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Abstract: Computed Tomography (CT) images have been extensively
employed in disease diagnosis and treatment, causing a huge concern over
the dose of radiation to which patients are exposed. Increasing the radiation
dose to get a better image may lead to the development of genetic disorders
and cancer in the patients; on the other hand, decreasing it by using a Low-
Dose CT (LDCT) image may cause more noise and increased artifacts,
which can compromise the diagnosis. So, image reconstruction from LDCT
image data is necessary to improve radiologists’ judgment and confidence.
This study proposed three novel models for denoising LDCT images based
on Wasserstein Generative Adversarial Network (WGAN). They were
incorporated with different loss functions, including Visual Geometry Group
(VGG), Structural Similarity Loss (SSIM), and Structurally Sensitive Loss
(SSL), to reduce noise and preserve important information on LDCT images
and investigate the effect of different types of loss functions. Furthermore,
experiments have been conducted on the Graphical Processing Unit (GPU)
and Central Processing Unit (CPU) to compare the performance of the
proposed models. The results demonstrated that images from the proposed
WGAN-SSIM, WGAN-VGG-SSIM, and WGAN-VGG-SSL were denoised
better than those from state-of-the-art models (WGAN, WGAN-VGG, and
SMGAN) and converged to a stable equilibrium compared with WGAN
and WGAN-VGG. The proposed models are effective in reducing noise,
suppressing artifacts, and maintaining informative structure and texture
details, especially WGAN-VGG-SSL which achieved a high peak-signal-
to-noise ratio (PNSR) on both GPU (26.1336) and CPU (25.8270). The
average accuracy of WGAN-VGG-SSL outperformed that of the state-of-
the-art methods by 1 percent. Experiments prove that the WGAN-VGG-SSL
is more stable than the other models on both GPU and CPU.
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1 Introduction

Deep learning (DL) is a part of machine learning (ML). In recent times, ML/DL has been
widely utilized in different research directions [1–4], and has become one of the most powerful
tools due to recent advances in computer vision. Although DL has been in use since the 1940s,
it has been considered an influential revolution in artificial intelligence (AI) research over the last
two decades, due to the increasing growth of big data, new architectures, and Graphical Processing
Units (GPUs). Recently, there have been several types of deep learning architectures developed,
such as Convolutional Neural Networks (CNN) [5], Auto-Encoder (AE), Deep Stacking Networks
(DSN), Recurrent Neural Networks (RNN), Restricted Boltzmann Machine (RBM), Long Short-
Term Memory (LSTM), Gated Recurrent Unit (GRU) and Generative Adversarial Network (GAN)
[6,7]. GAN is an interesting and significant model that attracts the attention of many researchers. While
the generative models were defined in 1990 [7], they became very significant and popular only after
Goodfellow’s work in 2014 [6]. Nowadays, GAN has expanded into many research areas with various
applications and is used in a wide variety of computer vision applications [8–10], security [11], and
data generation [12,13]. GAN also attracted researchers’ interest in medical applications by achieving
robust diagnostic performance and good results in disease prediction: denoising [14], reconstruction
[15], segmentation [16,17], data simulation, anomaly detection [18,19] and classification [20,21].

Another field that has benefited from the GAN revolution is Medical Imaging (MI), a literature
that has witnessed great progress in scientific research, current clinical diagnostics, and AI medical
applications. There are different medical image modalities (Computed Tomography (CT), X-rays,
Magnetic Resonance Imaging (MRI), Optical Coherence Tomography (OCT), Ultrasound, and
Microscopy) that have been applied to see inside the human body. MRI is a powerful imaging
technology that provides detailed images produced by powerful magnets and radio waves. CT images
develop and use a combination of X-rays to show more details than a standard X-Ray image. OCT
plays a significant role in detecting many retinal diseases. Ultrasound is a real-time display and comfort
over other technologies [22].

CT imaging has grown significantly in the use of medical science over the past few decades, but one
of its drawbacks is the risk of radiation exposure, so the radiation is reduced by using low-level doses.
The problem with using low-level doses is that the resultant images have more noise and increased
artifacts [23].

This paper proposed three variant WGAN models that correlate with Visual Geometry Group
(VGG) loss, Structural Similarity Loss, and Structurally Sensitive Loss (SSL). The VGG [24] is based
on the perceptual loss to maintain the style and content of the image after denoising. SSL [25,26]
efficiently extracts informative features and structural details. SSIM loss [27] helps the model generate
visually artistic images because it works on the visible structures in the image. The proposed denoising
models are used to enhance the quality of reconstructed images. This paper also shows how well various
models perform on both the GPU and the CPU. Following is the rest of this paper: Section 2 defines the
CT image denoising problem and presents WGAN-based models for solving it; Section 3 presents the
proposed models; Section 4 describes the experiments and results; and Section 5 shows the conclusions
and future work.

2 Background and Related Work

GAN was introduced in 2014 [6]. In GAN training, two networks (generator G and discriminator
D) are competing in a min-max game, where each network competes against the other. The generator
tries to generate new data instances from random noise that are as close to real data as possible to
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mislead the discriminator. The discriminator tries to differentiate between the real data and the output
of the generator. The GAN game can be described using Eq. (1).

min
G

max
D

V (D, G) = Ex∼Pr(x) [log D (x)] + Ez∼Pz(z) [log (1 + D (G (z)))] (1)

where E denotes expectation, x is sampled from the probability of real data (Pdata or Pr), z is the input to
the generator sampled from some simple noise distribution Pz, such as the uniform distribution or the
spherical Gaussian distribution. The two networks of the generator and the discriminator are trained
together in a zero-sum game and are adversarial to motivate each other to improve their functionalities.
The D network is trained to categorize the input from x sample as real and approximate D (x) to 1; in
contrast, if the input is from z sample (a fake sample), the D network tries to categorize it as a fake and
approximates D (G (z)) to 0. The G network tries to produce images that look more realistic to trick
the discriminator into classifying G (z) as real and approximate D (G (z)) to 1. The loss function of
GAN in Eq. (1) is dependent on both KL divergence and Jensen-Shannon (JS) [6,28]. In the original
GAN, JS divergence can compare the two data distributions of the generated and real images and
assess the similarity between them. GAN is trained to minimize the loss function with an optimal
discriminator which minimizes the JS divergence. If the model distribution Pg and real data distribution
Pr are very close, this means that the generator learns optimally, and vice versa. Although the goal of
GAN training is to reach Nash equilibrium in the two-players adversarial game [29], it is hard to find it,
and the training is unstable. It has been proven that GAN is successful in generating images, but it has
some disadvantages: training instabilities, network structures, parameter tuning, vanishing gradient,
and mode collapse.

WGAN was presented to solve the problems of traditional GANs training because it can stabilize
and enhance the training of GANs [29,30]. In WGAN, the loss function was designed to prevent
vanishing gradients. Wasserstein Distance is used for measuring the distance and the divergence
between two distributions (real data distribution Pr and generator model distribution Pg); it is also
called Earth Mover’s distance short for EM distance [30]. The discriminator network (called critic on
WGAN) tries to get the least Wasserstein distance between Pr and Pg, and at the same time minimize
the loss function. When the Wasserstein distance is very small, the generator network produces outputs
that are very close to the distribution of real images. Finally, the weight clipping has been used in
WGAN to enforce a Lipschitz constraint on the critic. Having a clipping parameter that is too small
can result in the vanishing gradient problem: in contrast, if the clipping is too large, the training fails
to converge. The researchers [30] improved the training by using gradient penalty instead of weight
clipping for enforcing the Lipschitz constraint. WGAN with gradient penalty is denoted as (WGAN-
GP) and the loss function used in WGAN-GP is shown below:

L = Ex̃ ∼ Pg [D ( x̃ )] − Ex ∼ Pr [D (x)] + λ Ex̂ ∼ Px̂

[(∣∣∣∣∇x̂D
(
x̂
)∣∣∣∣

2
− 1

)2
]

(2)

where px̂ sampling is defined uniformly along straight lines between pairs of points drawn from the real
distribution Pr and the generator distribution Pg. It is reported in [30] that WGAN-GP is more stable
in learning than standard WGAN. The goal of image denoising is to get a clean image x from a noisy
image y, which is shown by y = x+n, where n indicates the Additive White Gaussian Noise (AWGN).
Maintaining clinical details and essential properties of the image (corners, edges, texture, and other
sharp structures) is essential. Many methods were proposed for LDCT image denoising, which are
divided into three divisions: (1) Sinogram domain filtration [31], (2) iterative reconstruction [32], and
(3) image post-processing [33]. The sinogram filtering technique such as Filtered Back Projection
(FBP), is applied before image reconstruction to raw or log-transformed data to understand the noise
characteristics well, so it is usually more effective than iterative reconstruction, which operates on the
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reconstructed image. In the iterative reconstruction approach, the objective function was optimized by
combining the statistical noise model, prior knowledge from the image domain, and imaging system
parameters. Image post-processing directly works on an image to suppress artifacts and decrease
LDCT noise in the image domain [23].

In recent years, deep learning techniques have been applied to solve the CT image denoising
problems to improve the quality of the image. For example, CNN has been used to reduce the noise
in LDCT images [34,35]. Kang et al. [36] used a deep CNN network in the wavelet domain. The
wavelet-domain CNN has a great denoising power for LDCT images and can remove noise compared
to traditional denoising methods. Chen et al. [23] introduced Residual Encoder-Decoder CNN (RED-
CNN), which combined autoencoder, deconvolution network, and shortcut connection; it has a good
performance for LDCT denoising problem, Ma et al. [37] proposed a dense residual network with self-
calibrated convolution (SCRDN) for LDCT images denoising. All these models aim to minimize the
Mean Squared Error (MSE) between the generated image from the model and the Normal Dose CT
(NDCT) image. Even though the per-pixel MSE results have high PNSR values, these methods can
lose some important structural details due to the over-smoothed edge. Recently GAN and WGAN
have been used to tackle the previous denoising problems; they were used for enhancing, denoising,
deblurring, and getting a good-quality LDCT image. Yang et al. [14] presented WGAN-VGG for
LDCT denoising, a model with perceptual loss that compares denoised results from a generator with
NDCT image in an established feature space. The model can generate images with less noise and high
contrast. Yi et al. [38] proposed Sharpness-Aware GAN (SAGAN) which consists of three networks:
UNet generator, discriminator, and sharpness detection network. This model also combined the three
losses: the adversarial loss, the sharpness loss, and the traditional pixel-wise loss. The generated
images from SAGAN visually achieved results that are attractive with enhanced performance in the
quantitative evaluation. You et al. [25] used a Structurally sensitive Multi-scale Generative Adversarial
Net (SMGAN) which has two loss functions: the adversarial loss function of WGAN-GP and the
structurally sensitive loss. The model (SMGAN) produced high-quality images for LDCT denoising
compared to WGAN-VGG. Ma et al. [39] adopted noise learning, the Least Squares GAN (LSGAN),
structural similarity loss, and L1 loss for LDCT noise reduction. Their model was able to improve
the quality of noise-reduced CT images compared to the state-of-the-art methods. Jeon et al. [40]
developed the MM-Net, a novel unsupervised denoising method; consisting of two training steps. The
first is to predict the noise-suppressed middle frame with neighboring multi-frame input by training
the initial denoising network Multi-Scale Attention U-Net (MSAU-Net) in a self-supervised manner.
The second is to improve the image quality by training the U-Net-based final denoiser using the
pre-trained MSAU-Net in the first training step. Yin et al. [41] proposed improved Cycle-Consistent
Adversarial Networks (CycleGAN) for LDCT image denoising that included a perceptual loss, and
a generator network based on U-Net, in which the skip connection between the encoder and decoder
path has been reconstructed.

3 The Proposed Denoising Model

The denoising process aims to seek a function T that transfers the LDCT image to the NDCT
image and is formulated as x = T (z), where z refers to the LDCT image; x refers to the corresponding
NDCT image; and (x, z ∈ RH×W×D), where W is the width, H refers to the height and D indicates to the
depth of the image. According to Eq. (1), we can sample x from NDCT images distribution or the real
image distribution Pr, and z from LDCT images distribution or noise image distribution Pz. The goal
of the denoising function T is transferring the image samples from Pz to a certain distribution Pg. Pg

represents the denoised distribution of the model, where T approximates Pg as close as possible to Pr.
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The denoising problem was handled by moving the high noise distribution to the low noise distribution.
Increasing the radiation dose to get better image reconstruction can lead to genetic disorders and
cancer development in the patients. On the other hand, decreasing the radiation dose by shortening
the exposure time can raise the noise and artifacts in the reconstructed images, which may limit the
signal-to-noise ratio (SNR) and impair diagnostic information [25]. The noise model in x-ray photon
measurements is typically represented by combining Gaussian electronic noise and Poisson quantum
noise. In contrast, the noise in reconstructed images is complexly modeled and has non-uniform
distribution across the entire image. Therefore, there is uncertainty about the correlation between data
distributions of NDCT and LDCT images, which makes LDCT images denoising difficult to solve by
traditional methods. Deep learning denoising models can adapt to the ambiguity of the noise images
by efficiently extracting high-level features [14]. As mentioned above, the mode collapse and training
stability have been overcome by WGAN-GP. This study introduced three models based on WGAN
and correlated them with different loss functions to decrease noise in LDCT images and retain the
essential informative features and structural details.

3.1 Loss Functions

Although the WGAN model solved the vanishing gradient problem, it had many drawbacks.
WGAN is hard to train, and it has produced images that have lost many important structural details
and edge information. The proposed models handled these problems by employing various loss
functions such as VGG loss, SSIM loss, and SSL:

1) Mean Squared Error (MSE) loss or L2:

It is the normalized Euclidean distance between a denoised patch G (z) from LDCT images and the
patch of NDCT images. It is used to minimize the pixel-wise difference between generated images G (z)
and the NDCT images. The L2 loss is efficient in reducing the background noise [27]. The formula of
L2 loss is shown below:

L2 = 1
HWD

||G (z) − x||2
2 (3)

2) Least Absolute Error (LAE) loss or L1:

It is the absolute distance between the generated image G (z) and the NDCT images. L1 is used to
reduce the artifacts. The formula of L1 loss is expressed by Eq. (4):

L1 = 1
HWD

|G (z) − x| (4)

3) Geometry Group (VGG) loss or LVGG:

MSE loss may cause the deformation of details because it blurs the generated images. Thus, the
Perceptual Loss (PL) is applied and defined in the feature space rather than directly computing MSE
for pixel-to-pixel intensity, as shown in Eq. (5). PL measures the difference in perceptual features
between the denoised results from a generator and the real images. It compares high-level perceptual
differences like content and style [42].

PL (G) = E(x,z)

1
HWD

||ϕG (z) − ϕ(x)||2
2 (5)
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where ϕ is a feature extractor that computes the distance between G (z) and NDCT. A pre-trained
VGG-19 network [24] was implemented in this paper as the feature extractor ϕ. Hence, the perceptual
loss can be defined as follows.

LVGG (G) = PL (G) = E(x,z)

1
HWD

||VGG (G (z)) − VGG(x)||2
2 (6)

4) Structural Similarity (SSIM) loss:

It measures the similarity between denoised CT images and NDCT images. The similarity
measurement includes three comparisons: contrast, luminance, and structure [27]. SSIM is a visually
based metric that performs better than (MSE) in perceptual pattern recognition. The original SSIM
is defined as follows.

SSIM (x, y) = 2μxμy + C1

μ2
xμ

2
y + C1

∗ 2σ xy + C2
σ 2

x + σ 2
y + C2

= L (x, y) ∗ cs (x, y) (7)

where μx, μy, σx, σy, and σxy stand for the means, standard deviations, and the cross-covariance of the
two images (y, x) from G and the corresponding NDCT image respectively, and C1, C2 are constants
[25]. The value of SSIM is close to 1 when x and y are very similar.

LSSIM = 1 − SSIM (x, y) (8)

5) Structurally Sensitive Loss (SSL):

It combines both SSIM loss and L1 loss as in Eq. (9)

LSSL = τ × LSSIM + (1 − τ) × L1 (9)

Finally, the overall objective functions of all different trained models were expressed in Table. 1.

Table 1: Summary of all models in this study that demonstrate the loss functions and trainable
networks

Network Loss functions

WGAN minG maxG LWGAN(G; D)
WGAN-VGG minG maxG LWGAN(G; D) + λ1LVGG(G)
SMGAN β ∗ ( minG maxG LWGAN(G; D)) + LSSL(G)
WGAN-SSIM β ∗ ( minG maxG LWGAN(G; D)) + LSSIM(G)
WGAN-VGG-SSIM β ∗ (minG maxG LWGAN(G; D)) + λ1LVGG(G) + LSSIM(G)
WGAN-VGG-SSL β ∗ ( minG maxG LWGAN(G; D)) + λ1LVGG(G) + LSSL(G)

3.2 Network Structure

A study in [14] was the inspiration for the generator and discriminator network structures.

1. The generator contains eight convolutional (Conv) layers, and each convolutional layer uses
small 3 × 3 kernels. The first seven hidden layers of the G network have 32 filters. In the last
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layer, only one feature map is generated with a single 3 × 3 filter, which is also the output of the
generator network. And the activation function Rectified Linear Unit (ReLU) [43] was used.

2. The discriminator has six convolutional layers with 64, 64, 128, 128, 256, and 256 filters. Each
convolutional layer in the D network has a kernel size of 3 × 3. Then followed by two Fully
Connected (FC) layers; the first has 1024 outputs, and the second produces one feature map.
Each one is followed by a leaky ReLu, and there is no sigmoid cross entropy layer at the end
of the D network. The overall structure of the proposed models is shown in Fig. 1.

Figure 1: The overall structures of the proposed models

4 Experimental Results

The dataset was used in this paper is a real clinical dataset from Mayo Clinic in the Challenge of
2016 NIH-AAPM-Mayo Clinic Low Dose CT Grand [44], which consists of 10 anonymous patients,
divided into seven folders. Each folder contains images of normal-dose abdominal CTs and images of
imitated quarter-dose CTs. The folders ‘L067’, ‘L109’, ‘L143’, ‘L291’, ‘L310’, ‘L333’, and ‘L506’ were
used for training, and the folders ‘L067’ and ‘L506’ were used for testing. All the networks in this study
were implemented in a Python (Python3.6) environment with a PyTorch framework. To differentiate
the presented models. The experiments were run on two different devices: a CPU computer with Intel
(R) Core (TM) i7-7700HQ CPU @2.8 GHz, 16 GB of RAM, and a NVIDIA GEFORCE GTX 1050.
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And the second is a GPU computer with Intel (R) Core (TM) i7-7700 CPU @3.60 GHz, 16 GB of
RAM, and a NVIDIA Titan XP device.

4.1 Parameter Setting

Both generator and discriminator networks were optimized by utilizing the Adaptive Momentum
Estimation (Adam) algorithm [45]. The batch size was 64, and the leaning rate α = 0.0001 according to
experiment results (for more detailed information see the supplementary data). β1 = 0.5, β2 = 0.9, and
λ = 10 for the balance between the Wasserstein distance and the gradient penalty as suggested in [30],
λ1 = 0.1 according to [14], the values of β were set to 0.01 according to our experimental experience.
Finally, the parameter τ was equal to 0.1 on the CPU and GPU. The mini-batch size was 128 on the
GPU and 80 on the CPU.

4.2 Qualitative Analysis for the Performance of CPU and GPU
4.2.1 Performance of the CPU

To assess the efficiency of the variant loss function, this work trained the proposed models
(WGAN-SSIM, WGAN-VGG-SSIM, WGAN-VGG-SSL), and also trained the best-known models
such as WGAN [30], WGAN-VGG [14], and SMGAN [25]. We used two examples of a CT image
that were taken from the testing data folders ‘L067’ and ‘L506’, and took a zoomed representative
slice of each example to show more structure details as a yellow rectangle in Figs. 2 and 3, and
Figs. 6 and 7 respectively. The experimental results showed that generated images using WGAN have
a more blurred appearance than the other models. Even though WGAN reduced the white artifact,
the produced images are not considerably enhanced compared to NDCT images; some structures are
over-smoothed, as shown in Fig. 7C with a red arrow. WGAN cannot preserve the edge details as
shown in Figs. 2C and 3C, in which generated images lost the textures of the liver. WGAN-VGG has
a few white structures. Although it produced images that were sharper than WGAN, it distorted some
of the fine structure details. WGAN-VGG has low contrast as shown in Figs. 2D, 3D, and 7D with
a yellow arrow; the performance of WGAN has not improved because it just moves from the noise
distribution to the free distribution and does not depend on any human perceptual knowledge. On the
other hand, perceptual loss is included in WGAN-VGG. WGAN-SSIM achieved visually better than
WGAN and WGAN-VGG and preserved features as marked by the yellow arrow in Figs. 6E and 7E.
It is noticed that the three models (WGAN-VGG-SSL, SMGAN, and WGAN-VGG-SSIM) preserved
the fine image and retained informative details as shown in Figs. 6F–6H, and 7F–7H by red and yellow
arrows. Finally, WGAN-VGG-SSL suppressed noise and artifacts, and generated images that are close
to NDCT images; it also kept the structural features better than the other methods and determined the
lesion location as pointed out by the red dashed circle in Fig. 6H. In conclusion, WGAN-VGG-SSL
achieved better informative feature preservations and visual quality than other WGAN methods.
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(A) LDCT quarter dose (B) NDCT full dose (C) WGAN (D) WGAN -VGG

(E) WGAN -SSIM (F) WGAN -VGG -SSIM (G) SMGAN (H) WGAN -VGG -SSL

Figure 2: The generated images from the testing data ‘L067’ on CPU at 2000 iterations

(A) LDCT quarter dose (B) NDCT full dose (C) WGAN (D) WGAN -VGG

(E) WGAN-SSIM (F) WGAN-VGG -SSIM (G) SMGAN (H) WGAN -VGG -SSL

Figure 3: The generated images from the testing data ‘L506’ on CPU at 2000 iterations
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4.2.2 Performance of GPU

The time taken on the GPU was 20 times less than that on the CPU. The results of the experiment
were taken on GPU after one hour of training. We used two examples of a CT image that were taken
from the testing data folders ‘L067’ and ‘L506’, and took a zoomed representative slice of each example
to show more structure details as a yellow rectangle in Figs. 4 and 5, and Figs. 8 and 9 respectively.
At the beginning of learning, the WGAN model visually had poor informative structures and lost
some details about the image, and the generated images were distorted with low contrast. That’s
because of the very short training time. The resulting image using the WGAN-VGG preserved some
of its characteristics, lost some other details, reduced contrast, and removed the streak artifacts better
than WGAN as shown in Figs. 4D, 5D, and 8D by red and yellow arrows. The generated images
from WGAN-SSIM preserved some informative details, but they still suffer from white structures.
The generated images of WGAN-VGG-SSIM, SMGAN, and WGAN-VGG-SSL preserved more
informative features as shown in Figs. 8F–8H, and 9F–9H by red and yellow arrows. They also kept
the structural features better than the other methods and determined the lesion location as pointed
out by the red circle in Figs. 8F–8H. WGAN-VGG-SSL reduced white structures and artifacts better
than SMGAN and WGAN-VGG-SSIM; and produced images similar to NDCT images. The reason
why WGAN-VGG-SSL achieved better informative feature preservations and visual quality than
other WGAN methods, is that WGAN-VGG-SSL can balance between LSSIM and L1 loss by the
weighting factor τ in addition to the VGG loss, as shown in Eq. (9). WGAN-VGG-SSL demonstrated
significant quantitative and qualitative results; and has high-level image quality compared with the
other denoising models because SSL loss is embedded in WGAN-VGG-SSL. In order to obtain better
visual image quality, the models based on SSIM and VGG loss seem to be more desirable for capturing
more details and reducing artifacts. SSL presented an informative advantage between adjacent inter-
slices. SSIM loss achieved high PNSR and SSIM values, removed complex noise, and helped to stabilize
the models.

(A) LDCT quarter dose (B) NDCT full dose (C) WGAN (D) WGAN -VGG

(E) WGAN -SSIM (F) WGAN -VGG -SSIM (G) SMGAN (H) WGAN -VGG -SSL

Figure 4: The generated images from the testing data ‘L067’ on GPU at 2000 iterations
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(A) LDCT quarter dose (B) NDCT full dose (C) WGAN (D) WGAN -VGG

(E) WGAN-SSIM (F) WGAN -VGG -SSIM (G) SMGAN (H) WGAN -VGG -SSL

Figure 5: The generated images from the testing data ‘L506’ on GPU at 2000 iterations

(A) LDCT quarter dose (B) NDCT full dose (C) WGAN (D) WGAN -VGG

(E) WGAN-SSIM (F)WGAN-VGG -SSIM (G) SMGAN (H) WGAN -VGG -SSL

Figure 6: Zoomed slices over the yellow rectangle region of interest (ROI) in Fig. 2 represent the
attenuation of liver lesions in the red circles
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(A) LDCT quarter dose (B) NDCT full dose (C) WGAN (D) WGAN -VGG

(E) WGAN-SSIM (F) WGAN -VGG -SSIM (G) SMGAN (H) WGAN -VGG -SSL

Figure 7: Zoomed slices over the yellow rectangle ROI in Fig. 3 represent a section of the abdomen CT
image

(A) LDCT quarter dose (B) NDCT full dose (C) WGAN (D) WGAN -VGG

(E) WGAN-SSIM (F) WGAN-VGG -SSIM (G) SMGAN (H) WGAN -VGG -SSL

Figure 8: Zoomed slices over the yellow rectangle ROI in Fig. 4 represent the attenuation of the liver
lesions in the red circles
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(A) LDCT quarter dose (B) NDCT full dose (C) WGAN (D) WGAN -VGG

(E) WGAN -SSIM (F) WGAN-VGG -SSIM (G) SMGAN (H) WGAN-VGG -SSL

Figure 9: Zoomed slices over the yellow rectangle ROI in Fig. 5 represent a section of the abdomen CT
image

4.3 Quantitative Analysis for the Performance of CPU and GPU

For quantitative analysis, PNSR and Structural Similarity Index Measure (SSIM) have been used
to evaluate our models (WGAN-SSIM, WGAN-VGG-SSIM, and WGAN-VGG-SSL), and the best-
known models WGAN, WGAN-VGG, and SMGAN, as shown in Table 2, although the training time
for each model after 2000 iterations on the GPU is 20 times less than that on the CPU, the results
demonstrate that the WGAN-VGG-SSL has higher SSIM values than the other models on both CPU
and GPU, also has higher values of PNSR than the other models on the CPU and had close results to
those obtained by the SMGAN on the GPU.

Table 2: Quantitative results associated with different models for Figs. 2 and 3 On CPU and Figs. 4
and 5 on GPU at 2000 iterations

PNSR SSIM PNSR SSIM

Fig. 2 Fig. 4 Fig. 2 Fig. 4 Fig. 3 Fig. 5 Fig. 3 Fig. 5

CPU GPU CPU GPU CPU GPU CPU GPU

LDCT 22.9658 22.9658 0.7843 0.7843 19.7904 19.7904 0.7239 0.7239
WGAN [33] 17.8927 13.8640 0.6359 0.5558 17.3302 13.3732 0.5968 0.5026
WGAN-VGG [17] 19.5141 18.3090 0.6826 .0.6674 18.7805 17.3135 0.6445 0.6094
SMGAN [28] 24.5482 26.1987 0.8029 0.8113 21.7064 23.6471 0.7486 0.7568
WGAN-SSIM 22.8682 21.9904 0.7825 0.7512 19.8055 20.9877 0.7228 0.7100
WGAN-VGG-SSIM 24.4894 25.6778 0.8019 0.8158 21.5577 22.8779 0.7473 0.7618
WGAN-VGG-SSL 25.8270 26.1336 0.8154 0.8169 22.9014 23.0871 0.7593 0.7628
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4.4 Network Convergence

This paper investigates the loss curve’s behavior for our models (WGAN-SSIM, WGAN-VGG-
SSIM, and WGAN-VGG-SSL), and other known models WGAN, WGAN-VGG, and SMGAN. On
CPU and GPU as shown in Fig. 10. Although WGAN and WGAN-VGG were used to improve
the stability of GAN, the difference in the stability of the two models was noticed. On the CPU,
the discriminator and the generator losses in WGAN are oscillating because the model is trained
slowly; WGAN and WGAN-VGG are worse than the other models. In addition, on the GPU, two
models WGAN and WGAN-VGG are unstable. The training oscillates in the convergence process
because the models cannot find an equilibrium between the discriminator and the generator. During
the training, the D loss and G loss are not consistent. They have not trained for enough time and
the two models are unstable because the stability comes when the model trains both the D and the
G networks simultaneously in a zero-sum game. It is noticed that our models WGAN-VGG-SSIM,
WGAN-SSIM, and WGAN-VGG-SSL produced images better than those of WGAN and WGAN-
VGG and converged to a stable equilibrium. WGAN-VGG-SSIM and WGAN-SSIM were less stable
on the GPU than on the CPU. The three models are stable because the SSIM loss helps the G network
train well. The G network generates samples like NDCT images at the end of the training. This work
figured out that the D network could not classify between the model distribution and data distribution
correctly. Two losses of the D and G converged fast and decreased gradually until close to zero.
The WGAN-VGG-SSL model reached Nash equilibrium because the D and G networks had well
adversarial training.

(A) WGAN (B) WGAN-VGG

Figure 10: (Continued)
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(B) WGAN-VGG (D) WGAN-VGG-SSIM

(E) SMGAN (F) WGAN-VGG-SSL

Figure 10: The stability of different models WGAN, WGAN-VGG, WGAN-SSIM, WGAN-VGG-
SSIM, SMGAN, and WGAN-VGG-SSL at 2000 iterations on GPU and CPU

5 Conclusion

This study introduced three new WGAN-based models with different loss functions (WGAN-
SSIM, WGAN-VGG-SSIM, and WGAN-VGG-SSL) to reduce noise and preserve important
information for LDCT images and investigate the effect of different types of loss functions. The
proposed models were applied to the NIH-AAPM-Mayo Clinic LDCT images. The three models have
results that quantitatively and qualitatively outperform those of the state-of-the-art models (WGAN,
WGAN-VGG, and SMGAN). Experimental results demonstrated that our model WGAN-VGG-
SSIM achieved better quality for LDCT image denoising compared with WGAN, WGAN-VGG, and
SMGAN because of the usage of the mixed features between VGG loss and SSIM loss; WGAN-
VGG-SSIM improved both the perceptual and informative structural features. The loss values of the
curve during the training process of WGAN-SSIM, SMGAN, WGAN-VGG-SSIM, and WGAN-
VGG-SSL are more stable and converged to a stable equilibrium than those of WGAN and WGAN-
VGG. Even though WGAN-VGG-SSIM obtained better results than the state-of-the-art models,
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WGAN-VGG-SSL demonstrated higher quantitative and qualitative results and generated high-level
image quality compared with the other denoising models because of the combination between feature
domain distance and adversarial loss. It can be observed that models based on SSIM and VGG
loss seem to be an ideal solution for high-quality visual images with fewer artifacts and more details.
SSL loss presented an informative advantage between adjacent inter-slices. We proposed the first study
comparing the performance of the WGAN denoising models on CPU and GPU. The qualitative results
achieved using CPU and GPU are equivalent despite the time difference taken between them, but the
proposed models are more stable on CPU than GPU. In the future, we will use more complicated
network structures of the generator and different losses to obtain better results with higher quality.
The CycleGAN network with determined constraints and structurally sensitive loss will be applied
for the LDCT image denoising problem. Also, our denoising methods will be extended to different
medical images with different noise levels to investigate how noise levels correlate with different
denoising models.
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