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Abstract: The image emotion classification task aims to use the model to
automatically predict the emotional response of people when they see the
image. Studies have shown that certain local regions are more likely to inspire
an emotional response than the whole image. However, existing methods
perform poorly in predicting the details of emotional regions and are prone to
overfitting during training due to the small size of the dataset. Therefore, this
study proposes an image emotion classification network based on multilayer
attentional interaction and adaptive feature aggregation. To perform more
accurate emotional region prediction, this study designs a multilayer atten-
tional interaction module. The module calculates spatial attention maps for
higher-layer semantic features and fusion features through a multilayer shuffle
attention module. Through layer-by-layer up-sampling and gating operations,
the higher-layer features guide the lower-layer features to learn, eventually
achieving sentiment region prediction at the optimal scale. To complement
the important information lost by layer-by-layer fusion, this study not only
adds an intra-layer fusion to the multilayer attention interaction module
but also designs an adaptive feature aggregation module. The module uses
global average pooling to compress spatial information and connect channel
information from all layers. Then, the module adaptively generates a set of
aggregated weights through two fully connected layers to augment the original
features of each layer. Eventually, the semantics and details of the different
layers are aggregated through gating operations and residual connectivity to
complement the lost information. To reduce overfitting on small datasets, the
network is pre-trained on the FI dataset, and further weight fine-tuning is
performed on the small dataset. The experimental results on the FI, Twitter I
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and Emotion ROI (Region of Interest) datasets show that the proposed net-
work exceeds existing image emotion classification methods, with accuracies
of 90.27%, 84.66% and 84.96%.

Keywords: Attention mechanism; emotional region prediction; image emotion
classification; transfer learning

1 Introduction

Psychological studies show that people are easily stimulated by visual content, especially images,
to produce corresponding emotions [1]. With the accelerated pace of life and the development of the
Internet, more and more people like to express their emotional states and opinions by sharing images
on social media platforms such as Weibo and WeChat. If the emotional information contained in
images can be fully applied to human emotion classification, this will contribute to business behavior
and psychological studies such as accurate advertising placement, content delivery, and game scene
modeling. Therefore, in recent years, many domestic and international scholars have conducted a lot
of studies in the context of image emotion classification [2–5].

Before deep learning became popular, scholars mainly studied hand-crafted features such as color
and texture for emotion classification. However, handcrafted features [6,7] are labor-intensive and
time-consuming. In addition, such lower-layer features fail to adequately express advanced attributes
such as emotion. In contrast, neural networks can automatically learn deeper features and can
characterize advanced attributes such as emotion more effectively. At the same time, many existing
studies have shown that emotional changes in people are often captured from certain regions of the
image [8,9], which are called emotional regions. Therefore, different methods have been proposed to
improve classification accuracy by investigating emotional regions [10,11]. However, they still have
certain limitations: (i) People’s attention is influenced by features at different layers, most current
methods rely on higher-layer semantic features for emotional region prediction, but neglect lower-layer
fine-grained features. (ii) The layer-by-layer fusion manner doesn’t exchange information directly at
the layers that are far away, so the important information captured at the higher-layer may be lost
in the entire gradual process [12]. (iii) To ensure high accuracy, sufficient data is needed to train the
model. However, due to social privacy and annotation issues, several commonly used public image
emotion datasets are small, making the models prone to overfitting when trained.

Therefore, this study proposes an image emotion classification network based on multilayer
attentional interaction and adaptive feature aggregation. To make full use of the extracted multilayer
features for more accurate emotional region prediction, this study designs a multilayer attentional
interaction module, which is inspired by the work of Yang et al. [13] and Wu et al. [14]. The module acts
between multilayer outputs, which pass channel and spatial attention information from top to bottom
and enable higher-layer features to guide lower-layer features learning. Emotional region prediction
is achieved by progressively integrating multilayer attention at the optimal scale. To complement the
information that may be lost in the multilayer attentional interaction module, this study proposes an
adaptive feature aggregation module, which is inspired by the work of Sun et al. [15]. This module
adaptively predicts a set of weights based on the importance of the features in each layer, augmenting
the original features in each layer. The information is complemented by aggregating the semantics
and details of different layers through residual connections with the emotional region features. To
reduce overfitting on small datasets, the network is pre-trained on the FI dataset, and further weight
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fine-tuning is performed on the small dataset. In addition, weight decay, data augmentation, and two
dropout operations with a probability of 0.5 are used to jointly reduce overfitting.

In summary, our contributions are mainly as follows:

(i) This study designs a multilayer attentional interaction module. The module computes a
spatial attention graph from higher-layer semantic features and uses intra-layer fusion to enhance key
information. Then, layer-by-layer up-sampling and gating operations are used to enable higher-layer
features to guide lower-layer features to learn, ultimately achieving the emotional region prediction at
the optimal scale.

(ii) This study designs an adaptive feature aggregation module. The module uses global average
pooling to connect channel information of all layers and adaptively generates a set of aggregated
weights through two fully connected layers, enhancing the original features of each layer. Eventually,
the semantics and details of different layers are directly aggregated through gating operation and
residual connections to complement the information lost in the multilayer attentional interaction
module.

(iii) In this study, the network is pre-trained on the FI dataset and further weight fine-tuning is
performed on the small dataset. A combination of weight decay, data augmentation, and two dropout
operations are also incorporated to reduce overfitting, thereby ensuring high accuracy.

The rest of the article is arranged as follows. Section 2 describes the related work. Section 3
describes the proposed model. Section 4 describes the experimental environment and the dataset,
gives the experimental protocol, and analyses the results. Section 5 discusses the advantages and
disadvantages of the proposed model and gives directions for future study.

2 Related Work

This section introduces the works related to our model, such as emotional region prediction,
attention mechanisms, and transfer learning.

2.1 Emotional Region Prediction

What inspires emotion in the image? Many studies in recent years have shown that only certain
regions of an image tend to inspire emotion, while other unimportant regions should be ignored. These
remind people that when predicting image emotion, we can not only use global information but also
add important inferential information of emotion region to assist image emotion classification [16].
How to accurately capture the emotional regions of an image has become an urgent problem.

Table 1: Pros. and cons. of image emotion classification models

Author Particular year Pros. Cons.

Yang et al. [13] 2018 Classify emotions according to local
image features

Simple weighting through
cross-space pool module

Wu et al. [14] 2019 Use the object detection module to
determine local areas

Ignore the contribution of different
layers

Yao et al. [17] 2019 Conduct polarity and emotion specific
attention on the lower layers and
higher layers

Lack of guided learning between
multilayer features in the emotional
region prediction process

(Continued)
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Table 1: Continued
Author Particular year Pros. Cons.

Rao et al. [10] 2020 Obtain local features through Feature
Pyramid Network (FPN) and ResNet,
and connect local features with global
features

Use serial networks with high
computational complexity;
Important information may be lost
during fusion

Priya et al. [18] 2020 Combine the extracted high-layer
features and low-layer features

Fusion accords to the same weight,
ignoring the human attention
mechanism

Qu et al. [19] 2021 Based on the alterable scale and
multi-level local regional emotional
affinity analysis under the global
perspective

Although FPN is improved, it is still
a parallel structure; Important
information may be lost during
fusion

In recent years, emotion-region-based image emotion classification methods have achieved
encouraging performance improvements on many image emotion datasets. Table 1 shows the pros. and
cons. of image emotion classification models. Peng et al. [20] proposed that emotions are often induced
by specific regions and presented the Emotion ROI dataset. Yang et al. [13] proposed WSCNet, which
weights the final output features by a cross-space pooling module and classifies emotions according
to local image features. Wu et al. [14] suggested a target detection module to determine whether to use
local regions. However, these methods all only use the highest-layer feature to identify the emotional
regions and ignore the contribution of different layers of features to image emotion representation,
thereby, limiting their performance.

To further improve the model performance, Rao et al. [10] used FPN to fuse the single layer of
features from the ResNet network via a layer-by-layer manner to obtain multilayer features. Then,
the emotional region information in the multilayer features is extracted by Faster Region-based
Convolutional Neural Network (Faster R-CNN) and the obtained information is used as local features
to connect with the global features. Yao et al. [17] conducted polarity and emotion-specific attention
on the lower layers and higher layers, respectively. Priya et al. [18] combines the extracted high-level
features and low-level features with equal weight. Qu et al. [19] proposed a multi-level context pyramid
network (MCPNet) for visual sentiment analysis by combining local and global representations. These
methods make full use of different layers of features to represent image emotion. However, they
still have the following limitations: (1) these methods used two serial networks to achieve multilayer
feature extraction, which is labor-intensive and time-consuming. Additionally, the obtained multilayer
features have a low resolution; (2) the Faster R-CNN extracts emotional regions only separately
using the multilayer features from FPN and lacks guided learning between multilayer features in
the emotional region prediction process; (3) the layer-by-layer feature fusing will lead to indirect
information propagation between distant layers, making useful information captured at the higher
layer to be lost in a progressive process.

Therefore, this study proposes to use a parallel High Resolution network (HRNet) [21] as the
backbone network to directly extract multilayer original features, which can accelerate network
training and ensure that all layers of the network have relatively high-resolution features. Adding a
multilayer attentional interaction module after the backbone network and combining layer-by-layer
fusion with emotional region prediction enables higher-layer features to guide lower-layer features
learning. Therefore, the emotional region prediction features with optimal spatial resolution can be
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obtained at the lowest-layer, making the emotional regions more refined. Further details can be found
in Section 4.2. In addition, an adaptive feature aggregation module is designed. This module adaptively
predicts a set of weights based on the importance of features in each layer, enhancing the original
features in each layer. By aggregating the semantics and details of different layers, the lost information
during the layer-by-layer fusion process is complemented. Further details can be found in Section 4.3.

2.2 Attention Mechanism

The attention mechanism enables the network to focus on a specific region and enhance the
features of these regions, which meets the need of the emotional region prediction task. Currently,
there are three types of attention mechanisms used in computer vision, namely channel attention,
spatial attention, and hybrid attention.

Channel attention focuses on modeling the correlations between channels and assigning weights to
each channel according to its importance. Hu et al. [22] proposed the Squeeze and Excitation Networks
(SE Net). SE Net improves network accuracy by modeling the correlations between feature channels
and weighting the important ones. SE Net reduces the high complexity caused by capturing all inter-
channel correlations by dimensionality reduction, but dimensionality reduction interferes with the
learning of channel attention. Wang et al. [23] found that capturing all inter-channel correlations is
inefficient and unnecessary. Therefore, they proposed an Efficient Channel Attention (ECA) with local
cross-channel interaction, which captures local cross-channel interaction information by considering
each channel and its k neighbors. This method ensures modeling efficiency and computational
effectiveness.

In contrast, the spatial attention mechanism extracts the spatial attention matrix and assigns more
weight to the more important spatial pixels to identify the regions that need to be focused on.

Hybrid attention is a weighted fine-tuning of the feature map at both the channel level and spatial
level. The commonly used hybrid attention CBAM [24] is effective, but it has a large amount of
calculation. To reduce model complexity and calculation, Zhang et al. [25] proposed a lightweight
yet efficient Shuffle Attention (SA) module, which divides channel dimensions into sub-features. For
each sub-feature, shuffle units were used to construct both channel attention and spatial attention.
The attention module is designed with an attention mask at all positions, which suppresses possible
noise and highlights the regions with the correct semantic features. In contrast, the SA module is more
accurate than previous hybrid attention methods and contains fewer parameters.

In this study, the SA module is added after each layer of the output of the backbone network to
focus on the important regions of different layer features, which obtains an enhanced pixel-by-pixel
emotional region prediction at the optimal scale by progressively integrating multilayer attention. At
the same time, this study proposes to add an ECA module without dimension reduction after the fused
features to strengthen important channels again, so that the network learns more effective features.

2.3 Transfer Learning

Deep learning requires large amounts of training data to understand the underlying patterns
of the data [26]. However, due to social privacy and labeling difficulties, several commonly used
publicly available image emotional datasets are small. Therefore, many models are undertrained, which
prevents these models from achieving optimal performance in image emotion classification. Previous
studies [27–29] have shown that neural networks based on transfer learning can effectively solve the
problems caused by insufficient data.
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Wei et al. [27] proposed a transfer learning model combining convolutional and recurrent neural
networks for emotion analysis. The model uses a convolutional neural network to acquire features
and a recurrent neural network to learn the feature representation. Then the model is trained in the
source domain and parameters are tuned through iterative calculation. When applying the parameters
to the target domain, the model is further fine-tuned based on the target domain data to achieve
better classification results. Zhang et al. [28] exploited the weight parameters trained on the ImageNet
database to initialize the MobileNetV2 network, and then retrained the model based on the CT image
data set provided by Kaggle. Dai et al. [29] took the parameters that are trained from unlabeled data as
the initial parameters for next-stage model training. The pre-training method effectively combined the
advantages of unsupervised and supervised learning and achieved an average classification accuracy of
92.80% for text emotion classification. Currently, most models for emotion classification are trained
and tested on a single dataset. By means of transfer learning, these above models are adequately
trained, and the test results are significantly better than those without using transfer learning, which
can solve the problem of insufficient data.

Inspired by the above studies, this study proposes to use the FI dataset to pre-train the network,
and further fine-tune the network on two small datasets, Twitter I and Emotion ROI. This will solve
the overfitting caused by insufficient data.

3 Proposed Method

In this section, this study proposes an image emotion classification network based on multi-
layer attentional interaction and adaptive feature aggregation. To predict emotional regions more
accurately, this study designs a multilayer attentional interaction module after a multilayer feature
extraction module. In addition, to compensate the multilayer attentional interaction module for the
lost information, an adaptive feature aggregation module is designed, and the two modules are merged
by residual connections. The following will describe the details of the proposed method.

3.1 Structure

The proposed network structure is shown in Fig. 1. This study uses a HRNet with four layers
as the backbone network, which continuously exchanges information between multilayer features
to maintain high resolution. To make full use of the multilayer features extracted by the backbone
network for more accurate emotional region prediction, this study designs a multilayer attentional
interaction module. The highest-layer features are firstly computed by Shuffle Attention to obtain the
highest-layer spatial attention features, followed by up-sampling and gating operations to obtain the
second-highest-layer gated fusion features. Repeat the above interaction process for the gated fusion
features obtained at each layer, until the gated fusion features with the optimal spatial resolution are
obtained at the bottom layer. To reduce the information loss due to layer-by-layer fusion, this study
gates the obtained spatial attention features of each layer with the original features of that layer. To
make the features more effective, the lowest-layer gated fusion features are fed into the undescended
ECA module to obtain the emotional region features.

Important information is probably lost during the layer-by-layer fusion process. To compensate
the multilayer attentional interaction module for the lost information, this study proposes an adaptive
feature aggregation module. The module adaptively predicts a set of weights based on the importance
of the features in each layer, augmenting the original features in each layer and aggregating the
semantics and details of different layers. A 1 × 1 convolutional layer is added after each layer of
HRNet for dimensionality reduction. Then, global average pooling is used at each layer to compress



CMC, 2023, vol.75, no.2 4279

spatial information to further connect channel information across all layers. At the same time, a
simple gating operation is performed on the aggregated features, to make the module learns a fused
weight. Using the fused weight, this study dynamically enhance the original features in each layer.
The adaptively enhanced multilayer features are used as the global features and are dotted with the
emotional region features. Then, make a residual connection between the dotted product and global
features. The connected features are passed through the global average pool to obtain the emotion
classification features, and the obtained emotion classification features are fed into the fully connected
layer. Finally, the emotion is classified using a SoftMax classifier.

Figure 1: Image emotion classification network based on multilayer attentional interaction and
adaptive feature aggregation. In the figure, D denotes emotional region features, F denotes global
features, and E denotes integrated emotion features

3.2 Multilayer Attention Interaction Module

Unlike the traditional method such as a simple connection of multilayer input features [30], this
study designs a multilayer attention interactional module to make full use of the multilayer features
extracted by HRNet. The module enables the higher-layer features to guide the lower-layer features
for predicting emotional regions at the bottom layer with the highest resolution. The structure of the
module is shown in Fig. 2 and its implementation is detailed described below.

This study uses HRNetV2-w48 as the backbone network to extract multilayer features. In this
study, Ci denotes the i-th layer original features from top to bottom, i = 1, 2, 3, 4; Aj denotes the
spatial and channel attention features of layer j, j = 1, 2, 3; Ok denotes the gated fusion features
of layer k, k = 2, 3, 4. Firstly, the highest-layer features C1 calculate the corresponding spatial and
channel attention features A1 through SA. Multiply A1 with C1, and up-sample the result to the second-
highest-layer resolution. Then multiply the up-sampled features with C2 by the corresponding element
to obtain the second-highest-layer gated fusion features O2. Next, the spatial attention features A2 of
the second-highest-layer gated fusion features O2 are computed by SA. A2 is multiplied with O2 by the



4280 CMC, 2023, vol.75, no.2

corresponding element, and the result is up-sampled and gated with C3 for fusion. The above process
is repeated until the lowest-layer gated fusion features O4 are obtained. This multilayer attentional
interaction operation can be described by the following equation:

A1 = σ
(
W 7×7 ([AvgPool (C1) ; MaxPool (C1)])

)
(1)

O2 = up(A1 ⊗ C1) ⊗ C2 (2)

Am = σ
(
W 7×7 ([AvgPool (Om) ; MaxPool (Om)])

)
(3)

Om+1 = up(Am ⊗ Cm) ⊗ Cm+1 (4)

D = σ(Conv1×1(ECA(O4))) (5)

where σ() denotes the sigmoid activation function, W 7×7 denotes the weight of the 7 × 7convolution,
avgPool() denotes the average pooling operation, MaxPool() denotes the maximum pooling operation,
up() denotes bilinear interpolation up-sampling, ⊗ denotes the gating operation (Corresponding
elements are multiplied together), and m denotes the layer m, Conv1×1() denotes 1 × 1 convolution,
ECA() denotes efficient channel attention module.

The spatial attention features A1 from the highest-layer features C1 are calculated by Eq. (1). The
calculation process is as follows. This uses global maximum pooling and global average pooling to
compress in the channel domain, and obtain the global maximum pooling features and the global
average pooling features fromC1. These two pooled features are connected along the channels to obtain
the features with two channels. Then a 7 × 7 convolution is used to fuse the two pooled features,
which can reduce the channel number to 1. Finally, the spatial attention and channel features A1 are
output through the sigmoid activation function. After implementing the above four equations, the final
layer of the gated fusion features O4 contain both higher-layer semantic features and lower-layer high
resolution detail features. To further strengthen the channel features of the feature map to improve
the accuracy, the lowest-layer gated fusion features are fed into an ECA module. Then, the number of
channels of the features is reduced to 1 by 1 × 1 convolution. Finally, a sigmoid activation function is
used to normalize the emotional region features D.

Figure 2: Multilayer attentional interaction module. In the figure, SA denotes Shuffle Attention, ECA
denotes Efficient Channel Attention, D denotes emotional region features
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3.3 Adaptive Feature Aggregation Module

Important information may lose during the layer-by-layer fusion process. To complement the
lost information, this study proposes an adaptive feature aggregation module. The module allows
information to be exchanged between multiple layers and adaptively generates a set of aggregated
weights to enhance the original features of each layer. The structure of the module is shown in Fig. 3,
and the implementation is described in detail below.

Figure 3: Adaptive feature aggregation module. In the figure, Ci denotes HRNet’s features, Z denotes
channel-level global features, F denotes global features

For each layer of HRNet’s features Ci, i = 1, 2, 3, 4, this study adds a 1 × 1 convolutional layer
to each layer for dimensionality reduction. Then, global average pooling is used at each layer to
compress spatial information and connect channel information from all layers to obtain channel-level
global features Z. To better aggregate the semantics and details of different layers, the module learns
a hierarchy of adaptive aggregated weights ψ ∈ R1×4 via Eq. (6),

ψ = W2 (ReLU (W1 (Z))) (6)

where W1 and W2 are the weights of the two fully connected layers, and ReLU() is the ReLU activation
function.

Using the aggregated weights ψ , this model dynamically obtains the enhanced features C̃i for each
layer according to Eq. (7),

C̃i = Ci ∗ ψi (7)

where ψi is the i-th element in ψ , and ∗ denotes the scalar multiplication between Ci and ψi.

Subsequently, C̃2∼4 is up-sampled by bilinear interpolation to the same resolution as C̃1, and then
they are connected to generate the global features F . Formally, this process can be expressed as Eq. (8),

F = C̃1 ⊕ up
(
C̃2

) ⊕ up
(
C̃3

) ⊕ up
(
C̃4

)
(8)

where ⊕ is a series operation and up() denotes bilinear interpolation up-sampling.
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3.4 Classifier

To better combine the emotional region features with the global features, this study firstly dots D
with F and then connects the result with the global features F to get the integrated emotion features E.
The fusion process can be expressed by Eq. (9). Finally, the global average pooling output the emotion
vector with dimension 2048. Then the emotion vector is fed into the fully connected layer (FC) to
classify the emotion by the SoftMax classifier. In this image emotion classification model, the classifier
uses three fully connected layers. The first and the second fully connected layer reduce the dimension
and use dropout to prevent overfitting. The third fully connected layer reduces the dimension to the
number of categories and doesn’t use dropout operation, and outputs the emotion classification results.

E = D ⊗ F + F (9)

In this study, cross-entropy is used as the objective function, and the L2 regular term is added
to further avoid overfitting the model. The network model is optimized by minimizing the objective
function and the parameter is optimized by the gradient descent algorithm. The objective function is
as follows:

L = − 1
N

N∑
a=1

[
ŷalogya + (

1 − ŷa

)
log (1 − ya)

] + λ ‖ θ ‖2 (10)

where L is the objective function, a is the sample subscript, N is the number of samples, ŷa is the label
of the sample (positive class is 1 and negative class is 0), ya is the probability of a positive prediction,
and λ ‖ θ ‖2 is the regular term.

3.5 Method Flow

The flow chart of the proposed method is shown in Fig. 4, including the following steps.

Step 1: Use random clipping and random horizontal flipping to improve the quality of the images.

Step 2: Build HRNetV2-w48 networks as the backbone of the model.

Step 3: Build a multilayer attentional interaction module that consists of a multilayer shuffle
attention module, an intra layer and inter layer gating fusion module and an efficient channel attention
network.

Step 4: Build an adaptive feature aggregation module to adaptively generates a set of aggregated
weights through two fully connected layers to augment the original features of each layer.

Step 5: Use a Stochastic Gradient Descent optimizer and transfer learning to train network.

For the convenience of reading, abbreviations and symbols used in this study are shown in Tables 2
and 3 respectively.
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Begin

Image preprocessing:Use random clipping and random horizontal 
flipping to improve the quality of the images.

Build HRNetV2-w48 networks as the 
backbone of the model.

Build a multilayer attentional interaction module which consists of 
a multilayer shuffle attention moudle, an intra layer and inter layer 
gating fusion moudle and an efficient channel attention network.   

Build an adaptive feature aggregation module to adaptively 
generates a set of aggregated weights through two fully connected 

layers to augment the original feature of each layer.    

Use a SGD optimizer and transfer learning to train network.

End

Figure 4: Flow chart of the proposed method

Table 2: Abbreviation

Full name Abbreviation

Efficient Channel Attention ECA
Feature Pyramid Network FPN
Faster Region-based Convolutional
Neural Network

Faster R-CNN

Fully Connected layer FC
High Resolution network HRNet
Region of Interest ROI
Squeeze and Excitation Networks SE Net
Shuffle Attention SA

Table 3: Symbols

Symbol Meaning

Ci i-th original layer features, i = 1, 2, 3, 4
Aj Spatial and channel attention features of layer j, j = 1, 2, 3

(Continued)
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Table 3: Continued
Symbol Meaning

Ok Gated fusion features of layer k, k = 2, 3, 4
σ () Sigmoid activation function
W 7×7 The weight of the 7 × 7convolution
avgPool () Average pooling
MaxPool () Maximum pooling
up () Bilinear interpolation up-sampling
⊗ Gating operation
m m-th layer
Conv1×1() 1 × 1 convolution
D Emotional region features
Z Channel-level global features
ψ Adaptive aggregated weights
W1 Weight of the first FC
W2 Weight of the second FC
ReLU () ReLU activation function
C̃i i-th layer enhanced features
⊕ Series
F Global features
E Integrated emotion features
L Objective function
a Sample subscript
N The number of samples
ŷa Label
ya The probability of a positive prediction

4 Experiments
4.1 Experimental Setup
4.1.1 Equipment and Environment

The experiment and environment in this study are shown in Table 4.

Table 4: Experimental equipment and environment

Equipment A computer with an Intel Core i7-10870 CPU
A remote server consisting of 2 NVIDIA GeForce RTX 3090
GPU

Environment pytorch 1.11 for model training and validation
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4.1.2 Datasets

The number of images in the commonly used datasets, except for the FI dataset, is far from the
requirement for training a multi-classification network. Therefore, three widely used image emotion
datasets are chosen for the image emotion two-classification task in this study, namely the FI dataset
[31], the Twitter I dataset [32] and the Emotion ROI dataset [20].

The FI dataset contains 21194 images, divided into eight emotion categories: pleasure, satisfaction,
excitement, surprise, anger, disgust, fear and sadness. Although the FI dataset divides emotion into
eight categories, it can still be practically summarized in two categories: positive and negative. This
study follows the division method of previous studies [33], combining pleasure, satisfaction, excitement
and surprise into a positive category with 15036 images, and anger, disgust, fear and sadness into a
negative category with 6158 images. By doing so, the eight-classification task is transformed into a
two-classification task. Like other studies [10,13] on emotion classification, the FI dataset is randomly
divided into an 80% training set, a 5% validation set and a 15% test set in this experiment. Fig. 5 shows
a selection of example images from the reclassified FI dataset.

Positive

Negative

Figure 5: A selection of sample images from the reclassified FI dataset

The Twitter I dataset contains 1269 images, divided into positive and negative categories. Since
this dataset is small, this study randomly divides the dataset into an 80% training set and a 20% test
set. Five-fold cross validation is used in the experiment and the final results were averaged over the
five-fold cross validation.

The Emotion ROI dataset contains 1980 images, divided into six emotion categories, such as anger,
disgust, fear, sadness, joy and surprise, with 330 images in each category. This study also summarizes
the dataset into positive and negative categories, where the four categories of anger, disgust, fear and
sadness are combined into the negative category, and joy and surprise are combined into the positive
category. Five-fold cross validation is used in the experiment and the final results were averaged over
the five-fold cross validation.

Table 5 shows the number of positive and negative images for the three data sets used in this study.

Table 5: The number of positive and negative images for FI, Twitter I and Emotion ROI

Datasets Positive Negative

FI 15036 6158
Twitter I 769 500
Emotion ROI 660 1320
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4.1.3 Parameter Settings

Before training, the parameters of the HRNet are initialized to pre-trained parameters on the
ImageNet classification task to improve accuracy and reduce training time.

Batchsize is set to 32. The network is trained by a Stochastic Gradient Descent optimizer.
Momentum is set to 0.9 and weight decay is set to 0.001. For the FI dataset, the initial learning rate
of the optimizer is set to 0.001. Note that every 30 epochs, the learning rate is reduced to one-tenth of
the previous rate. This study trains 90 epochs on the FI dataset. For the two small datasets, Twitter I
and Emotion ROI, to prevent overfitting, this study first pre-traines the network using the FI dataset
and then fine-tunes it on these small datasets. At this time, the initial learning rate of the optimizer is
set to 0.0001 and the other settings remain the same as for the FI dataset.

To reduce the risk of overfitting, in addition to setting the weight decay, data augmentation is used
on the training data, which includes random cropping and random horizontal flipping. In the fully
connected layer, two dropout operations with a probability of 0.5 are used to reduce overfitting. For
greater clarity, the parameter settings in this article is shown in Table 6.

Table 6: The parameter settings

Parameter name Parameter value

Batchsize 32
Momentum 0.9
Weight decay 0.001
Epochs 90
Initial learning rate (FI) 0.001 (every 30 epochs, the learning rate is

reduced to one-tenth of the previous rate)
Initial learning rate (Twitter I and Emotion ROI) 0.0001 (every 30 epochs, the learning rate is

reduced to one-tenth of the previous rate)
Dropout rate 0.5

4.1.4 Evaluating Indicator

For classification tasks, accuracy is the most common indicator to evaluate model performance.
But the current distribution of positive and negative samples in most emotion datasets is unbalanced,
so this study chooses accuracy and recall to comprehensively evaluate the model. Accuracy reflects the
probability of the model classifying the emotion correctly in samples, and recall reflects the model’s
ability to correctly predict the positive samples. The specific calculation equations are as follows.

accuracy = TP + TN

TP + TN + FP + FN

(11)

recall = TP

TP + FN

(12)

TP (true positive) denotes a positive sample predicted positive by the model. TN (true negative)
denotes a negative sample predicted negative by the model. FN (false negative) denotes a positive
sample predicted negative by the model. FT (false positive) denotes a negative sample predicted positive
by the model.
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4.2 Experimental Results
4.2.1 Ablation Experiment

In this study, we conduct ablation experiments to analyze the importance of each module in the
model. Table 7 lists the test results of the model’s accuracy on each dataset when the corresponding
module is removed. The accuracies are all declined to varying degrees, which demonstrates the
effectiveness of our proposed modules.

Table 7: Ablation experimental results

Datasets/Ablation
module

Normal Without-multilayer
attentional interaction

Without-adaptive
feature aggregation

FI 90.27 88.36 89.57
Twitter I 84.66 81.49 83.55
Emotion ROI 84.96 81.57 83.74

Firstly, this study removes the multilayer attention interaction module. Only the global features
obtained by the adaptive feature aggregation module are used for emotional classification, which
doesn’t consider the emotional regions of the image. The results show that the accuracies of the model
degrades by 1.91, 3.17 and 3.39 on the FI, Twitter I and Emotion ROI datasets. This can demonstrate
that the high-resolution emotional region features obtained by the multilayer attention interaction
module can be effective in emotion classification. Further analysis shows that multi-level spatial
channel attention fusion can bring more complex emotional region information, which is conducive
to the following emotional classification.

Secondly, this study removes the adaptive feature aggregation module. Emotion classification is
performed directly using the high resolution emotional region features obtained from the multilayer
attentional interaction module, which doesn’t complement the lost information. The experimental
results show that the performance of the model degraded by 0.7, 1.11 and 1.22 on the FI, Twitter
I and Emotion ROI datasets. The results show that the information lost in the layer-by-layer fusion
process really affects the emotion classification. This problem can be effectively solved by aggregating
multilayer features with adaptive weights.

Comparing the ablation results of two modules, the multilayer attentional interaction module is
more effective in improving accuracy than the adaptive feature aggregation module. Further analysis
shows that using multi-layer attention modules to enhance discriminative information is more effective
in improving accuracy for image classification tasks.

In addition, to demonstrate the superiority of transfer learning, experiment is conducted on the
model without transfer learning. The results are shown in Table 8.

The experimental results show that the model based on transfer learning performs better on two
small datasets, Twitter I and Emotion ROI, which demonstrate that transfer learning can improve
accuracy and reduce the risk of overfitting on small datasets.

4.2.2 Comparative Experiment

To better show the effectiveness of this study, the proposed method is compared with the current
mainstream methods. Table 9 shows the results of different methods on the three challenging datasets,
FI, Twitter I, and Emotion ROI. This study designs a multilayer attentional interaction module and



4288 CMC, 2023, vol.75, no.2

an adaptive feature aggregation module, which not only enhances the discriminative features of the
images but also aggregates the semantics and details of different layers. The experimental results show
that this model is more efficient than the other methods in the table.

Table 8: Results without transfer learning

Databases Methods Accuracy Recall

Twitter I Normal 84.66 86.85
Without-transfer learning 83.78 84.86

Emotion ROI Normal 84.96 86.76
Without-transfer learning 83.24 84.98

Table 9: The comparison between our method and other methods

Databases Methods Accuracy Recall

FI Rao et al. [34] 62.79 68.90
FI ResNet101 [35] 75.76 82.63
FI AR [13] 86.35 87.63
FI Rao et al. [10] 87.51 92.85
FI Qu et al. [19] 89.86 94.29
FI Ours 90.27 94.36
Twitter I PCNN [32] 76.36 79.56
Twitter I AR [13] 81.06 83.45
Twitter I Wu et al. [14] 81.65 85.79
Twitter I Qu et al. [19] 83.88 86.68
Twitter I Ours 84.66 86.85
Emotion ROI PCNN [32] 74.06 78.46
Emotion ROI AR [13] 81.26 83.54
Emotion ROI Wu et al. [14] 83.04 84.75
Emotion ROI Qu et al. [19] 84.19 85.94
Emotion ROI Ours 84.96 86.76

As shown in Table 9, the performance of models based on deep learning far exceeds that of
handcrafted models. Then, compared with ResNet101 model and PCNN model that only use global
features, AR model, Wu L’s model, Rao T’s model, Qu’s model and our proposed model can achieve
classification accuracy over 80% on the three datasets. The reason is that these models assist in image
emotion classification by extracting features from the emotional region of the image.

Among the five models which combine emotional region features and global features for emotion
classification, Qu’s model and our proposed model are significantly better than the other models.
Both of these models obtain higher-layer semantic information and lower-layer high resolution
detail information through attention and multi-layer features fusion, so as to predict more accurate
emotional regions. Compared with Qu’s model, the accuracy of our model is further improved,
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reaching 90.27 on the FI dataset and closing to 85 on both smaller datasets. This is attributed
to the multilayer attentional interaction module and the adaptive feature aggregation module. The
multilayer attentional interaction module calculates the attention feature map many times on the
basis of layer-by-layer fusion which strengthens important features and enables higher-layer features to
guide lower-layer features learning. The adaptive feature aggregation module adaptively generates a set
of aggregated weights through two fully connected layers, enhancing the original features of each layer.
Eventually, the semantics and details of the different layers are aggregated through gated fusion and
residual connections to complement the missing information. In addition, the excellent performance
of the model on small datasets also proves the role of transfer learning. In summary, the above analysis
and classification results demonstrate the superiority of this proposed model.

5 Conclusion

This study proposes an image emotion classification network based on multilayer attentional
interaction and adaptive feature aggregation. Different from the existing methods that rely on
singlelayer features to find emotional regions, this study designed a multilayer attention interaction
module. This module calculates spatial attention maps for higher-layer semantic features and fusion
features through multilayer shuffle attention module. Through layer-by-layer up-sampling and gating
operations, the higher-layer features guides the lower-layer features to learn, eventually achieving
sentiment region prediction at the optimal scale. To complement the important information lost by
layer-by-layer fusion, this study designs an adaptive feature aggregation module. The module firstly
uses global average pooling to compress spatial information and connect channel information from all
layers. Then, the module adaptively generates a set of aggregated weights through two fully connected
layers to augment the original features of each layer. Eventually, the semantics and details of the
different layers are aggregated through gating operations and residual connectivity to complement
the lost information. To reduce overfitting on small datasets, the network is pre-trained on the FI
dataset, and further weight fine-tuning is performed on the small dataset. The experimental results on
the FI, Twitter I and Emotion ROI datasets show that the proposed network exceeds existing image
emotion classification methods, with accuracies of 90.27%, 84.66% and 84.96%.

Further, we will study in the following directions: (i) an image may inspire multiple emotions at the
same time, so we try to use multi-label learning [36] into image emotion classification to achieve more
accurate emotion prediction. (ii) we will explore the association of text emotion and image emotion
through attention mechanisms to achieve more accurate multimodal emotion classification.
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