G

Xreal

D

Real  1

 /

Fake 0

Xreal

Xfake

Train G Train D

Achieve Nash 

equilibrium
End

Yes

No

Figure 1: Basic structure of GAN model

The objective function of GAN is calculated as Eq. (1):

min
Gθ

max
Dω

V = Ex∼Pdata(x) [logDω (x)] + Ez∼Pz(x) [log [1 −Dω (Gθ (z))] (1)

where, θ andω are the parameters ofG andD, respectively.E represents expectation,Pdata (x) represents

the real sample distribution, and Pz (x) represents the generated sample distribution.

Throughout the process, G and D are trained against each other for the purpose of iterative

optimization, so that the maximum possible approximation of G to makes D work harder to identify

the truth of the sample, and the entire optimization process of the model is defined as a binary

minimal-extreme game problem. In addition, G and D achieve the purpose of iterative optimization

by adversarial training, so that the maximum likelihood of G is close to Pdata (x) which means Pz (x)

equals to Pdata (x), and D makes more efforts to identify the true and false samples. The whole
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optimization process of the model is defined as a two-player minimax game. The GANmodel reaches

Nash equilibrium when the probability of each output of D is essentially one-half [24].

2.2 Basic Theory of ACGAN

In order to solve the problem that the original GAN generation process is too free to control the

training process, ACGAN is proposed in [25]. The basic structure of the model is shown in Fig. 2.

Compared with the original GAN, the ACGAN not only has a random noise z at the input end of G

but also adds a class label (c) as a conditional probability to change G, and D takes X real and X fake as

inputs. This improvement enables GAN networks to generate the required label data. There are two

outputs in theD of ACGAN, one of which determines whether the input sample is fromX real orX fake by

the Sigmod activation function; the other output is fault classification by the Softmax multi-classifier.

Therefore, AGGAN not only can generate the required label data but also can be applied to the actual

fault classification problem.

c

z

G D

Real

/

Fake

c
Softmax

SigmoidXreal

Xfake

Train G Train D

Figure 2: Basic structure of ACGAN model

The objective functions for ACGAN training are calculated as in Eqs. (2) and (3).

LS = E[logP(S = real|Xreal] + E[logP(S = fake|Xfake] (2)

LC = E[logP(C = c|Xreal] + E[logP(C = c|Xfake] (3)

where, the loss function of ACGAN is composed of the loss function Ls, which characterizes whether

the data is true or false. The loss function Lc is used to characterize the accuracy of data classification.

The objective function of the generator is to maximize the value of (LC −LS), while the objective

function of the discriminator is to maximize the value of (LC +LS), which are shown as in Eqs. (4)

and (5), respectively.

maxG LS − LC (4)

maxD LS + LC (5)

2.3 Basic Theory of Improved ACGAN

In general, the transformer fault diagnosis model based on improved ACGAN can be divided

into two major parts: a generator network composed of 1D-CNN-LSTM and a discriminator

network consisted by MLP. The structures of generator and discriminator are shown as Figs. 3 and 4,

respectively.

In terms of the generator, 1D-CNN and LSTM are combined, and the whole generator model

adopts an end-to-end learning architecture to improve the fault classification accuracy of the whole

model. The combination of different neural networks turns it into a deep network, which enhances the

nonlinearity of the model and avoids the over-fitting phenomenon during model training. Moreover,
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the combined model is able to effectively learn the mathematical distribution and feature information

of DGA data, so that the generated data are closer to the real data. In terms of the discriminator, the

MLP composed of fully connected layer neural networks can speed up the training of the model and

prevent the shortcoming of losing vital features of the DGA data when the discriminator performs

discrimination due to the overly complex and deep layers of the network.
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Figure 4: Basic structure of discriminator

The general CNN (e.g., LeNet-5) processes data in a two-dimensional format of m× n. However,

the dataset used in this paper is the value of five characteristic gases of DGA samples, i.e., the

format of m× 1, which is one-dimensional in space. Therefore, CNN should choose the 1D-CNN

model with a more compact structure and more suitable for limited data, in which the convolution

kernels use the corresponding one-dimensional convolution kernels to extract multiple features,

which can significantly reduce the computation. The convolutional kernel plays a decisive role in the

convolutional layer of CNN, and it is experimentally proven that the size of the convolutional kernel

is best set to 3. Since the numbers and dimensions of DGA samples are small and uncomplicated,

the 1D-CNN model designed in this paper uses three convolution layers and cancels the pooling

layer. The pooling layer will reduce the dimension of the data to a low dimension and miss much

feature information, which leads to a decrease in model accuracy. A batch normalization (BN) layer is

added behind each convolution layer to improve the gradient flowing through the network, prevent the

gradient from disappearing, enhance the diversity of the generated samples, and improve the stability

of the training network. The generator structure parameters are shown in Table 1.

The discriminator structure parameters are shown in Table 2. The three-layer fully connected layer

neural network of the discriminator selects the LeakyReLU activation function, and the gradient alpha

of the left half of the function is set to 0.2. There are two outputs in the output layer. One output uses

the Sigmod activation function to map the input DGA data between 0 and 1, which is used to judge

the reliability of the input data. If the output is 1, which indicates the data is true and vice versa. The

other output is the discrimination result of the seven fault types of the transformer as determined by

the Softmax classifier.
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Table 1: Structure parameters of generator

Structure

part

Network

layer

Input

channel

Output

channel

Convolution

kernel size

Stride Padding Activation

function

Batch

normalization

1 Embedding 20 20 — — — ReLU No

2 Conv1D 20 128 3 1 1 ReLU Yes

3 Conv1D 128 128 3 1 1 ReLU Yes

4 Conv1D 128 128 3 1 1 ReLU Yes

5 LSTM 128 128 — — — — No

6 LSTM 128 128 — — — — No

7 Dense

(output

layer)

128 5 — — — Softmax No

Table 2: Structure parameters of discriminator

Structure parameters Network layer Input channel Output channel Activation function

1 Input layer 5 256 LReLU

2 Dense 256 256 LReLU

3 Dense 256 256 LReLU

4 Dense (output1) 256 1 Sigmoid

5 Dense (output2) 256 7 Softmax

The fault diagnosis network framework of the method in this paper is shown in Fig. 5.
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Figure 5: Framework of fault diagnosis method based on improved ACGAN

3 Data Preparation and Preprocessing

In this study, the fault diagnosis model is built based on the Anaconda distribution platform and

Python 3.6.6 is adopted to establish all fault diagnosis models. While PyTorch is employed as the deep

learning framework. In addition, a DELL workstation with Core i7-9700K and NVIDIA GeForce

RTX 3060 is used to implement computation and experiments.
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3.1 Data Preparing

The DGA dataset in this paper comes from domestic and foreign public datasets and related

literature. In view of missing characteristic data of DGA samples, no labels, wrong classified and so

on, it is necessary to preprocess the raw DGA samples before calculation. 1758 sets of DGA data,

including 400 normal samples and 1358 faulty samples, are selected to establish fault diagnosis model

after preprocessing. The sample distribution of each working condition is shown in Table 3.

Table 3: DGA dataset distribution after preprocessing

State NS LT MT HT PD LD HD Total

Samples from literatures 10 19 27 43 19 20 27 165 [26]

0 5 9 10 6 8 8 46 [27]

26 – – 20 18 21 32 117 [28]

9 0 0 19 0 15 25 68 [29]

3 3 5 16 10 19 24 80 [30]

52 17 47 29 20 68 89 362 [31]

DGA case 100 44 88 137 73 151 205 798

Total 400 160 221 193 279 261 244 1758

Two main working operations, including normal state (NS) and fault state (FS) are taken

into account in this study. The fault condition is classified as “discharge” or “overheating.” The

discharge fault is divided into low-energy discharge (LD), high-energy discharge (HD), and partial

discharge (PD) according to the energy density. According to the order of temperature from low to

high, overheating faults can be divided into low-temperature overheat (LT) (below 300°C), middle-

temperature overheat (MT) (300–700°C), and high-temperature overheat (HT) (above 700°C). There

are seven types of failures in total. The selected DGA dataset is divided into training set (80% of whole

samples) and testing set (20% of whole samples). The former is used for data generation and classifier

training, and the latter is used to test the classifier performance.

3.2 Data Preprocessing

Normalization is a critical step for fault diagnosis due to large dispersion of raw DGA values. A

fault diagnosis model without normalization will decelerate converge speed and reduce classification

accuracy. Moreover, to prevent the “big numbers swallowing decimals” of raw DGA data, the original

data is normalized to the (0, 1) interval by the dispersion standardization method to eliminate the

influence on fault diagnosis results, as shown in Eq. (6).

x
′

i
=

x
i
− x

i,min

x
i,max

− x
i,min

i = 1, 2, 3, 4, 5 (6)

where, xi and x
′

i
are the i-th features before and after normalization, and xi,min and xi,max are the i-th

feature’s minimum and maximum, respectively.

Generally, in order to facilitate the diagnosis model’s ability to effectively extract features and

calculate loss function in the training process, one-hot coding is used to label all kinds of operation

states of transformers in turn, as shown in Table 4. In this paper, the embedding layer is used in the

generator part to splice and fuse the input random noise and fault category labels. The embedding
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layer can be seen as a similar form to one-hot coding, but its advantage over one-hot coding is that

the variable generated by the embedding layer is not a specified position of 1, the other form being

0, but the value of each position is a floating-point number. In short, the embedding layer is a fully

connected layer with one-hot coding as the input and the middle layer node as the vector dimension,

and it can perform dimension enhancement and dimension reduction as required.

Table 4: Codes of power transformer operation states

State Digital coding One-hot coding

NS 1 (1, 0, 0, 0, 0, 0, 0)

LT 2 (0, 1, 0, 0, 0, 0, 0)

MT 3 (0, 0, 1, 0, 0, 0, 0)

HT 4 (0, 0, 0, 1, 0, 0, 0)

PD 5 (0, 0, 0, 0, 1, 0, 0)

LD 6 (0, 0, 0, 0, 0, 1, 0)

HD 7 (0, 0, 0, 0, 0, 0, 1)

4 Fault Diagnosis Based on Improved ACGAN Under Imbalance Data

4.1 Basic Process for Fault Diagnosis

This paper has four parts based on the basic process of improving the ACGAN transformer fault

diagnosis model: the training of the discriminator network, the training of the generator network,

DGA sample generation, and transformer fault diagnosis. The fault diagnosis process based on

improved ACGAN is shown in Fig. 6.

The precise processes can be described as follows:

• Step 1: Select the random noise Z and the transformer fault type label as the inputs to G to

obtain the generated dataset. Then, 80% of samples are selected randomly from the DGA

dataset as the model’s training dataset.

• Step 2: Use the real datasetX real and the generated fake datasetX fake as inputs forD. Afterwards,

calculate the loss of D and update the parameters of D.

• Step 3: Reselect random noise z and transformer fault type label c as the inputs ofG to generate

the fake dataset X fake, and take the real dataset X real and the generated dataset X fake as inputs of

D; and calculate the loss of G and update the parameters of G.

• Step 4: Determination of theNash equilibrium. If theNash equilibrium is not reached, return to

Step 1 and finally reach theNash equilibrium by continuously optimizing themodel parameters

of D through the binary minimax game mechanism; if the Nash equilibrium is reached, G and

D are trained, and the trained model parameters are saved.

• Step 5: The remaining 20 percent of the DGA dataset after the selection is used as the testing

dataset for the model. The testing dataset is input into the trained fault diagnosis model, and

the fault discriminant results are output by D. If the DGA dataset is unbalanced, the dataset

generated by G can be added to the diagnostic dataset to expand the fault dataset, and then

build more effective fault diagnosis model.
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Figure 6: Framework of fault diagnosis method based on improved ACGAN

4.2 Parameters Setting for Fault Diagnosis Model

Hyperparameters are generally used to determine some parameters of the model by the empirical

method for specific problems. To promote diagnosis performance of the deep learning algorithm

model, the super-parameters need to be continuously adjusted to find the network parameters that

allow the model to predict the most accurately. Such factors as the number of layers in the neural

network, the optimization method, the learning rate, the batch size of the dataset, and the number of

training rounds will affect the classification accuracy and total time of the fault diagnosis model. After

repeated checking and testing, the model parameters are adjusted, and the final hyperparameters of

the improved ACGAN model are shown in Table 5.

Adam optimizer, which can dynamically adjust the learning rate of each parameter of the model

within a limited range, is selected to build optimization function. The batch size controls the accuracy

and convergence of the model. The learning rate controls the speed of updating the model parameters.

The correct choice of epochs can make the gradient’s descent direction more accurate. To mitigate

the negative effects of imbalanced data on the model, the DGA dataset generated by the improved

ACGAN model is filtered, and some of the generated datasets are randomly selected and added to

the original DGA dataset so that the data of each fault type is consistent with the number of normal

types. The distribution of the new DGA dataset is shown in Table 6.
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Table 5: The hyperparameters of improved ACGAN

Hyperparameters Improved ACGAN

Number of convolution layers 3

LSTM number of layers 2

Optimistic method Adam

Initial learning rate 1e-4

Batch size 32

Epochs 2000

Table 6: Distribution of new DGA dataset

State Training dataset size Testing dataset size

NS 320 80

LT 320 80

MT 320 80

HT 320 80

PD 320 80

LD 320 80

HD 320 80

5 Fault Diagnosis Experiments and Results Analysis

In this paper, six groups of comparative experiments are used to demonstrate the superiority of

the proposed method. The main contents of experiments mentioned above are described briefly as

follow:

At first, a comparative experiment based on the improved ACGAN model before and after

dataset balance is conducted (experiment 1). Then, we compare the diagnosis performance between

the improved ACGAN model and the ACGAN model (experiment 2), the improved ACGAN model

and the traditional gas concentration ratio (experiment 3), the improved ACGAN model and the

traditional machine learning model (experiment 4), and the improved ACGAN model and the

traditional deep learning model (experiment 5). Finally, we evaluate the fault diagnosis performance

of the proposed method based on two different actual datasets (experiment 6).

5.1 Results and Analysis of Experiment 1

Comparison of fault diagnosis performance based on AdaBoost-SVM, AdaBoost-K-Nearest

Neighbor(KNN), improved ACGAN models with data imbalanced and the improved ACGAN

models with data balanced, were employed to implement experiments to verify the effectiveness of the

proposed approach in this paper. In this experiment, the models mentioned above were implemented

five times before and after data balancing, respectively. The fault diagnosis accuracy of the five

experimentsmentioned above was recorded and the average accuracy was applied as the final diagnosis

performance. The experimental results are shown in Table 7.
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Table 7: Comparison of classification results before and after data balancing

Experiment

number

AdaBoost-SVM

(imbalanced)

AdaBoost-KNN

(imbalanced)

Improved ACGAN

(imbalanced)

Improved ACGAN

(balanced)

1 76.60 76.11 98.01 99.29

2 76.35 76.63 98.30 99.46

3 77.08 77.83 98.58 99.46

4 76.35 78.32 98.86 99.11

5 76.33 77.49 98.01 99.46

Average 76.54 77.28 98.35 99.36

It can be seen from Table 7 that the average accuracy of Adaboost-SVM and Adaboost-KNN

before data balancing is 76.54% and 77.28%, respectively, indicating that when the data set contains

large categories of samples that are difficult to classify correctly, the mechanism of AdaBoost itself

cannot solve the unbalanced data well. Under the improved ACGAN model, the highest fault

diagnosis accuracy before DGA data balance is 98.86%, and the average accuracy is 98.35%. After

DGA data balancing, the highest fault diagnosis accuracy can reach 99.46%, and the average accuracy

is 99.36%, which is significantly improved compared with that before DGA data balancing.

5.2 Results and Analysis of Experiment 2

In order to verify the validity and effectiveness of the presented diagnosis model, the steps of

Experiment 1 are repeated in this experiment using the balanced DGA dataset. The experimental

results are shown in Table 8. Under the ACGAN model, the fault diagnosis accuracy of the trans-

former is 98.75%, and the average accuracy is 98.06%. Based on the improved ACGAN model, the

fault diagnosis accuracy of the transformer can be improved, as described in the previous section.

Table 8: Comparison of classification results between the original model and improved model

Experiment number ACGAN Improved ACGAN

1 97.50 99.29

2 98.57 99.46

3 98.00 99.46

4 97.50 99.11

5 98.75 99.46

Average 98.06 99.36

The classification loss of the discriminator based on the transformer fault diagnosis model before

and after ACGAN improvement is shown in Fig. 7. It can be seen from the graph that there is still

certain degree of oscillation at the end of training epoch for classification loss of the fault diagnosis

model based on ACGAN. While the classification loss of the fault diagnosis model based on the

improved ACGAN has small overall stage fluctuation, good stability, and relatively fast convergence.
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Figure 7: Comparison of classification loss results of ACGAN and improved ACGAN

5.3 Results and Analysis of Experiment 3

To reveal the superiority of the deep learning methods compared with conventional diagnosis

methods, two groups of comparative experiments were conducted based on different traditional fault

diagnosis methods under the balanced dataset, including IEC, ITR and DTM. The experimental

results are shown in Table 9. The proposed method has the highest fault diagnosis accuracy (99.46%),

with only three samples of discrimination errors, which verify the satisfying and remarkable diagnosis

performance of the presented model.

Table 9: Comparison of classification results of the testing dataset

State IEC ITR DTM Improved ACGAN

NS 80 80 - 79

LT 80 80 80 80

MT 80 80 80 80

HT 71 80 75 80

PD 80 80 79 80

LD 40 76 70 78

HD 69 80 75 80

Overall accuracy/% 89.29% 99.29% 81.96% 99.46%

5.4 Results and Analysis of Experiment 4

To verify the superiority of the deep learning model compared with the traditional machine learn-

ing model, this experiment implemented two different traditional machine learning-based transformer

fault diagnosis models under the balanced dataset to conduct two groups of comparative experiments,

including BPNN, PNN and KNN. The experimental results are shown in Figs. 8a–8d.
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Figure 8:Comparison of confusionmatrix. (a) BPNN confusionmatrix (diagnostic accuracy: 84.64%),

(b) PNN confusion matrix (diagnostic accuracy: 93.21%), (c) KNN confusion matrix (diagnostic

accuracy: 91.25%), (d) improved ACGAN confusion matrix (diagnostic accuracy: 99.46%)

In the confusionmatrix, each column represents the actual sample number of fault types, each row

represents the predicted sample number of fault types, and the diagonal represents the correct sample

number of fault types predicted by the model. The deeper the square color is, the higher the accuracy

is. Therefore, compared with BPNN and PNN, the diagnostic accuracy of each fault type based on

improved ACGAN is higher.

5.5 Results and Analysis of Experiment 5

To verify the superiority of the proposed transformer fault diagnosis model based on improved

ACGAN, under the balanced DGA dataset, six kinds of transformer fault diagnosis models based

on traditional deep learning are used for six groups of comparative experiments, including multilayer

perceptron (MLP), convolutional neural network (CNN), long short-term memory network (LSTM),

gated recursive unit (GRU), convolutional neural network-long short-term memory network (CNN-

LSTM), and convolutional neural network-gated recursive unit (CNN-GRU). The model parameters

are all consistent with this paper.

Since it is unreasonable to use classification accuracy only to evaluate performance of a fault

diagnosis model, so other indices, including accuracy, precision, recall and F1-score, are applied
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in this study to estimate the generalization and classification abilities of each deep learning model

more effectively and comprehensively. Let i represents the transformer fault category number, and the

calculation method for each index is shown as Eqs. (7)–(10).

Accuracy =
TPi + TNi

TPi + FPi + TNi + FNi

(7)

Precision =
TPi

TPi + FPi

(8)

Recall =
TPi

TPi + FNi

(9)

F1 − Score =
2 ∗ Recall ∗ Precision

Recall+ Precision
(10)

where, TPi represents a true positive example, indicating that the prediction is correct for positive

samples. FPi denotes a false positive case, indicating that the prediction is a wrong positive sample.

TNi is a true negative, indicating that the prediction is correct for the negative samples. FNi is a false

negative example, indicating that the prediction is a wrong negative sample, and the sum of the four

denotes the total samples.

Fig. 9 shows the accuracy, precision, recall, and F1-score of six traditional deep learning methods

and the proposed method. It can be seen that the results of various indicators based on the MLP,

CNN, LSTM, and GRU fault diagnosis models are unsatisfied, because the single neural network has

a poor ability to extract DGA features and is difficult to extract local features effectively. Since the

combination model can well mine more comprehensive feature information from the data and has

better fitting ability and generalization performance, so the results of various indicators based on the

CNN-LSTM and CNN-GRU fault diagnosis models are better than that of other machine learning-

based methods. The proposed improved ACGAN transformer fault diagnosis method has the highest

results in various indicators, which fully reflects the excellent generalization and classification abilities

of the presented model.
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Figure 9: (Continued)
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Figure 9:Comparison of the confusion matrix, (a) accuracy comparison, (b) precision comparison, (c)

recall comparison, (d) F1-score comparison

5.6 Results and Analysis of Experiment 6

In order to testify the practical application of the transformer fault diagnosis model based on the

improved ACGAN proposed in this paper, two actual case sample sets are used for fault classification,

namely, the fault equipment database inspected in the operation of IEC TC 10 (denoted as dataset S1)

[32] and the IEEE Dataport public dataset (denoted as dataset S2) [33]. The dataset S1 and dataset

S2 are totally independent from the training set dataset and do not undergo any data preprocessing,

which can fully reflect the actual operation of the oil-immersed transformer. The distribution of fault

types for dataset S1 and dataset S2 is shown in Table 10.

Table 10: Distribution of actual case dataset

State Dataset size

Dataset S1 Dataset S2

NC – –

LT – 19

MT – 9

HT 13 38

PD 3 16

LD 24 49

HD 45 54

The balanced DGA dataset is used as the training dataset, and the dataset S1 and dataset S2 are

used as the testing datasets for each fault diagnosis model. All diagnosis models mentioned above are

used for fault diagnosis. The diagnosis results are shown in Tables 11 and 12.
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Table 11: Comparison of fault diagnosis accuracy for dataset S1 (%)

Method HT PD LD HD Overall

IEC 69.23 33.33 41.67 82.22 67.06

ITR 69.23 0.00 41.67 91.11 70.59

DTM 53.85 33.33 37.50 77.78 61.18

BP 0.00 66.67 100.00 0.00 30.59

PNN 15.38 0.00 12.50 11.11 11.76

KNN 61.54 66.67 41.67 22.22 35.29

FC 61.54 100.00 75.00 57.78 64.71

CNN 61.54 66.67 79.17 75.56 74.12

LSTM 61.54 0.00 25.00 95.56 67.06

GRU 38.46 0.00 50.00 91.11 68.24

CNN-LSTM 69.23 100.00 79.17 71.11 74.12

CNN-GRU 53.85 66.67 75.00 86.67 77.65

Improved ACGAN 61.54 100.00 79.17 84.44 80.00

Table 12: Comparison of fault diagnosis accuracy for dataset S2 (%)

Method LT MT HT PD LD HD Overall

IEC 26.32 44.44 60.53 37.50 32.65 79.63 52.43

ITR 26.32 33.33 71.05 6.25 42.86 90.74 57.30

DTM 26.32 44.44 65.79 12.50 42.96 83.33 55.14

BP 15.79 44.44 65.79 6.25 32.65 94.44 54.05

PNN 26.32 44.44 34.21 6.25 30.61 11.11 23.78

KNN 26.32 33.33 55.26 18.75 36.73 20.37 32.97

FC 21.05 11.11 68.42 87.50 73.47 48.15 57.84

CNN 21.05 44.44 68.42 75.00 85.71 53.70 63.24

LSTM 15.79 33.33 73.68 31.25 36.73 94.44 58.38

GRU 21.05 44.44 81.58 18.75 77.55 57.41 60.00

CNN-LSTM 26.32 44.44 63.16 43.75 61.22 90.74 64.32

CNN-GRU 21.05 44.44 68.42 50.00 79.59 83.33 68.11

Improved ACGAN 26.32 44.44 94.74 100.00 89.80 92.59 83.78

It can be seen from Tables 11 and 12 that the overall diagnostic accuracy of the fault diagnosis

method based on improved ACGAN is the highest in the datasets S1 and S2, which are 80.00% and

83.78%, respectively. For specific faults, except HT, LD, and HD of dataset S1 and HD of dataset S2,

the proposed method has the maximum fault diagnosis accuracy for each fault. Experiments show

that the model has some practical utility.



4590 CMC, 2023, vol.75, no.2

6 Conclusion

Aiming at the adverse effects of DGA data imbalance, this paper proposes a transformer fault

diagnosis method based on improved ACGAN, which is able to meet the requirements of DGA data

balancing and fault diagnosing simultaneously. The effectiveness of the proposed method is verified

by several comparative experiments, and the obtained conclusions are listed as follows:

(1) The generator combinedmodels of 1D-CNNandLSTMcan effectively learn themathematical

distribution, feature information of DGA data, make the generated data closer to the real

data distribution and make the model more stable. While the application of MLP for the

discriminator can prevent from losing significant features of DGA data when the network is

too complex and has too many layers.

(2) Fault diagnosis accuracy after DGA data balance is significantly improved with the employ-

ment of improved ACGAN model.

(3) Six groups of comparative experiments are implemented to reveal the validity and superiority

of the data balance and fault diagnosis performance of the proposed methods. The obtained

results suggest that compared with the traditional gas concentration ratio methods, machine

learning diagnosis methods and existed deep learning approaches, the critical indices of the

proposed ACGAN method, including accuracy, precision, recall, and F1-score, outperform

that of all other methods.

(4) Compared with other conventional methods, the proposed ACGANmethod provides the best

and the most satisfying fault diagnosis performance under two public DGA datasets, which

verifies the availability and reliability of the proposed approaches.

(5) The proposed approach is able to offer remarkable diagnosis accuracy. However, there still

exist some shortcomings that are needed to be solved in the future, including complex

structures, long computing time, non-optimized parameters, limited samples andGANmodels.

Additionally, more indicators but DGA for fault diagnosis of power transformers, including

environmental parameters, load and power, temperature, vibration signals and so on, are

needed to be employed to provide more accurate and reliable results.
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