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Abstract: Recently, deep learning has achieved remarkable results in fields
that require human cognitive ability, learning ability, and reasoning ability.
Activation functions are very important because they provide the ability of
artificial neural networks to learn complex patterns through nonlinearity.
Various activation functions are being studied to solve problems such as
vanishing gradients and dying nodes that may occur in the deep learning
process. However, it takes a lot of time and effort for researchers to use the
existing activation function in their research. Therefore, in this paper, we
propose a universal activation function (UA) so that researchers can easily
create and apply various activation functions and improve the performance
of neural networks. UA can generate new types of activation functions as
well as functions like traditional activation functions by properly adjusting
three hyperparameters. The famous Convolutional Neural Network (CNN)
and benchmark dataset were used to evaluate the experimental performance of
the UA proposed in this study. We compared the performance of the artificial
neural network to which the traditional activation function is applied and the
artificial neural network to which the UA is applied. In addition, we evaluated
the performance of the new activation function generated by adjusting the
hyperparameters of the UA. The experimental performance evaluation results
showed that the classification performance of CNNs improved by up to 5%
through the UA, although most of them showed similar performance to the
traditional activation function.

Keywords: Deep learning; activation function; convolutional neural network;
benchmark datasets; universal activation function

1 Introduction

Recently, deep learning has shown very good results in computer vision fields such as image
classification [1–5], object recognition [6–11], object tracking [12,13], etc. with the help of large-
capacity artificial intelligence learning data and high-end computing resources. In addition, research is
being actively conducted in fields such as speech recognition [14–16] and natural language processing
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[17–20]. The activation function is very important because it transfers the value extracted from the
previously hidden layer to the input of the next layer for learning the artificial neural network. If an
artificial neural network uses a linear function as an activation function, it has no meaning in deeply
constructing the neural network, so it uses a nonlinear function as an activation function. That is, a
model designed with a deep structure may function like a model without a hidden layer. Currently,
various nonlinear functions such as Sigmoid [21], Hyperbolic tangent (Tanh) [22], Rectifier Linear
Unit (ReLU) [23], Parametric ReLU (PReLU) [24], Randomized ReLU (RReLU) [25], Leaky ReLU
(LReLU) [26], Swish [27], Exponential Linear Unit (ELU) [28] and others [29–32] are available as
activation functions of artificial neural networks. By using these nonlinear functions as an activation
function, it is possible to construct a deep neural network. However, with Sigmoid and tanh, it is not a
serious problem in shallow artificial neural networks, but as the model deepens, the gradient becomes
zero when updating numerous weights in the back propagation process of deep learning, resulting in a
problem that learning no longer progresses. ReLU has been introduced to solve this vanishing gradient
problem, but if most input values are in the negative range, the weight may not be updated while
returning 0 to the output value of the activation function. To solve this Dying Node problem, several
studies have been conducted, such as reducing the Learning Rate or modifying the ReLU. However,
researchers need a lot of time and effort to apply and evaluate various existing activation functions in
their own research. Therefore, in this paper, we propose a UA that can easily generate and implement
a new type of activation function as well as an activation function similar to the traditional activation
function. The UA uses three hyperparameters that determine the shape of the activation function
according to the range of input values. Researchers can use various types of activation functions by
appropriately modifying the three hyperparameters. The contribution goals to be achieved in this study
through a UA are as follows.

• The UA is proposed to improve the usability of the activation function of the researcher and
the performance of the existing neural network.

• The UA introduced the k, m, and L hyperparameters, allowing researchers to generate various
activation functions.

• We evaluate UAs by implementing Visual Geometry Group (VGG) 16, VGG19, Residual
Network (ResNet) 50, and CustomNet and show similar or better performance compared to
traditional activation functions.

• Using CIFAR10, CIFAR100 [33] and Horses or Humans benchmark datasets with different
classes and resolutions of images, we have secured the reliability of experimental performance
evaluation and can be used in various areas.

The structure of this paper describes the related activation functions in Section 2 and the dataset
to be used for experimental performance evaluation in Section 3. Section 4 describes the UA proposed
in this study, and Section 5 describes the methods and results of experimental performance evaluation.
Section 6 concludes this study.

2 Related Works
2.1 Sigmoid

Sigmoid was mainly used in early artificial neural networks and is also called a logistic function.
Sigmoid began to be used to obtain nonlinear values from linear multi-perceptrons and can be
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expressed as Eq. (1). Sigmoid is limited to a value between 0 and 1, so a very large positive number has
a value close to 1 and a very large negative number has a value close to 0. Sigmoid in shallow artificial
neural networks is not a serious problem, but it can cause serious problems due to the vanishing
gradient in which the gradient approaches zero as the model deepens. Due to these disadvantages,
recently it has been only used for binary classification and not for hidden layers of models.

f (x) = 1
1 + e−x

(1)

2.2 ReLU

ReLU is proposed to solve the vanishing gradient problem of Sigmoid and Tanh. ReLU can be
expressed as Eq. (2) and is an identity function for a positive input value and outputs 0 for a negative
input value. This function has the advantage of speeding up the learning speed because it is easy to
calculate the differential, but it may cause a dying node problem.

f (x) =
{

x, (x > 0)

0, (x ≤ 0)
(2)

2.3 Swish

Swish is an activation function devised by Google to replace ReLU and shows a simple form of
multiplying the input by the sigmoid as shown in Eq. (3). Swish outperforms ReLU when training
models in deep layers. By not limiting the range of output values in positive numbers, the vanishing
gradient problem can be solved, and the dying node problem can be solved by allowing some small
negative output values. And the output feature map responds small to small changes and large to large
changes so that the optimizer can find the optimal minima.

f (x) = x
1 + e−x

(3)

3 Datasets

The datasets used in the experiments in this study utilize one of the most used benchmark
datasets, Canadian Institute for Advanced Research (CIFAR) 10, CIFAR100, and Horses or Humans.
CIFAR10 consists of 10 classes, 32 × 32 images, 50,000 training images and 10,000 test images. The
CIFAR100 consists of 100 classes, 32 × 32 images, 50,000 training images and 10,000 test images.
Horses or Humans consists of two classes, 300 × 300 images, 1027 training images and 256 test images.
Fig. 1 shows a dataset sample. Table 1 summarizes and shows the information of each data.
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Figure 1: Sample image of CIFAR10, CIFAR100, horses or humans dataset

4 Universal Activation Function

The formula for UA proposed in this paper is shown in Eq. (4).

Universal activation function (x) =

⎧⎪⎪⎨
⎪⎪⎩

xk x > L

xk
(L + x)

m

(L + x)
m + (L − x)

m |x| ≤ L

0 x < −L

(4)
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Table 1: Database information of CIFAR10, CIFAR100 and horses or humans

No. Dataset Training Testing Total Classes

1 CIFAR-10 50,000 10,000 60,000 10
2 CIFAR-100 50,000 10,000 60,000 100
3 Horses or humans 1,027 256 1,283 2

The x of a UA means the input value, and the k, m, and L hyperparameters determine the form
of the activation function. The value of k determines the shape of the graph of the interval in which
the input value is greater than L. The value of m gently adjusts the shape of the graph so that the
value of the slope does not change rapidly. The value of L is the criterion for dividing the activation
function into three intervals. Researchers can set three parameters appropriately to generate a desired
type of activation function. And a visualizer was developed to visualize these activation functions.
The visualizer allows visualization by selecting the desired activation function among Swish, Sigmoid,
ReLU, and ELU, and when UA is selected, a graph of the activation function is output according
to the applied hyperparameters. Figs. 2–4 show the ReLU, Sigmoid, and Swish activation functions
generated using a UA through the visualizer.

Figure 2: ReLU generated using UA
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Figure 3: Sigmoid generated using UA

Figure 4: Swish generated using UA



CMC, 2023, vol.75, no.2 3559

To check the similarity between the traditional activation function and the UA, the output vector
of the activation function for random input vector was calculated and the results were prepared in
Table 2.

Table 2: Comparison of input/output between traditional activation functions and UAs

Input tensor Traditional
activation
function

Traditional
Activation
Function Output
tensor (TAO)

UA UA Output
tensor (UAO)

Difference
(TAO–UAO)

−0.05060163
0.46190243
−0.43726205
−0.62066391
0.7539121

ReLU 0.
0.46190244
0.
0.
0.7539121

UA-ReLU 0.
0.46190244
0.
0.
0.7539121

0.
0.
0.
0.
0.

Sigmoid 0.4873523
0.61346537
0.39239353
0.34963048
0.6800305

UA-
Sigmoid

0.4873521
0.6135434
0.39232722
0.34944883
0.6803422

0.0000002
−0.00007803
0.00006631
0.00018165
−0.0003117

Swish −0.02466082
0.28336114
−0.17157881
−0.217003
0.5126832

UA-Swish −0.02466081
0.2833972
−0.17154981
−0.21689026
0.51291823

−0.00000001
−0.00003606
−0.000029
−0.00011274
0.00023503

According to Table 2, for any input vector, ReLU and UA-ReLU have the same output vector. In
the case of sigmoid and swish, there are some errors, but it is proved that there are no performance
issues through experimental performance evaluation. The UA proposed in this paper can generate
various types of activation functions as well as functions like traditional activation functions by
adjusting three parameters. Therefore, various researchers will be able to easily use the activation
function by changing the parameters to create an activation function suitable for the data and research
purpose.

5 Experimental Performance Evaluation
5.1 Environment and Method

The activation function visualizer developed in this study was developed in Windows 10 with
Python programming language. Experimental performance evaluation was performed in Docker
container of Ubuntu 20.04 OS and implemented using Python programming language and Keras
library. The hardware of the PC consists of an NVIDIA GeForce Ray Tracing (RTX) 3080 GPU,
an Advanced Micro Devices (AMD) Ryzen 7 5700X CPU and 64 GB of RAM.

For the experimental performance evaluation of the UA, a custom neural network consisting of
three Conv layers, three Pooling layers, and one fully connected layer was utilized to minimize the value
lost as the neural network deepens, as well as CNN won the ImageNet Large Scale Visual Recognition
Challenge (ILSVRC). The architecture of CustomNet is shown in Fig. 5. All three Conv layers used
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3 × 3 filters, and MaxPool layers used 2 × 2 filters. The Conv1 layer used 32 kernels, the Conv2 layer
used 64 kernels, and the Conv3 layer used 128 kernels. The output vector dimension of the FC1 layer
was set to 256.

Figure 5: CustomNet model architecture

The CIFAR10, CIFAR100, Horses or Humans datasets were used to evaluate the experimental
performance of this study, and the hyperparameters applied to each neural network are shown in
Table 3.

Table 3: Hyperparameters based on neural networks and data

Neural network Dataset Learning rate Optimizer Epoch Batch size

VGG16 CIFAR-10 0.00001 Adam 50 64
VGG19 CIFAR-100 0.00001 Adam 50 64

Horses or humans 0.00001 Adam 50 32
ResNet50 CIFAR-10 0.0001 Adam 50 64
CustomNet CIFAR-100 0.0001 Adam 50 64

Horses or humans 0.0001 Adam 50 32

To confirm the performance according to the activation function, the weight decay scheduler
was not used for the learning rate, and a CNN model that was not pre-trained was used. And Adam
Optimizer [34] was used for fast weight convergence. Additionally, we used the CIFAR10 dataset to
perform an experimental performance evaluation based on changes in hyperparameters that determine
a UA.

5.2 Results and Analysis
5.2.1 Experimental Performance Evaluation Results for CIFAR-10

Table 4 shows the results of learning the CIFAR10 using traditional activation functions (ReLU,
Swish) and UAs (UA-ReLU, UA-Swish). Fig. 6 is a visualization for intuitive understanding of the
results.

The results show that the validation accuracy of the traditional activation function and the UA
is mostly derived similarly for the entire model. For ResNet50, UA-ReLU has improved accuracy by
about 5.3% compared to ReLU. The reason why ResNet50 is less accurate than other neural networks
is that the neural network is composed of layers deeper than the resolution of a given dataset, so it is
judged that it has not been learned normally because many features of the image have been lost in the
hidden layer.
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Table 4: Classification accuracy for CIFAR10 of CNN according to activation function

Model Traditional
activation function

Validation accuracy on
traditional activation
function

UA Validation
accuracy on
UA

CustomNet ReLU 74.58 UA-ReLU 75.52
Swish 72.13 UA-Swish 71.41

VGG16 ReLU 84.56 UA-ReLU 84.32
Swish 84.68 UA-Swish 84.71

VGG19 ReLU 84.13 UA-ReLU 83.54
Swish 84.46 UA-Swish 84.15

ResNet50 ReLU 24.08 UA-ReLU 29.42
Swish 61.65 UA-Swish 61.36

Figure 6: CIFAR10 results bar graph

5.2.2 Experimental Performance Evaluation Results for CIFAR-100

Table 5 shows the results of learning the CIFAR100 using traditional activation functions and
UAs. Fig. 7 is a visualization for intuitive understanding of the results.

As a result of learning the CIFAR100 dataset, most of them show similar accuracy, and the
accuracy is generally slightly higher when UA is applied. Like the CIFAR10 dataset, it is judged that
the accuracy of ResNet50 is low because the resolution of the given dataset is low and many image
features are lost in the hidden layer.
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Table 5: Classification accuracy for CIFAR100 of CNN according to activation function

Model Traditional
activation function

Validation accuracy on
traditional activation
function

UA Validation
accuracy on
UA

CustomNet ReLU 42.82 UA-ReLU 43.26
Swish 40.11 UA-Swish 41.10

VGG16 ReLU 58.78 UA-ReLU 58.33
Swish 59.07 UA-Swish 59.57

VGG19 ReLU 56.38 UA-ReLU 56.73
Swish 56.95 UA-Swish 56.80

ResNet50 ReLU 31.61 UA-ReLU 31.00
Swish 35.42 UA-Swish 35.47

Figure 7: CIFAR100 results bar graph

5.2.3 Experimental Performance Evaluation Results for Horses or Humans

Table 6 shows the results of learning the Horses or Humans using traditional activation functions
and UAs. Fig. 8 is a visualization for intuitive understanding of the results.

As a result of learning from the Horses or Humans dataset, CustomNet had higher accuracy
when applying a UA. The VGG16 showed similar accuracy and the VGG19 showed similar accuracy
for ReLU, but the accuracy was approximately 3.5% lower for UA-Swish. In the case of ResNet50,
it is judged that it was not learned normally, such as the CIFAR10 and CIFAR100 dataset learning
results.
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Table 6: Classification accuracy for horses or humans of CNN according to activation function

Model Traditional
activation function

Validation accuracy on
traditional activation
function

UA Validation
accuracy on
UA

CustomNet ReLU 81.64 UA-ReLU 86.32
Swish 85.93 UA-Swish 87.89

VGG16 ReLU 98.82 UA-ReLU 98.44
Swish 98.43 UA-Swish 98.83

VGG19 ReLU 98.43 UA-ReLU 98.43
Swish 96.09 UA-Swish 92.57

ResNet50 ReLU 75.00 UA-ReLU 50.00
Swish 51.95 UA-Swish 50.00

Figure 8: Horses or humans results bar graph

5.2.4 Experimental Performance Evaluation Results of UA According to Hyper-Parameter

Considering the diversity of the study, three hyperparameters of the UA were changed to generate
activation functions similar to ELU not covered in the previous section, and the experimental perfor-
mance evaluation was conducted using the CIFAR10 dataset. Table 7 shows the hyperparameters of
the three UAs and the results of learning CIFAR10.

The hyperparameters of the first UA were set to k = 1, m = 3, and L = 35. Fig. 9 shows the first
UA graph, and Fig. 10 visualizes the results.

The accuracy of the neural network to which the first general-purpose activation function was
applied was found to be about 19.56% lower than the average accuracy of the model trained with
four activation functions (ReLU, Swish, UA-ReLU, UA-Swish) for CustomNet. However, in the case
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of VGG16 and VGG19 neural networks, about 1.2% and 1.6% accuracy improvements were found.
In the case of ResNet50, it seems that the image features are lost in the hidden layer, but there was
a performance improvement of about 34.4% compared to the result of applying the four activation
functions.

Table 7: Hyperparameters of UA and validation accuracy of each model

No. k m L CNN Validation accuracy

1 1 3 35 CustomNet 53.85
2 VGG16 85.74
3 VGG19 85.66
4 ResNet50 78.48
5 1 5 44 CustomNet 53.55
6 VGG16 84.73
7 VGG19 84.96
8 ResNet50 77.56
9 1 1 17 CustomNet 76.6
10 VGG16 81.78
11 VGG19 79.21
12 ResNet50 77.74

Figure 9: Graph of UA (k = 1, m = 3, L = 35)
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Figure 10: Results of UA (k = 1, m = 3, L = 35)

The hyperparameters of the second UA were set to k = 1, m = 5, and L = 44. Fig. 11 shows the
second UA graph, and Fig. 12 visualizes the results.

Figure 11: Graph of UA (k = 1, m = 5, L = 44)
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Figure 12: Results of UA (k = 1, m = 5, L = 44)

The accuracy of applying the second UA was like that of the first UA applied to CustomNet.
In the case of VGG16 and VGG19, there was a slight improvement in performance compared to the
four activation functions, but the case of applying the first UA showed better accuracy. ResNet50 also
had the loss of image features of the hidden layer, but there was a performance improvement of about
33.4%.

The hyperparameters of the third UA were set to k = 1, m = 1, and L = 17. Fig. 13 shows the third
UA graph, and Fig. 14 visualizes the results.

Figure 13: Graph of UA (k = 1, m = 1, L = 17)
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Figure 14: Results of UA (k = 1, m = 1, L = 17)

As a result of the third UA, CustomNet achieved 76.6% accuracy, unlike the application of the
first and second UA, and improved accuracy by about 3.2% over the average accuracy of the models
trained with the four activation functions. In the case of VGG16 and VGG19, there was a performance
degradation of about 2.8% and 4.9%. For ResNet50, we achieved 77.74% accuracy and there was a
loss of image features of the hidden layer, but there was a performance improvement of about 33.6%.

6 Conclusion

In this paper, the UA is proposed to improve the performance of deep learning and the usability
of the activation function of researchers. The UA consists of three hyperparameters k, m, and L that
determine the form of the activation function. By properly setting the hyperparameters, researchers
can generate activation functions like traditional activation functions as well as various types of
activation functions. We trained self-defined CNNs to minimize loss due to depth of neural networks
by leveraging various benchmark datasets for comparison and experimental performance evaluation
of traditional activation functions and UAs. As a result, the traditional activation function and the
UA showed generally similar performance. In addition, three new types of activation functions were
generated by changing the hyperparameters of the UA, and experimental performance evaluation was
conducted using CIFAR10 and CNNs. In the experimental performance evaluation process, there
were neural networks with improved performance for all three UAs, but there were also cases with
improved performance in a specific neural network. Therefore, based on the results of this study,
various researchers can easily generate and utilize new activation functions, so that technological
advancement can be expected in various fields using deep learning. However, the traditional activation
function was superior due to the complexity of the UA in terms of deep learning speed. In future
studies, we will solve the problem of lowering the learning speed due to the complexity of the UA.
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