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Abstract: Remote sensing (RS) presents laser scanning measurements, aerial
photos, and high-resolution satellite images, which are utilized for extracting
a range of traffic-related and road-related features. RS has a weakness, such
as traffic fluctuations on small time scales that could distort the accuracy of
predicted road and traffic features. This article introduces an Optimal Deep
Learning for Traffic Critical Prediction Model on High-Resolution Remote
Sensing Images (ODLTCP-HRRSI) to resolve these issues. The presented
ODLTCP-HRRSI technique majorly aims to forecast the critical traffic in
smart cities. To attain this, the presented ODLTCP-HRRSI model performs
two major processes. At the initial stage, the ODLTCP-HRRSI technique
employs a convolutional neural network with an auto-encoder (CNN-AE)
model for productive and accurate traffic flow. Next, the hyperparameter
adjustment of the CNN-AE model is performed via the Bayesian adaptive
direct search optimization (BADSO) algorithm. The experimental outcomes
demonstrate the enhanced performance of the ODLTCP-HRRSI technique
over recent approaches with maximum accuracy of 98.23%.

Keywords: Remote sensing images; traffic prediction; deep learning; smart
cities; intelligent transportation systems

1 Introduction

Vehicle traffic assessment and monitoring had a great contribution to road safety. For instance,
congestion detection and automatic traffic counting systems will help improve traffic flow planning
[1]. Minimizing congestion and formulating traffic accident prediction methods aid in avoiding
severe injuries and collisions. Tools for pavement condition evaluation present rapid access to road
condition data, which will be helpful for traffic planners to frame a special assessment and monitoring
mechanism. Traffic noise prediction and vehicle emission detection effectively minimise pollution [2].
Real-time and near-real-time data on traffic counts, road conditions, and road environment features
were crucial for traffic assessment and monitoring [3]. Ground-related data acquisition sensors (i.e.,
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noise level meters, pneumatic tubes, magnetic sensors, vehicle emission meters, video detection systems,
and inductive loop detectors) are to fail and were expensive to install and maintain in certain nations.
Alternative technologies, like remote sensing (RS), could offer cheaper solutions for road traffic data
acquisition [4]. But in certain cases, both techniques are combined for performing validated assessment
and monitoring. Fig. 1 depicts the overview of the traffic prediction system.

Figure 1: Overview of the traffic prediction system

Recently, the number of research actions relevant to using remote sensing (RS) technologies
in their implementation in transportation mechanisms has increased enormously. Transportation
systems are considered the basis for all countries’ economic development [5]. Yet, several cities
worldwide were encountering an uncontrolled growth in traffic volume, which caused serious issues
like increased carbon dioxide (CO2) emissions, delays, higher fuel prices, accidents, traffic jams,
emergencies, and degradation in the quality of life of modern society [6]. Advancements in information
and communication technology (ICT) in regions like communications, hardware, and software have
made novel chances to formulate a sustainable, intellectual transportation mechanism. Incorporating
ICT with the transportation structure would allow a better, safe travelling experience and migration
to intelligent transportation systems (ITS) that mainly focus on 4 basic principles: responsiveness,
sustainability, safety, and integration [7].

The success of ITS is mainly based on the platform utilized for accessing, collecting, and
processing precise data from the atmosphere [8]. RS (both satellite and terrestrial) was an appropriate
technique to efficiently collect data on a large scale, having an accuracy level that gratifies the ITS
demand. Various advanced technologies have allowed automated modeling, and data interpretation
was a fascinating topic of RS-related ITS [9]. Spatiotemporal analysis utilizing remote-sensing satellite
imageries as an alternative serves a significant role in comprehending the effect of extreme events
on a global scale. But such ability was generally limited because of the lack of temporal resolution
or spatial resolution of the data; thus, many applications are held on the landscape level, namely
for urbanization, water, snow, deforestation, and so on [10]. The recent advancement of satellite
constellations (i.e., Planet and Worldview) could offer high spatial resolution images at higher temporal
frequency.

This article introduces an Optimal Deep Learning for Traffic Critical Prediction Model on High-
Resolution Remote Sensing Images (ODLTCP-HRRSI). The presented ODLTCP-HRRSI technique
majorly aims to forecast the critical traffic in smart cities. To attain this, the presented ODLTCP-
HRRSI model performs two major processes. At the initial stage, the ODLTCP-HRRSI technique
employs a convolutional neural network with an autoencoder (CNN-AE) model for productive and
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accurate traffic flow. Next, the hyperparameter adjustment of the CNN-AE model is performed via
the Bayesian adaptive direct search optimization (BADSO) algorithm. The experimental evaluation
of the ODLTCP-HRRSI technique takes place, and the results are assessed under distinct aspects.

The rest of the paper is organized as follows. Section 2 provides related works, Section 3 introduces
the proposed model, Section 4 provides result analysis, and Section 5 draws conclusions.

2 Literature Review

Kothai et al. [11] devised a novel boosted long short-term memory ensemble (BLSTME) and
convolutional neural network (CNN) method that joint the robust attributes of CNN, including
BLSTME, for negotiating the dynamic behavior of vehicles and predicting the overcrowding in traffic
efficiently on roads. The CNN will extract the attributes from traffic imageries, and the devised
BLSTME strengthens and trains weak techniques for predicting congestion. Wang et al. [12] proposed
a Prediction Architecture of a Neural Convolutional Short Long-Term Network (PANCSLTN) for
efficiently capturing dynamic non-linear traffic systems with DL assistance. The PANCSLTN could
address the issue of backdated decay mistakes through memory blocks and displays better predictive
capability for time sequences, including long-time dependency. Patel et al. [13] modelled a new network
utilizing deep CNN with long short term memory (LSTM) that derives the features from satellite
imageries for land cover classification. The CNN was utilized for deriving the features from these
images, and the LSTM network was utilized to support the classification and sequence prediction.

Byun et al. [14] introduce a deep neural network (DNN)-related technique to mechanically predict
the vehicle’s speed on roads from videos of drones. This modelled technique includes the following:
tracking and detecting vehicles through video analyses, (2) computing the image scales utilizing dis-
tances among lanes on the roads, and lastly, predicting the velocity of vehicles. Dai et al. [15] formulate
an innovative spatiotemporal deep learning (DL) structure that mainly focuses on providing precise
and timely traffic speed prediction. To extract traffic data’s spatial and temporal features concurrently,
this structure will combine 2 different DL techniques: the convolutional graph network (GCN) and
convolutional LSTM (ConvLSTM). Specifically, the ConvLSTM method can be employed to learn
traffic data’s temporal dynamics for deriving temporal features. Conversely, the graph convolutional
network (GCN) technique can be employed to learn traffic data’s spatial complexities for extracting
spatial features.

In Reference [16], a DNN-related optimization technique can be applied in 2 ways firstly, by
utilizing various techniques for activation and training, and secondly, by compiling with feature
selecting techniques like a wrapper for feature-subset selection (WFS) approaches and correlation-
related feature selection (CFS). Such techniques were compiled to generate traffic noise maps for
different times of the day on weekdays, including night, morning, evening, and afternoon. This work
mainly focuses on incorporating feature-selecting techniques with the DNN for vehicular traffic noise
modelling. Yang et al. [17] devised a novel DL technique called TmS-GCN for forecasting region-level
traffic data made up of gated recurrent unit (GRU) and GCN. The GCN part will capture spatial
dependence between regions, whereas the GRU part will capture the dynamic traffic change in the
regions. Although several models are available in the literature, various hyperparameters have a major
influence on the performance of the CNN model. Principally, the hyperparameters such as epoch
count, batch size, and learning rate selection are vital to reach effectual outcome. Since the trial and
error method for hyperparameter tuning is a tedious and erroneous process, metaheuristic algorithms
can be applied. Therefore, in this work, BADSO algorithm can be employed for the parameter selection
of the CNN-AE model.
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3 The Proposed Model

This article has developed a new ODLTCP-HRRSI technique to forecast critical traffic in smart
cities. To attain this, the presented ODLTCP-HRRSI model performs two major processes. At the
initial stage, the ODLTCP-HRRSI technique employed the CNN-AE model for productive and
accurate traffic flow. Next, the hyperparameter adjustment of the CNN-AE model is performed via
the BADSO algorithm.

3.1 Traffic Prediction Module

The ODLTCP-HRRSI technique employed the CNN-AE model for productive and accurate
traffic flow in this study. CNN model is mainly designed for handling image recognition and clas-
sification processes. It holds the merits of managing high-dimensional data. It comprises convolution
and downsampling layers for reducing the reduced dimension of input images and extracting abstract
features of the images. In addition, a weight distribution scheme employed in CNN enables the
management of high-dimension data by using a few learnable variables and eliminating location
sensitivity issues [18]. The CNN-AE is a version of the CNN model, which includes an encoder for
extracting features from the input and a decoder, the inverse of the encoder. Besides, CNN enables
the reconstruction of the images from the derived features. Owing to the capability of reconstructed
data, the CNN-AE model becomes familiar. In the CNN-AE model, the encoding unit has a 3-D
convolution layer (CL) to derive features and undergo a down-sampling process. Every individual CL
encompasses many channels equivalent to various features to be learned. The CL embed to a non-
linear activation function and bias functioning as given below:

ql
i = σ

(
kl

i ⊗ ql−1 + bl
i

)
, (1)

where ql
i denotes the outcome of an ith channel in the l th CL, σ represents the rectified linear unit

(ReLU) activation function, kl
i is the trainable convolution filter, ⊗ the convolutional operator, and bl

i

is the ith bias. Here, χ is a 4×4 input image with zero padding, k implies a 3×3 convolutional kernel (or
filter), whereas y is the outcome of the convolutional function. The convolutional window gets traversal
via the padded input images in the horizontal and vertical directions, where the convolutional function
with the filter can be carried out. The step size of all moves represents the stride. The filter derives
input image features during the convolution function, and the learnable weights remain the same as
the convolution window traverses. Consequently, the filter weights get distributed by the entire input
image. Due to the weight sharing, only one filter with 9 weights is necessary for deriving the feature via
the whole padded image—rather than 16 distinct filters equivalent to every output component. Here,
the filter is not dependent on the position resulting in less number of learnable weights and, therefore,
a highly effective training procedure. The convolution operation comprises an intrinsic product among
the convolution window and filter for producing respective output components.

Paddings of zeros will be utilized for controlling the output size as the convolution operation
minimizes the size of an image. For example, the output size of the original input image is 4 × 4 (solid
boxes in x) was 2 × 2 (solid boxes in y). But with paddings, the resultant comprises the same size as
the original input. Practically, the convolution function could work on 3D and 2D dimensional inputs.
As the convolution function includes a linear transformation, an activation function was required to
provide the non-linear transformation into the CNN. When a comparison is made to the sigmoid or
hyperbolic tangent-activated functions, the ReLU in hidden layers could increase the ML algorithm’s
computing efficacy. The ReLU function was given below

σ (θ) = max (0, θ) , (2)
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whereas θ was the outcome of convolution operation with the linear bias. The decoder has 2 transposed
CLs, which can be the inverses of CLs to up-sample the data and build the flow domain. The
discrepancy among the targeted values and output at the time of training iterations was computed
utilizing the mean square error (MSE) loss functions. After that, the weights in the biases and
convolutional filters were upgraded by the backpropagation technique to reduce the loss function.
For determining the variables of the CNN structure, that is, the number of channels and layers and
the stride and kernel sizes, a sequence of parameter amalgamations can be tested to ensure the highest
accuracy of fallouts and a minimal number of learnable variables. The padding size can be sumptuously
determined to ensure the correct output sizes. Fig. 2 illustrates the process of the CNN-AE system.

Figure 2: Process of CNN-AE method

3.2 Hyperparameter Tuning Using BADSO Algorithm

To improve the prediction performance, the hyperparameter adjustment of the CNN-AE model
is performed via the BADSO algorithm. BADSO is a global local arbitrary searching technique
and a hybrid Bayesian optimization (BO) technique that integrates the mesh adaptive direct search
(MEADS) with BO search [19]. BADSO alternatives among systematic and sequences of rapid local
BO phases (the searching phase of MEADS), slow exploration of mesh grid (poll phase). These two
phases complement one another and, during the search process, effectively examine the space and
offer an acceptable surrogate method. Once the search process continuously failed, then the genetic
programming (GP) method could not assist optimization (because of the excess un- certainty or
specified error model), and BADSO switched to the poll phase. Model-free and Fail-safe optimization
can be implemented in the poll stage, where BADSO gathers data regarding the local shape of OF for
constructing the best proxy for the following search phase. In the study, the sampling point produced
during BO is applied as the associate technique of the MEADS for seeking benefits that enhance the
success rates of sample point selection and decrease the iteration count in the model. Thus, the BADSO
approach could enhance the convergence speed and optimization efficiency.

Search stage

In this phase, a Gaussian model is suitable for the local set of the points computed so far. Next,
iteratively selects points to estimate based on the low confidence bounds, which tradeoff among
exploitation of potential solution (lower GP mean) and exploration of uncertain region (higher GP
uncertainty). The procedure is evaluated using the D mesh direction set and �m

k size parameter;
amongst others, the mesh size variable �m

k is utilized to control the search space. Beforehand the k-th
iterations, the optimum solution of OF is represented by x, and Sk can describe the determined
potential solution. M can describe the set formed by each search point, and the formula can be given
below:

Mk = {x ∈ Se} ∪ {
xk + �m

k Dz
}

(3)
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In Eq. (3), z indicates a complete rank positive integer matrixes, z ∈ Zp
+; p represents the amount

of direction vector; Z+ denotes the non-negative integer. There exist four stages included in the search
phase.

Step 1: Construct grid cell and xk as the searching center.

Step 2: Compute the target values of finite grid-points nearby the constructed grid component
and identify potential solutions for improving OF.

Step 3: When a possible solution to enhance the OF is identified, the search becomes effective.
Now, shift the grid center to the location and the mesh size variable �m

k+1 is raised at the k + 1 iteration
phase.

Step 4: The grid size variable �m
k+1 is decreased at the k + 1 iteration phase.

Poll stage

This phase can be performed once the search fails to discover a potential solution for improving
the OF. In this phase, the point is calculated on the mesh by taking steps in one direction till an
enhancement is found or each direction has been tried. The step size gets doubled in case of success,
otherwise halved. This procedure can be handled by the size variable �

p
k+1 of the screening frame. Here,

the set comprised of direction with the largest density in the possible search space can be determined
by the screening point set Pk. In contrast, Dk indicates the matrixes comprised of column elements in
the grid direction.

Pe = {xle + �m
e d : d ∈ D}cMe (4)

From the expression, the variable �m
1〈 must be less than �

p
k+1. Once a potential solution to increase

the OF is attained, it is demonstrated that the poll phase of the iteration stage can be effective. Now,
shift the mesh center towards the enhancement point and endure the subsequent poll phase. Once the
OF isn’t enhanced, it denotes the failed iteration phase. Hence, �

p
k+1 and �m

k control parameters are
decreased, and the reduction speed of �

p
k+1 is assured to be lesser than �m

k . In this phase, it is easier to
fall into a small number; hence this updating technique is used to avoid it to enhance the possibility of
finding the optimum direction. At this point, the global pattern search (GPS) optimization technique
is expanded by producing the collection of screening points, and the direction and local optimization
could be separated. Therefore, the presented approach has an efficient local optimization ability and
faster convergence speed.

4 Results and Discussion

The proposed model is simulated using Python 3.6.5 tool on PC i5-8600k, GeForce 1050Ti 4 GB,
16 GB RAM, 250 GB SSD, and 1 TB HDD. The parameter settings are given as follows: learning rate:
0.01, dropout: 0.5, batch size: 5, epoch count: 50, and activation: ReLU. This section investigates the
traffic flow forecasting results of the ODLTCP-HRRSI model under different runs. For experimental
validation, ten fold cross validation is used.

Table 1 and Fig. 3 demonstrate a close MSE inspection of the ODLTCP-HRRSI model with
existing models under run-1. The results indicated that the ODLTCP-HRRSI model had reached
minimal MSE values. For instance, on 10 tasks, the ODLTCP-HRRSI model attained the least MSE
of 28.57, whereas the back propagation neural network (BPNN), LSTM encoder (LSTME), CNN-
LSTM based TFP (CLTFP) CLTFP, and enhanced Feedforward neural networks (EFNN) models
have increased MSE of 30.04, 30.86, 44.34, and 62.39 respectively. Additionally, on 100 tasks, the
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ODLTCP-HRRSI technique obtained the least MSE of 58.99, whereas the BPNN, LSTME, CLTFP,
and EFNN approaches have increased MSE of 69.05, 69.14, 82.36, and 89.04 correspondingly.

Table 1: MSE analysis of ODLTCP-HRRSI system with recent algorithms under Run1

MSE;Run-1

No. of tasks used ODLTCP-HRRSI BPNN LSTME CLTFP EFNN

10 28.57 30.04 30.86 44.34 62.39
20 29.96 49.98 34.36 44.45 64.55
30 32.23 52.16 41.46 48.83 66.57
40 33.04 53.82 49.86 52.99 71.43
50 33.93 56.56 50.91 56.43 76.30
60 37.52 62.08 59.63 57.75 76.69
70 51.77 67.67 61.85 71.84 78.25
80 52.63 68.11 62.50 74.76 78.36
90 53.72 68.92 65.45 78.97 81.53
100 58.99 69.05 69.14 82.36 89.04

Figure 3: MSE analysis of ODLTCP-HRRSI system under Run1

Table 2 and Fig. 4 illustrate a detailed MSE analysis of the ODLTCP-HRRSI approach with
existing models under run-2. The results denoted the ODLTCP-HRRSI algorithm has obtained
minimal MSE values. For example, on 10 tasks, the ODLTCP-HRRSI methodology has reached the
least MSE of 23.50, whereas the BPNN, LSTME, CLTFP, and EFNN methods have increased MSE of
30.65, 31.45, 49.40, and 62.06 correspondingly. Also, on 100 tasks, the ODLTCP-HRRSI methodology
has reached least MSE of 55.46, whereas the BPNN, LSTME, CLTFP, and EFNN techniques have
increased MSE of 68.99, 69.77, 79.97, and 89.99 correspondingly.
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Table 2: MSE analysis of ODLTCP-HRRSI system with recent algorithms under Run2

MSE; Run-2

No. of tasks used ODLTCP-HRRSI BPNN LSTME CLTFP EFNN

10 23.50 30.65 31.45 49.40 62.06
20 29.22 34.61 38.04 57.15 64.37
30 30.08 36.35 40.65 58.29 67.94
40 33.90 43.24 49.03 63.60 71.19
50 36.74 51.50 49.74 64.74 76.17
60 38.23 53.05 51.41 70.76 78.42
70 40.45 54.00 63.20 72.53 79.86
80 42.73 59.20 63.88 72.80 80.51
90 47.16 60.62 67.69 77.59 85.76
100 55.46 68.99 69.77 79.97 89.99

Figure 4: MSE analysis of ODLTCP-HRRSI system under Run2

Table 3 and Fig. 5 illustrate a brief MSE review of the ODLTCP-HRRSI technique with existing
algorithms under run-3. The outcomes exemplified by the ODLTCP-HRRSI approach have gained
minimal MSE values. For example, on 10 tasks, the ODLTCP-HRRSI algorithm has reached a
minimal MSE of 21.28, whereas the BPNN, LSTME, CLTFP, and EFNN methods have obtained
increased MSE of 30.11, 30.43, 41.22, and 60.12 correspondingly. In addition, on 100 tasks, the
ODLTCP-HRRSI algorithm has reached least MSE of 52.71, whereas the BPNN, LSTME, CLTFP,
and EFNN methods have gained increased MSE of 63.63, 75.14, 81.41, and 93.70 correspondingly.

Table 4 and Fig. 6 validate a brief MSE examination of the ODLTCP-HRRSI approach with
existing models under run-4. The results denoted the ODLTCP-HRRSI approach has attained
minimal MSE values. For example, on 10 tasks, the ODLTCP-HRRSI approach reached the least
MSE of 21.26, whereas the BPNN, LSTME, CLTFP, and EFNN approaches have obtained increased
MSE of 31.61, 30.36, 47.14, and 60.33 correspondingly. Also, on 100 tasks, the ODLTCP-HRRSI
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approach has achieved the least MSE of 57.93, whereas the BPNN, LSTME, CLTFP, and EFNN
methods have increased MSE of 65.73, 74.66, 86.67, and 88.76 correspondingly.

Table 3: MSE analysis of ODLTCP-HRRSI system with recent algorithms under Run3

MSE;Run-3

No. of tasks used ODLTCP-HRRSI BPNN LSTME CLTFP EFNN

10 21.28 30.11 30.43 41.22 60.12
20 21.78 30.72 34.25 45.82 62.78
30 23.00 35.95 35.58 47.52 65.01
40 23.67 36.43 36.91 59.70 67.14
50 27.44 39.02 56.80 62.16 69.68
60 30.01 43.27 64.91 63.59 73.58
70 41.95 50.99 66.61 65.26 75.00
80 51.95 59.46 71.66 72.09 89.15
90 52.15 61.89 74.25 72.70 91.22
100 52.71 63.63 75.14 81.41 93.70

Figure 5: MSE analysis of ODLTCP-HRRSI system under Run3

Table 4: MSE analysis of ODLTCP-HRRSI system with recent algorithms under Run4

MSE;Run-4
No. of tasks used ODLTCP-HRRSI BPNN LSTME CLTFP EFNN

10 21.26 31.61 30.36 47.14 60.33
20 25.06 37.07 55.75 47.63 62.35
30 25.58 41.12 58.12 49.46 65.14

(Continued)
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Table 4: Continued
MSE;Run-4

No. of tasks used ODLTCP-HRRSI BPNN LSTME CLTFP EFNN

40 26.15 41.17 63.37 54.20 76.63
50 26.65 45.33 63.41 56.60 79.90
60 42.04 52.00 64.55 61.40 80.76
70 48.28 53.24 64.65 65.68 82.50
80 54.99 61.43 65.30 76.11 86.48
90 56.98 65.33 71.06 81.16 86.75
100 57.93 65.73 74.66 86.67 88.76

Figure 6: MSE analysis of ODLTCP-HRRSI system under Run4

Table 5 and Fig. 7 portray a comparative MSE review of the ODLTCP-HRRSI method with
existing models under run-5. The results denoted the ODLTCP-HRRSI algorithm has attained
minimal MSE values. For example, on 10 tasks, the ODLTCP-HRRSI approach has reached the least
MSE of 22.85, whereas the BPNN, LSTME, CLTFP, and EFNN models have gained increased MSE
of 32.69, 30.26, 41.62, and 61.28 correspondingly. Also, on 100 tasks, the ODLTCP-HRRSI technique
has reached the least MSE of 54.16, whereas the BPNN, LSTME, CLTFP, and EFNN approaches
have increased MSE of 65.11, 75.35, 87.73, and 86.47 correspondingly.

Table 5: MSE analysis of ODLTCP-HRRSI system with recent algorithms under Run5

MSE;Run-5

No. of tasks used ODLTCP-HRRSI BPNN LSTME CLTFP EFNN

10 22.85 32.69 30.26 41.62 61.28
20 30.34 35.54 35.39 46.13 61.34
30 30.71 39.48 37.34 51.67 62.10

(Continued)
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Table 5: Continued
MSE;Run-5

No. of tasks used ODLTCP-HRRSI BPNN LSTME CLTFP EFNN

40 35.16 45.09 39.48 61.67 64.51
50 38.97 46.30 40.26 65.47 65.10
60 42.14 49.88 43.22 71.92 75.17
70 43.56 53.24 50.83 74.56 82.30
80 44.76 54.51 64.73 79.64 82.91
90 50.27 56.09 73.10 86.12 84.70
100 54.16 65.11 75.35 87.73 86.47

Figure 7: MSE analysis of ODLTCP-HRRSI system under Run5

The training time (TRT) study of the ODLTCP-HRRSI model and existing models are analyzed
in Table 6 and Fig. 8. The experimental values indicated that the ODLTCP-HRRSI model had reached
reduced values of TRT under all tasks. For instance, on 10 tasks, the ODLTCP-HRRSI model obtained
a lower TRT of 13.80 ms, whereas the BPNN, LSTME, CLTFP, and EFNN models have reached
increased TRT of 26.55 ms, 20.97 ms, 30.51 ms, and 50.80 ms respectively.

Table 6: TRT analysis of the ODLTCP-HRRSI system with recent algorithms under different tasks

Training time (ms)

No. of tasks used ODLTCP-HRRSI BPNN LSTME CLTFP EFNN

10 13.80 26.55 20.97 30.51 50.80
20 13.82 31.01 22.63 41.66 50.98
30 16.11 37.29 23.59 45.08 51.74
40 20.00 39.42 30.00 51.45 52.14
50 20.45 39.67 32.10 54.07 53.15

(Continued)
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Table 6: Continued
Training time (ms)

No. of tasks used ODLTCP-HRRSI BPNN LSTME CLTFP EFNN

60 25.84 43.34 36.78 56.20 57.34
70 36.53 47.68 37.10 56.65 65.19
80 41.66 54.53 43.93 58.71 68.47
90 43.69 57.97 53.56 64.86 73.92
100 45.71 58.33 55.81 65.51 76.31

Figure 8: TRT analysis of the ODLTCP-HRRSI system under different tasks

On the other hand, on 50 tasks, the ODLTCP-HRRSI method has reached a lower TRT of
20.45 ms, whereas the BPNN, LSTME, CLTFP, and EFNN approaches have reached increased TRT
of 39.67 ms, 32.10 ms, 54.07 ms, and 53.15 ms correspondingly. Last, on 100 tasks, the ODLTCP-
HRRSI approach gained a lower TRT of 45.71 ms whereas the BPNN, LSTME, CLTFP, and EFNN
algorithms have attained increased TRT of 58.33 ms, 55.81 ms, 65.51 ms, and 76.31 ms correspondingly.

A comparative accuy examination of the ODLTCP-HRRSI model with existing models is given
in Table 7 and Fig. 9. The results demonstrated the enhanced outcomes of the ODLTCP-HRRSI
model with higher accuy values. For instance, on 10 tasks, the ODLTCP-HRRSI model has offered
an increased accuy of 97.20%, whereas the BPNN, LSTME, CLTFP, and EFNN models have attained
reduced accuy of 95.25%, 95.87%, 92.59%, and 95.25% respectively. Meanwhile, on 50 tasks, the
ODLTCP-HRRSI method has presented an increased accuy of 97.56%, whereas the BPNN, LSTME,
CLTFP, and EFNN algorithms have reached reduced accuy of 95.98%, 96.16%, 93.14%, and 95.44%
correspondingly. Eventually, on 100 tasks, the ODLTCP-HRRSI methodology has presented an
increased accuy of 97.52%, whereas the BPNN, LSTME, CLTFP, and EFNN techniques have achieved
reduced accuy of 94.39%, 95.57%, 91.91%, and 94.39% correspondingly.
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Table 7: Accuracy analysis of the ODLTCP-HRRSI system with recent algorithms under different
tasks

Accuracy (%)

No. of tasks used ODLTCP-HRRSI BPNN LSTME CLTFP EFNN

10 97.20 95.25 95.87 92.59 95.25
20 98.23 96.55 96.01 93.43 94.73
30 97.57 94.94 95.97 92.51 94.10
40 98.00 95.77 96.10 92.81 95.54
50 97.56 95.98 96.16 93.14 95.44
60 97.62 96.03 94.76 94.10 95.00
70 97.71 95.96 95.32 94.28 96.48
80 97.41 95.03 95.63 91.58 94.15
90 97.79 96.29 95.68 94.05 94.43
100 97.52 94.39 95.57 91.91 94.39

Figure 9: Accuracy analysis of the ODLTCP-HRRSI system under different tasks

The training accuracy (TRA) and validation accuracy (VLA) acquired by the ODLTCP-HRRSI
methodology under the test database is exemplified in Fig. 10. The experimental result denoted the
ODLTCP-HRRSI approach has accomplished maximal values of TRA and VLA. The VLA is greater
than TRA.

The training loss (TRL) and validation loss (VLL) reached by the ODLTCP-HRRSI technique
under the test database are shown in Fig. 11. The experimental result designated the ODLTCP-HRRSI
algorithm has achieved least values of TRL and VLL. Particularly, the VLL is lesser than TRL. Hence,
the ODLTCP-HRRSI model is found to be effective over other models.
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Figure 10: TRA and VLA analysis of the ODLTCP-HRRSI system

Figure 11: TRL and VLL analysis of the ODLTCP-HRRSI system

5 Conclusion

This article has developed a new ODLTCP-HRRSI technique to forecast critical traffic in smart
cities. To attain this, the presented ODLTCP-HRRSI model performs two major processes. At the
initial stage, the ODLTCP-HRRSI technique employed the CNN-AE model for productive and
accurate traffic flow. Next, the hyperparameter adjustment of the CNN-AE model is performed via the
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BADSO algorithm. The experimental evaluation of the ODLTCP-HRRSI technique takes place, and
the results are assessed under distinct aspects. The experimental outcomes demonstrate the enhanced
performance of the ODLTCP-HRRSI technique over the recent state-of-the-art approaches. In the
future, multiple DL-based fusion models can be derived to improve traffic prediction outcomes.
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