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Abstract: Fraud Transactions are haunting the economy of many individuals
with several factors across the globe. This research focuses on developing a
mechanism by integrating various optimized machine-learning algorithms to
ensure the security and integrity of digital transactions. This research pro-
poses a novel methodology through three stages. Firstly, Synthetic Minority
Oversampling Technique (SMOTE) is applied to get balanced data. Secondly,
SMOTE is fed to the nature-inspired Meta Heuristic (MH) algorithm, namely
Binary Harris Hawks Optimization (BinHHO), Binary Aquila Optimization
(BAO), and Binary Grey Wolf Optimization (BGWO), for feature selection.
BinHHO has performed well when compared with the other two. Thirdly, fea-
tures from BinHHO are fed to the supervised learning algorithms to classify
the transactions such as fraud and non-fraud. The efficiency of BinHHO is
analyzed with other popular MH algorithms. The BinHHO has achieved the
highest accuracy of 99.95% and demonstrates a more significant positive effect
on the performance of the proposed model.

Keywords: Metaheuristic algorithms; K-nearest-neighbour; binary aquila
optimization; binary grey wolf optimization; BinHHO optimization; support
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1 Introduction

Digital fraud is becoming more common due to the rising use of electronic cards for online
and general purchases in e-banking. Most online frauds have rapidly routed to mobile and Internet
channels. Bank card enrolment through smart mobile devices has become the main focus for fraud
efforts which is the initial step in mobile transactions. Furthermore, fraudsters instantly change their
techniques to avoid being noticed. As per data provided by the Reserve Bank of India (RBI), the
number of fraud cases noted 4,071 by Indian lenders from April to September 2021, summed up to Rs
36,342 crore. As a result, the regulator is steadily touching the public to raise awareness about financial
fraud. Researchers now concentrate more on fraudster activities and improve their techniques in a
more advanced way. However, most algorithms are still incapable of solving all problems, necessitating
the continued efforts of scientists or engineers to find more capable algorithms [1]. As a part of
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this advancement, feature selection plays a crucial role in lowering the dataset size by abolishing
inessential features. Later, the optimal minimal feature subset is utilized for all the supervised learning
algorithms. This feature selection process helps to minimize the training time of an algorithm. It also
downsizes the storage complexity by omitting the inessential features. Thus, the selection of features
is a conjunctional optimization problem. Many optimization algorithms were proposed to solve the
problems encountered while exploring, exploiting, and conquering nature.

Many MH algorithms have been proposed in the literature to analyze the Feature Selection (FS)
problem in various applications. MH algorithms are classified based on utilization of search space
such as one & various neighbourhood structures, nature-inspired & non-natured inspired, dynamic &
static objective functions, population & single-point based search, etc. Each of these algorithms has
advantages and disadvantages in handling a specific problem. The following metrics must converge
with any meta-heuristic model [2].

• The exploration and exploitation capabilities of an algorithm determine its performance.
• Hybridized algorithms are a combination of metaheuristics. The advantage of hybridization is

to solve problems that occur in one method are addressed with another method.
• Metaheuristics, unlike optimization algorithms, iterative methods, and simple greedy heuristics,

can frequently find results with less computational effort regarding speed and convergence rate.
• Metaheuristics algorithms demonstrate their robustness and are fed to a classifier.

The rest of this paper is written as follows. Firstly, Section 2 describes the digital transactional
fraud detection mechanisms, i.e. existing works. Section 3 introduces the main essential concepts of
feature selection techniques. Results are given in Section 4. Finally, the paper ended with a conclusion
and future scope.

2 Literature Review

The amount of data available has grown in recent years using methods that make data collection
feasible from several fields. It can increase computational complexity (space and time) while executing
machine and deep learning algorithms. It reduces the algorithm’s efficiency when data has more
redundancy. In classification tasks, irrelevant data reduces accuracy and performance significantly.
Therefore, FS has secured prominence in the scientific area for advanced years. Advanced heuristics
offer a collection of methods for creating heuristic optimization techniques. MH can be expressed as
nature-behavioral and non-nature-behavioral. Again, nature-behavioral algorithms are derived into
four categories such as evolutionary algorithms, swarm-based algorithms, physics-based algorithms,
and human-based algorithms. This literature segment gives a broad survey of the most useful MH
algorithms and highlights some of their areas in recent works.

Table 1: A List of popular metaheuristic methods

Type Author Year Optimization technique Inspired by

Evolutionary [3] 2019 Genetic Algorithms Darwinian theory of evolution
[4] 2020 Genetic Programming Charles Darwin’s theory of

natural evolution
[5] 2019 Differential Evolution the natural phenomenon of

evolution

(Continued)
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Table 1: Continued
Type Author Year Optimization technique Inspired by

[6] 2008 Biogeography-Based Optimizer Biogeography related to species
migration

[7] 2014 Probability-Based Incremental
Learning

The genotype of a whole
population (probability vector)

Swarm
intelligence

[8] 2021 Particle Swarm Optimization The natural behaviors of swarm
particles

[9] 2005 Ant Colony Optimization Ants deposit pheromones on the
ground

[10] 2015 Moth Flame Optimization The moth’s navigation method in
nature

[11] 2022 Harris Hawks optimization The behaviour of harris hawks in
nature

[12] 2021 Aquila Optimization Aquila’s behaviors in nature
[13] 2020 Mayfly Optimization algorithm the flight and mating behavior of

adult mayflies.
[14] 2021 Jellyfish Algorithm The behavior of jellyfish in the

ocean
[15] 2018 Whale Optimization The behavior of humpback

whales
[16] 2018 Grey Wolf Optimization Inspired by grey wolves
[17] 2019 Henry Gas solubility

optimization
The behavior of Henry’s law

[18] 2020 Hide objects game optimization Game to find a hidden object
Physics-
based

[19] 2011 Galaxy-Based Search Algorithm The spiral arm of spiral galaxies
to search

[20] 2018 Gravitational Local Search The law of gravity and mass
interactions

[21] 2012 Charged System Search Principles from physics and
mechanics

Human-
based

[22] 2012 Teaching based learning The influence of a teacher on the
output of learners

[23] 2018 Socio Evolution\& Learning
Optimization

Social learning behavior of
humans

[24] 2011 Brain storm optimization the brainstorming process
[25] 2019 Poor\& Rich optimization

algorithm
the rich to achieve wealth and
improve their economic situation.

[26] 2021 Gaining-Sharing
Knowledge-based Algorithm

The philosophy of gaining and
sharing knowledge during the
human life span.

Hybrid [27] 2013 PSO+GA Particle Swarm Optimization +
Genetic Algorithm

(Continued)
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Table 1: Continued
Type Author Year Optimization technique Inspired by

[28] 2018 HFPSO Firefly + Particle Swarm
Optimization

[29] 2020 HHOSA Harris Hawks + Simulated
annealing

[30] 2021 GWOHHO Grey wolf + Harris Hawks
[31] 2022 AOAAO Aquila + Arithmetic

optimization

Some hybrid algorithms have been reported to outperform native algorithms in feature selection.
Zhang et al. [32] proposed a hybrid Aquila Optimizer with Arithmetic Optimization Algorithm
(AO–AOA), which provides faster convergence in the best global search and produced better results
than native methods. Wang et al. [33] combined the merits of both Differential Evolution (DE)
and Firefly algorithm (FA). The author Zhang et al. [34] introduced hybrid AO and Harris Hawks
Optimization algorithm (HHO), called IHAOHHO, to evaluate the performance of searching in
optimization problems. The AO and HHO are the most recent CI algorithms that mimic the hunting
behaviors of Aquila and harris hawks. As AO was proposed recently, there has been no work toward
improvement. However, AO has been used to analyze and solve natural-world-based optimization
problems. They verified IHAOHHO performance on seven benchmark functions to further verify
IHAOHHO performance. It was applied to three well-known constrained engineering design prob-
lems: the three-bar truss, the speed reducer design problem, and the compression spring design
problem. Mokshin et al. [3] explored a novel hybrid memetic approach called HBGWOHHO (i.e.,
BGWO and HHO) Optimization. The proposed hybrid approach outperforms the naive algorithm
regarding AC%, some chosen features, and computational time. Seera et al. [35] improved and
embedded HHO with Slap Swarm Algorithm (SSA), which developed a hybrid model called Improved
HHO (IHHO). IHHO provides a faster convergence speed and maintains a better balance between
exploration and exploitation.

Despite differences in optimization algorithms in MH, the process of optimization has been
formulated into dual stages: Exploration (EXPO) and Exploitation (EXPL). These stages give broad
coverage and analysis of the search region that is achieved by various finding solutions of the algorithm
to solve searching and hunting problems, as mentioned in Table 1. The efficiency of any optimization
depends only on the phases themselves. Comparing the proposed model BinHHO with other hybrid
models, it works efficiently in terms of exploration and exploitation. The reason behind selecting these
efficient methods is that BAO does the exploration process using two stages called Narrowed and
Expanded modes. Whereas in BinHHO, the exploitation can be done using four phases. So, it explores
the maximum search space, improves the convergence speed, avoids the local minima, and explores
global optimization. When compared with other CI algorithms, BinHHO is efficient in exploitation.

3 Methodology

The proposed method is implemented in various phases. Firstly, the raw transactional data are
preprocessed using Synthetic Minority Oversampling Technique (SMOTE). Optimization methods are
used to select the perfect optimal reduced subset of features depending on the fit function. After that,
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conventional supervised learning models (KNN & SVM) depicts the performance of the metaheuristic
feature selection method. The proposed approach is shown in Fig. 1.

Figure 1: Architecture for the proposed model

3.1 Dataset Sketch

The digital transaction fraud detection datasets from Kaggle and UCI repositories consist
of anonymized credit card and payment transactions labelled as fraudulent or genuine. The two
benchmark datasets, DTS1 [36] and DTS2 [37], are utilized in the proposed work. These datasets
belong to payment type and European credit card, respectively. All these skewed datasets are highly
imbalanced. In the above section (i.e., preprocessing), the conversion of all imbalanced datasets into
balanced ones is done using SMOTE to improve the classification rate. A detailed summary of the two
datasets is presented in the given Table 2.

Table 2: Dataset description

Dataset/Description DTS1 DTS2
Payment type dataset European credit card dataset

#Samples 1048573 284807
#Features 10 31
#Non-Frauds 1047432 284315
#Frauds 1141 492
#Reduced features 8 10
#Balanced samples 2047570 442268

3.2 Dataset Pre-Processing

Different experiments are done using real-world unique data sets to assess the model performance.
The credit card fraud data has been accessed from the UCI machine learning repository. It is a
highly imbalanced dataset. That means it gives less accuracy in classification. Therefore, it has used
oversampling technique SMOTE to balance the data. SMOTE [38] is a familiar type of synthetic
data generation technique. It deals with the imbalanced problems (i.e., class distribution) which arise
in the classification. The SMOTE technique generates artificial instances between minority samples.
These synthetic minority artificial instances are generated randomly by selecting one or more k-nearest
neighbors for each sample in the space. This data can be used for various applications.
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3.3 Optimal Feature Selection

MH algorithms started their enhancement process (optimization) with randomly generated
candidate solutions. The produced collection of solutions is enhanced with a set of rules in the
optimization process and repeatedly calculated by a defined objective function. Primarily, population-
based methods seek the optimal solution to optimize the problems in a stochastic manner. So,
obtaining a solution in one iteration is not guaranteed. Nonetheless, a fine collection of random
solutions and repetition of the optimization process increase the probability of obtaining the optimal
global solution for the specified problem. The details (Input & Parameter setting) of specified MH
algorithms are depicted in Table 3.

Table 3: Parameter setting for feature selection

Optimization technique Parameters Value

BGWO # Wolves 10
#Iterations 100

BHHO # Harris Hawks 10
#Iterations 100

BAO # Aquila birds 10
#Iterations 100
F_Obj Any benchmark function

3.3.1 The Binary Aquila Optimization Algorithm (BAO)

BAO [39] is a nature-inspirited and population-based optimization algorithm inspired by Aquila’s
behavior in nature. This algorithm is inspired by different hunting strategies used by Aquila in nature
and how they attack the target. This algorithm has different hunting strategies.

1. X1 → Expanded Exploration (EEXPO) → High sour with a vertical stoop.

2. X2 → Narrowed Exploration (NEXPO) → Contour flight with short glide attack.

3. X3 → Expanded Exploitation (EEXPL) → Low flight with a slow descent attack.

4. X4 → Narrowed Exploitation (NEXPL) → walking and grabbing the prey.

3.3.2 Binary Grey wolf Optimization (BGWO)

BGWO is a metaheuristic proposed by [40]. This algorithm has been an optimized search method
and is inspired by the hunting technique of grey wolves mimicking the leadership. The Metaheuristic
algorithm finds the best solution from all possible solutions using optimization. The grey wolves lived
in vastly organized packs. The average harris hawks pack size is between 5 to 12. Each pack contains
four distinct ranks of wolves. Alpha (α), Beta (β), Delta (δ), and Omega (ω) Wolves. The primary steps
of the grey hunting process are:

Step1. Searching or Exploratory for the prey

Step2. Hunting, chasing, & proximate the prey

Step3. Following, encircling, and harassing the prey until it stops

Step4. Attacking or threatening the prey
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The feature vector of size is 2N for different feature subsets, which enclose features within a
large space that can be intensively explored. BGWO techniques are applied adaptively to examine
the features in searching for optimal features. Hence, extracted features are merged with BGWO to
evaluate the respective positions of the grey wolves as given [11] in Eq. (1).

Fitness = αγ Lg(T) + β
|Cf − Lg|

|Cf | (1)

where γLg(T) = classification quality for rank attributes, Lg = (optimal feature subset) which
represents relative to decision T, Cf represents total features truth set, α and β represent factors which
impact the quality of classification and length of subset, α ∈ (0, 1] and β = 1 − α. Therefore, the fitness
function optimizes the quality of classification, which is a ratio between unselected feature γ Lg(T) and

total feature
|Cf − Lg|

|Cf | . The preceding equation is easily transformed into a minimization problem

by substituting the error rate for classification quality and selected feature ratio. The minimization
problem can be written as Eq. (2).

Fitness = αEr(T) + β
|Lg|
|Cf | (2)

where Er(T) = error rate for a classifier for rank attribute and for experiment considered β = 0.01.

3.3.3 Binary Version of Harris Hawk Optimization Algorithm (BinHHO)

BinHHO [41] is a nature-inspirited and also population-based approach. This algorithm mimics
the Exploring, Exploiting, and attacking strategies of Harris hawks. Depending on the prey’s evasion
patterns, the hunting process takes a few seconds. The HHO algorithm is divided into two stages:
Exploration (EXPO) and Exploitation (EXPL). The exploration stage refers to searching or investi-
gating for target prey. The EXPL stage refers to updating the positions of harris hawks & target prey
in the search space and attacking the target. Every operation involved in this attacking strategy is done
in the EXPO and EXPL phases.

Exploration Phase

Harris Hawks are Intelligent Birds that track and detect their prey with powerful eyes. Here,
harris hawk hunts randomly on specific sites and waits until it detects prey. If the prey is not found,
the attacker waits, observes the situation, and monitors the site. The two strategies are followed by
hawks to detect the prey. One is the position of other family members of harris. The second strategy
is the target position. Harris hawk’s hunt randomly on specific sites and waits to detect prey. In the
HHO algorithm, Harris Hawk is the best candidate solution in terms of prey. This phase expressed
a mathematical model to alter the locality of the Harris Hawk in the search space by Eq. (3). This
equation represents the solution generated based on random location and other hawks.

X(i + 1) =
{

Xrnd(i) − r1|Xrnd − 2r2X(i)| q ≥ 0.5
Xtget(i) − Xp(i) − r3(LB + r4(UB − LB)) q < 0.5

(3)

where X(i + 1) represents the position vector, Xrnd (i) is a randomly selected hawk from the current
population, X(i) is the hawk current position, ‘i’ is current iteration, Xtget(t) means the target position,
Xp(i) is the average location of current hawk’s population, Lower Bound (LB), Upper Bound (UB).
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{r1, r2, r3, r4, q} are randomly generated numbers. Now determine the current population average
position by Eq. (4).

Xp(i) = 1
N

∑
i=1

Xj(i) (4)

The HHO EXPO process tends to distribute search agents across all desirable areas of search space
while also enhancing the randomness in HHO.

Exploitation Phase

During the HHO EXPL process, search agents can exploit the closest optimal solutions. HHO
originates four mechanisms to model the EXPL phase based on the distinct hunting scenarios and
prey’s appropriate action (rabbit).

• Exploit the rabbit when the rabbit’s energy is low. It can easily exploit or attack the rabbit.
• Rabbit/prey energy decreases while escaping from the attacker (Hawk).
• Suppose the energy level of the rabbit is high, and the hawk is chasing the rabbit.
• The energy level is decreasing for the rabbit means that the hawk is continuously changing his

position to catch a rabbit.

Based on the mechanisms, defined operations are to be performed, like decreasing rabbit energy
in the algorithm, updating the position in the search space, and how to perform the exploitation phase.
The main peculiarity of the meta-heuristic algorithm is that the exploitation phase can be done in four
phases. It explores the maximum capacity in optimal feature selection. The mathematical model to
calculate prey energy during escape is expressed in Eqs. (5) and (6).

E = 2E0(1 − i
MaxT

) (5)

E0 = 2r − 1 (6)

where E→ energy of the prey to escape, E0 → initial state of its energy inside the interval [−1,1], MaxT
→ maximum number of iterations, and i = current iteration. Here, the energy level of the rabbit is
computed. If the rabbit is tired when the E0 value decreases from 0 to −1. When E0 increases from 0
to 1 means that the rabbit is strengthening. Then, update the rabbit position in the search space based
on an obtained energy level. Firstly, compute the energy, compare it with the fitness value, and update
the rabbit’s position in the search space. When the energy level (E) is ≥ 1, it means that the rabbit’s
level of energy is higher and it can be escaped easily. The hawk search is used to explore the rabbit’s
location. If the energy level of the rabbit is < 1, the rabbit is tired and has no energy to escape. Finally,
apply the exploitation strategies to the rabbit. There are four strategies proposed in this algorithm to
represent a hawk attack on the rabbit. Each time the rabbit will always try to escape from the attack.

Case1: Soft Roundup (SR) (E ≥ 0.5 & r ≥ 0.5)

The soft round-up depicts behavior using a given mathematical model [33]

X (i + 1) = �X (i) − E
∣∣ JXp (i) − X (i)

∣∣ (7)

�X (i) = Xp (i) − X (i) (8)

where �X(t) = difference vector between position vector of prey and current location.

J = 2 (1 − r5) (9)
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Case2: Hard Roundup (HR) (E < 0.5 & r ≥ 0.5)

In this case, Harris Hawk performs a sudden attack. The math illustration for this behavior:

X (i + 1) = Xp (i) –E |�X (i)| (10)

Case3: Soft Roundup w.r.t Progressive Rapid Dives (SRPD) (E ≥ 0.5 & r < 0.5)

Here, Harris Hawks encircle the rabbit softly and make it more tired before performing the
unexpected attack. In this case of behavior, the mathematical model is

X(i + 1) =
{

Y if FUN(Y) < FUN(X(i))
Z if FUN(Z) < FUN(X(i))

(11)

where Y is already represented in Eq. (6) and Z = Y + S × LEF Y (D), LEFY means lavish flight.

Case 4: Hard Roundup w.r.t Progressive Rapid Dives (HRPD) (E < 0.5 & r < 0.5)

Here, Case 3 & 4 represents the intelligent behavior of harris hawks in the search space when trying
to search and attack. The variable ‘r’ defines the prey that successfully escaped the attackers. So, the
value for the ‘r’, i.e. random value.

If (r<0.5)

escaped before the attack.

If (r>0.5)

Not escaped before the attack.

Algorithm 1: BHHO
Input: I and N
output: The most optimum solution
1: Set up the Xk for N hawks
2: for i = 1 to I
3: find F(S); hawks fitness value
4: establish the optimal solution for Xr
5: for k = 1 to N
6: Calculate the Ei and J as given in (6) and (9)
7: utilizing (11) update EO Step 1
8: if (|EO| ≥ 1)
9: Update hawk position using (3)
10: Utilizing an S-shaped transfer function, find the probability
11: utilizing (12) to update hawk’s new position Step 2
12: elseif (|EO| < 1) Step 3
13: if (|EO| ≥ 0.5) & (r ≥ 0.5)
14: Modify the hawk location as illustrated in (7) & (8)
15: Utilizing an S-shaped function, find the probability
16: Utilizing (12) to update hawk’s new position Step 4
17: elseif (|E0| < 0.5) & (r ≥ 0.5)
18: Modify the hawk position as illustrated in (10)
19: Utilizing an S-shaped transfer function, find the probability
20: Utilizing (12) to update hawk’s new position Step 5

(Continued)
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Algorithm 1: (Continued)
21: elseif (|E0| ≥ 0.5) & (r < 0.5)
22: Modify the hawk position as illustrated in (11)
23: Utilizing an S-shaped function, find the probability
24: Utilizing (12) to update hawk’s new position Step 6
25: elseif (|E0| < 0.5) & (r < 0.5)
26: Modify the hawk position as illustrated in (11)
27: Utilizing an S-shaped transfer function, find the probability
28: Utilizing (12) to update hawk’s new position
29: end if
30: end if
31: next i
32: modify Xr if the best solution is obtained.
33: next t

Algorithm 1 is proficient in searching the binary search region. In BHHO, the hawk location
is updated in multiple stages. The second step tells the S-shaped transfer function. Eqs. (12) or (13)
are given to modify hawk’s old location or position Sd

k (i) to the new location �Sd
k (i+1). After that,

BinHHO alters the newly available hawk position in the S-shaped as given by [41].

Sd
k(i + 1) =

{
1 if rnd(0, 1) < I(�X d

k (i + 1))

0 otherwise
(12)

X d
k (i + 1) =

{
¬X d

k (i) if rnd(0, 1) < I(�X d
k (i + 1))

X d
k (i) otherwise

(13)

The S-shaped transfer function is T(X), a random number in the range [0,1] represented as rnd
(0,1]. Then, ¬S is called S’s complement.

Initially, the HHO technique intends to tackle problems that requires continuous optimization.
On the other hand, feature selection is equivalent to the binary problem, which means every solution
is referred to as binary points zero and one [42]. Finally, the BinHHO technique extracted the essential
features of fraud identification.

4 Proposed Results & Discussions

The classifier parameters (i.e., Input) were adjusted using optimization algorithms to yield better
classification accuracy. This process can be evaluated using popular supervised learning techniques
called KNN and SVM. This work utilized three different distance functions, namely Minkowski
Distance, Euclidean Distance, and The City block for KNN. These functions reflect the functionality
of the KNN at different k-values. Here, the k value varies with the nearest neighbors, which can
be represented as k ∈ {3,5,7,9}. The functionality of the SVM classifier is mapped to the linear,
polynomial, and RBF kernel functions. And the kernel scale parameter (σ ) was changed stepwise, i.e.
from 1 to 5. The experimental results for digital transactional fraud detection on benchmark datasets
(in Table 2) were presented in Tables 4 to 7, respectively. Subsequently, the compared performance
of the classifiers with the performance metrics Accuracy (AC%), Sensitivity (SE), Specificity (SP),
Precision (PR), Recall (RC), F1 Score (F1S%).
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Table 4: KNN classifier performance using optimization techniques for DTS1

Dist
Fun/Metrics

BAO BGWO BHHO
AC
(%)

SE SP PR F1S
(%)

AC
(%)

SE SP PR F1S
(%)

AC
(%)

SE SP PR F1S
(%)

Minkowski K = 3 91.1 0.91 0.89 0.91 92.03 93.21 93.04 0.95 0.94 95.34 97.54 0.96 0.95 0.98 99.17
K = 5 93.7 0.93 0.92 0.93 93.88 98.4 98.67 0.94 0.96 98.01 98.78 0.98 0.98 0.99 100
K = 7 93.4 0.93 0.89 0.94 93.03 97.03 97.12 0.94 0.961 98.1 98.04 0.98 0.98 1 99.96
K = 9 93 0.93 0.87 0.93 94 94.87 97 0.93 0.93 96.27 97.67 0.98 0.98 0.98 99.97

Euclidean K = 3 94.6 0.94 0.89 0.94 94.23 96.67 95.56 0.94 0.93 98.19 98.87 0.99 0.97 0.98 99.21
K = 5 95 0.94 0.93 0.94 96.78 97.01 98.03 0.94 0.94 98.23 99.94 1 0.96 1 100
K = 7 93.9 0.94 0.88 0.93 96.48 96.45 96 0.93 0.94 97.67 98 1 0.96 0.99 99.97
K = 9 93 0.93 0.87 0.93 95.44 95.88 96.01 0.94 0.93 97.2 98.87 0.98 0.96 0.98 99.67

Cityblock K = 3 94 0.94 0.89 0.94 95.05 94.58 95 0.94 0.937 95.78 97.2 0.97 0.95 0.98 98.89
K = 5 94.3 0.94 0.88 0.94 96.23 94.33 94.11 0.93 0.94 96.67 94.73 1 0.97 0.99 99.31
K = 7 93.8 0.94 0.87 0.93 95.61 95.32 96.7 0.93 0.93 96.33 97.12 0.98 0.96 0.98 100
K = 9 94.7 0.94 0.91 0.94 95.23 95 96.22 0.94 0.94 96.03 96.45 0.97 0.98 0.98 99.45

The results of the optimization techniques BAO, BGWO, and BinHHO have been applied to a
KNN classifier that utilizes and implements various distance functions by differing K metrics, which
is depicted in Tables 4 and 6. The approach BinHHO-KNN technique uses the Euclidean distance
function, and K = 5 yielded a greater AC (%), SE, SP, PR, and F1S (%) of 99.94%,1,0.96, and 100%,
respectively, considering the dataset DTS1. Subsequently, the optimal AC (%) and other metrics of
the DTS2 were also accomplished in the BinHHO-KNN technique by Euclidean distance function
with K = 5, and results were 99.95%, 0.99, 0.99, 1, and 99.84%. Similarly, Tables 5 and 7 show the
performance of SVM classifiers based on kernel functions with kernel scale. Here the SVM classifier
has also worked with the BinHHO feature optimization technique.

Table 5: SVM classifier performance using optimization techniques for DTS1

Kernel
Function/PM

BAO BGWO BHHO

Kernel
scale

AC
(%)

SE SP PR F1S
(%)

AC
(%)

SE SP PR F1S
(%)

AC
(%)

SE SP PR F1S
(%)

Linear 1 78.94 0.79 0.79 0.8 80.42 86.49 0.86 0.86 0.88 89.78 92.01 0.92 0.93 0.93 93.38
2 79 0.79 0.79 0.7 82.84 86.93 0.87 0.87 0.88 89.84 93.48 0.93 0.94 0.93 94.82
3 80.25 0.8 0.8 0.82 84.83 91.44 0.91 0.92 0.92 96.49 93.65 0.93 0.94 0.93 94.14
4 80 0.8 0.8 0.81 80.26 89.93 0.9 0.92 0.91 95.21 90.32 0.90 0.92 0.92 91.38
5 79.22 0.79 0.8 0.81 80 89.12 0.9 0.91 0.9 91.87 90.38 0.90 0.92 0.92 91.35

RBF 1 85.67 0.86 0.88 0.84 91.29 90.46 0.9 0.9 0.91 93.28 92.85 0.93 0.92 0.91 93.87
2 90.05 0.9 0.92 0.92 92.78 91.57 0.91 0.92 0.92 94.8 94.85 0.94 0.93 0.94 94.68
3 88.94 0.89 0.9 0.91 91.98 91.43 0.91 0.92 0.92 94.12 95.87 0.94 0.95 0.96 96.28
4 87.42 0.88 0.88 0.89 90.46 89.47 0.89 0.9 0.91 92.11 93.96 0.94 0.93 0.94 94.49
5 87 0.87 0.89 0.89 90.12 90.37 0.9 0.91 0.9 90.06 93 0.93 0.92 0.94 93.89

(Continued)
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Table 5: Continued
Kernel
Function/PM

BAO BGWO BHHO

Kernel
scale

AC
(%)

SE SP PR F1S
(%)

AC
(%)

SE SP PR F1S
(%)

AC
(%)

SE SP PR F1S
(%)

Polynomial 1 75.33 0.76 0.77 0.78 78.13 89.77 0.89 0.91 0.9 88.73 90.72 0.91 0.92 0.92 91.23
2 77.84 0.77 0.78 0.79 80.73 88.72 0.88 0.91 0.9 88.01 91.93 0.91 0.93 0.94 94.12
3 81.21 0.81 0.82 0.83 81.24 92.18 0.92 0.92 0.91 94.05 91.3 0.91 0.92 0.93 93.05
4 79.62 0.79 0.8 0.8 80.99 89 0.9 0.91 0.9 91.21 87.29 0.88 0.91 0.92 92.78
5 78.28 0.78 0.79 0.8 80.88 90 0.9 0.91 0.91 93.56 89.82 0.89 0.91 0.92 92

Table 6: KNN classifier performance using optimization techniques for DTS2

Dist
Fun/Metrics

BAO BGWO BHHO

AC
(%)

SE SP PR F1S AC
(%)

SE SP PR F1S AC
(%)

SE SP PR F1S

Minkowski K = 3 92.4 0.93 0.94 0.94 94.33 94.56 0.94 0.95 0.95 94.89 95.04 0.95 0.95 0.96 98.51
K = 5 94.7 0.94 0.95 0.95 94 95.02 0.95 0.95 0.969 95.78 99.23 0.98 0.98 0.96 97.88
K = 7 95 0.95 0.96 0.96 95.45 94.89 0.95 0.96 0.96 94.34 98.12 0.98 0.98 0.98 98.76
K = 9 94.7 0.94 0.95 0.96 95.46 94.33 0.94 0.95 0.93 94 98.02 0.98 0.97 0.97 97.91

Euclidean K = 3 94.9 0.95 0.96 0.95 96 95.67 0.95 0.96 0.94 95 99.03 0.99 0.98 0.98 99.05
K = 5 96.3 0.96 0.96 0.96 96.77 96.08 0.96 0.96 0.97 95.31 99.95 0.99 0.99 1 99.84
K = 7 95.5 0.95 0.95 0.96 95.89 97.02 0.97 0.97 0.964 94.65 98.99 0.99 0.98 0.99 99.72
K = 9 95.1 0.95 0.96 0.96 96.22 96 0.96 0.96 0.96 94.77 98.67 0.99 0.99 0.98 98.51

Cityblock K = 3 93.3 0.94 0.95 0.95 95.99 95.34 0.96 0.96 0.93 95.89 97.38 0.98 0.98 0.98 98.56
K = 5 94 0.94 0.96 0.97 96.89 95.9 0.96 0.96 0.95 96.93 98.09 1 0.98 0.99 99.07
K = 7 94.2 0.94 0.95 0.96 96 96.43 0.96 0.95 0.95 96.32 96.46 0.98 0.98 0.99 99.16
K = 9 93.6 0.94 0.95 0.96 95.04 96.34 0.96 0.95 0.94 96 97.89 0.99 0.98 0.99 98.69

Table 7: SVM classifier performance using optimization techniques for DTS2

Kernel
Function/PM

BAO BGWO BHHO

Kernel
scale

AC
(%)

SE SP PR F1S
(%)

AC
(%)

SE SP PR F1S
(%)

AC
(%)

SE SP PR F1S
(%)

Linear 1 55.76 0.51 0.48 0.5 59.82 60.36 0.6 0.61 0.63 64.52 85.46 0.85 0.87 0.86 88.29
2 64.03 0.65 0.60 0.61 68.29 72.24 0.73 0.72 0.75 75.04 91.95 0.91 0.92 0.93 92.89
3 72.68 0.74 0.74 0.8 81.51 73.01 0.73 0.73 0.75 76.72 92.29 0.91 0.93 0.93 92.31
4 63.4 0.59 0.62 0.64 69.54 60.15 0.6 0.61 0.63 58.98 89.3 0.89 0.92 0.91 90.96
5 68.21 0.63 0.71 0.65 71.34 75.27 0.74 0.75 0.76 80.01 87.854 0.88 0.90 0.89 89.43

RBF 1 69.24 0.7 0.53 0.69 72.31 76.37 0.76 0.76 0.79 81 92.56 0.92 0.92 0.93 94.56
2 72.68 0.73 0.74 0.74 74.36 79.16 0.79 0.78 0.83 84.25 92.08 0.93 0.93 0.94 94.46
3 71.87 0.73 0.73 0.74 73.60 79 0.79 0.79 0.82 84.04 92.8 0.92 0.93 0.94 95.02
4 70.03 0.71 0.70 0.71 72.81 73.44 0.74 0.73 0.77 77 90.24 0.91 0.92 0.93 92.97
5 70 0.71 0.70 0.7 72.67 78.35 0.78 0.79 0.8 83.12 90.22 0.91 0.91 0.93 0.92

(Continued)
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Table 7: Continued
Kernel
Function/PM

BAO BGWO BHHO

Kernel
scale

AC
(%)

SE SP PR F1S
(%)

AC
(%)

SE SP PR F1S
(%)

AC
(%)

SE SP PR F1S
(%)

Polynomial 1 60.43 0.6 0.49 0.51 0.58 68.93 0.7 0.69 0.71 71.45 89.45 0.89 0.92 0.91 87.35
2 63.05 0.63 0.54 0.6 0.60 82.38 0.82 0.823 0.85 90.11 89.45 0.89 0.92 0.91 87.12
3 63.73 0.64 0.56 0.62 0.63 84.92 0.85 0.84 0.87 92.34 91.92 0.92 0.93 0.91 93.51
4 0.59 0.6 0.57 0.61 0.62 79.27 0.8 0.81 0.81 84.98 90.77 0.91 0.93 0.91 92.13
5 0.59 0.6 0.53 0.61 0.62 82.29 0.83 0.82 0.83 91.2 90.23 0.9 .0.92 0.92 92.89

All the specified optimization algorithms are evaluated by the fitness/convergence function. A
fitness function influences the behavior of algorithms in the search space or explores test data to
maximize a convergence metric, which can be considered an optimization problem. So, Figs. 2 and 3
present the best convergence curve, confusion matrix, and roc curve for DTS1 & DTS2, respectively.

Figure 2: (a) Fitness curve (b) Confusion matrix and (c) ROC curve for DTS1

Figure 3: (a) Fitness curve (b) Confusion matrix and (c) ROC curve for DTS2

In the dataset DTS1, the approach BinHHO-SVM achieved well at RBF using three as kernel
scale (), i.e., AC (%), SE, SP, PR, and F1S of 95.87%, 0.94%, 0.95%, 0.96%, and 96.28% respectively.
Also, the dataset DTS2 had the results of AC (%), SE, SP, PR, and F1S (%) as 92.8%, 0.92%,0.93%,
0.94%, and 95.02%, respectively. The results which got better are shown in tables (in Bold Font). The
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well-worked classifier KNN achieved a maximum classification accuracy of 99.94% and 99.95% from
the DTS1 and DTS2, respectively.

Fig. 5 measure various optimization models for our proposed methodology, i.e., optimal feature
selection techniques. Numerous algorithms focusing on the BinHHO feature selection technique
require less problem-solving knowledge. Hence, these algorithms face the tough task of identifying the
objective function by taking long hours to evaluate compared to proposed optimization techniques.

The proposed design exceeds the modern state-of-the-art methodology using supervised machine
learning techniques SVM and KNN. Worse performance was achieved by entropy-based or non-linear
feature-based methods. The proposed model upgraded the accuracy by comparing it with other feature
selection techniques.

Figure 4: Proposed model: Comparison of accuracy (%)

Figure 5: Comparison of various feature selection techniques

Fig. 6 contrast the proposed model for the detection of fraud with extant methodologies. The
essential features generated by the proposed technique are utilized for classification. Hence, the
features extracted by DTS1 & DTS2 make a significant impact on the accuracy of classification.
The proposed optimized Bayesian KNN was used for detecting digital transactional fraud data,
hence defining the level of depth with 99.95% accuracy, and only ten features were used. The overall
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performance of the BinHHO + KNN & BinHHO + SVM were represented in Fig. 4 as the radar
graphs for visualization.

Figure 6: Comparison of the proposed method with state-of-art methods

5 Conclusion & Future Scope

This research presents a novel approach to classify fraud and non-fraud with feature selection
in digital transaction fraud detection. The Synthetic Minority Oversampling Technique (SMOTE)
was utilized for balancing the datasets and was tested to classify using a cross-validation approach
(means of 10-fold). An intelligent way of identifying feature selection is determined using optimization
techniques called BAO, BGWO, and BinHHO. BAO & BGWO have the drawback of a slow
convergence rate and more time complexity than BinHHO. The Binary version of HHO (BinHHO)
is a unique and efficient nature-inspired swarm-based approach and has achieved a good accuracy
with both datasets. The following limitations of the proposed work provide suggestions for future
research:

• This proposed approach is best suited for blockchain applications in banking and finance, and
similar advanced fields.

• Other feature selection methods to be studied.
• Apply to any deep learning models.
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