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Abstract: Machine Learning (ML)-based prediction and classification sys-
tems employ data and learning algorithms to forecast target values. However,
improving predictive accuracy is a crucial step for informed decision-making.
In the healthcare domain, data are available in the form of genetic profiles
and clinical characteristics to build prediction models for complex tasks
like cancer detection or diagnosis. Among ML algorithms, Artificial Neural
Networks (ANNs) are considered the most suitable framework for many
classification tasks. The network weights and the activation functions are
the two crucial elements in the learning process of an ANN. These weights
affect the prediction ability and the convergence efficiency of the network.
In traditional settings, ANNs assign random weights to the inputs. This
research aims to develop a learning system for reliable cancer prediction by
initializing more realistic weights computed using a supervised setting instead
of random weights. The proposed learning system uses hybrid and traditional
machine learning techniques such as Support Vector Machine (SVM), Linear
Discriminant Analysis (LDA), Random Forest (RF), k-Nearest Neighbour
(kNN), and ANN to achieve better accuracy in colon and breast cancer
classification. This system computes the confusion matrix-based metrics for
traditional and proposed frameworks. The proposed framework attains the
highest accuracy of 89.24 percent using the colon cancer dataset and 72.20
percent using the breast cancer dataset, which outperforms the other models.
The results show that the proposed learning system has higher predictive
accuracies than conventional classifiers for each dataset, overcoming previous
research limitations. Moreover, the proposed framework is of use to predict
and classify cancer patients accurately. Consequently, this will facilitate the
effective management of cancer patients.
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1 Introduction

Predictive analytics in the healthcare system can help perform different predictive tasks, including
detecting early signs of patient deterioration, identifying at-risk patients, etc. Prediction of adverse
outcomes before a current impending disease can help clinicians devise therapeutic interventions and
manage patients more efficiently [1]. Advanced Artificial Intelligence (AI)-based algorithms are fed
with historical and real-time data to make meaningful predictions. Such predictive algorithms support
practitioners in making robust clinical decisions.

The low accuracy of automated classification/predictive systems is of paramount concern nowa-
days, particularly in the healthcare domain [2]. The accuracy of prediction is of primary significance
for successful decision-making, and thus, the central focus of computer science is to improve the
inadequacies of human findings and decisions [3]. Numerous tools and methods called Decision
Support Systems (DSSs) have been developed for multifaceted AI and data science decision-making.
The DSSs are mainly valued when accuracy and optimality are critical. They can assist humans with
rational deficiencies by integrating numerous bases of knowledge. In healthcare, the developmental
steps of such methods include (1) the acquisition of historical data, (2) the selection of ML algorithms,
and (3) the resulting insights for rational decision-making [4]. Generally, in the medical field, valuable
insights are extracted from the historical data (Gene Expression (GE) data or clinical parameters)
relevant to predictive problems by using traditional ML algorithms.

ML algorithms are of two types: traditional (supervised and unsupervised) and hybrid (inte-
grated). Supervised ML algorithms such as Linear Discriminant Analysis (LDA) [5], Support Vector
Machine (SVM) [6], Random Forest (RF) [7], k-Nearest Neighbours (kNN) [8], and ANNs [9]
give a certain degree of success in predictive problems. However, the use of these techniques still
requires improvements for robust decision-making. ML algorithms use various mechanisms to solve
the problem of low accuracy by integrating different approaches. Different pre-processing steps (data
normalization, feature selection, etc.), parameter tuning, and resampling methods (cross-validation,
bagging and boosting, etc.) are commonly used techniques for performance improvement. However,
constructing a small neural network can be perplexing, and fine-tuning it to achieve a better outcome
is time-consuming. In ANN, the initialization of parameters is the first step to consider while
establishing a neural network; if executed properly, it must attain optimization in the shortest time
feasible; otherwise, establishing an ANN becomes difficult. There are numerous traditional methods
for initial weight adjustment in ANN (like zero, random, He, and Xavier initializations) [10,11].
Moreover, rectified linear (ReL), leaky rectified linear (LReL), Sigmoid, Softmax, and hyperbolic
tangent (“TanH”) are commonly used activation functions in ANN literature. Each of these methods
has a unique set of constraints [12].

An activation function decides whether to fire a neuron based on a weighted sum of the inputs plus
the bias. Each activation function has some constraints. For example, the step (unit) activation function
cannot be used for multiclass classification and is also not very useful during back-propagation. On
the other hand, the Sigmoid function has slow convergence, has a vanishing gradient problem, and
makes optimization harder.

Similarly, “TanH” has vanishing gradient problems and low gradients, but in practice, “TanH”
is always preferred over Sigmoid. SoftMax is another function used for activation, but it is not a
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traditional activation function. It squeezes the outputs for each class between 0 and 1, and the sum of
these outputs is always 1.

Equally, initial weight adjustments also have their limitations. For example, if weights are
initialized randomly or with zeros, it leads the network into a state where the values of the weights
initially remain too small, and hence the signal shrinks as it passes through each layer and vice versa
if these weights are too large. In both cases, the resultant network has slow convergence.

The use of cascade styles to construct models for decision-making is one of the approaches
suggested in the ML literature for better predictive performance. In this approach, the output of one
model is treated as the input for the other, and so on. The final decision is made based on the output
of the last model. Although the traditional approach uses the output of the first model as the basis
for the second, the probabilistic dimensions of the classification models still need to be discussed. The
hypothesis of this present study is to use the outputs of various ML algorithms to initialize weights
of the NN instead of using traditional weight initialization techniques to achieve robust classification
accuracy. This presented work uses publicly available colon cancer [13] and breast cancer [14] datasets
to test the performance of the intended methodology.

This section presents the significance of ML classifiers and ANNs for accurate DSSs in the medical
field. Section 2 discusses the literature review and the background of various classification algorithms
on gene expression microarray data in the context of the significance of accuracy with different hybrid
methods. Section 3 demonstrates the operational details of the presented work, including the definition
and explanation of different classifiers, their working, and the summary of datasets used in this study.
Results obtained based on the experimental design (Section 3) are presented and discussed in Section
4. The last section of this paper is the general discussion and future directions.

2 Literature Review

The extent of the data used in ML and data mining has significantly increased. Microarrays
are used in medical research to provide instantaneous expression evaluations for thousands of genes
[15]. The ultimate practical application is the estimation of biological variables based on the gene
expression profile. These profiles are used to identify various tumor types and for devising therapeutic
interventions. Many features and interdependencies make manual analysis impossible. Hence, ML-
based DSSs are becoming the ultimate solution [16].

ML combines a computer’s ability to do required calculations and data retrieval to make it a
learner for accurate decision-making based on observed circumstances or previous perceptions. It is
imperative in scenarios where the system will perform complicated functions [17]. ML has four main
types: supervised, unsupervised, semi-supervised, and reinforcement learning [18].

In supervised learning techniques, a predictive model is trained with labelled data, that is, cases
with known effects [19]. Decision functions can convert variable values into expected scores or marks
from the training phase. To incorporate this concept, one must divide a dataset into two subsets, one
for training and the other for testing. This can be achieved using N-fold cross-validation, which uses
n − 1 partitions of data for training and one-fold for testing and repeats the process n times.

SVM [6] is increasingly becoming a standard learning algorithm in various research fields for
scanning a hyperplane to categorize GE data within the margins of two classes. Similarly, Fisher’s
LDA [5] model is also used to find linear sample arrangements to divide samples into two or more
groups. Leo Breiman [7] has developed the RF classification algorithm based on ensemble learning,
which has properties that make it desirable for the classification of GE microarray data by using
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random samples from the original data and constructing a chain of classification trees. The kNN
method [8] is another method used for GE microarray data classification; it categorizes samples by
evaluating the resemblance between sample pairs based on distance functions. Researchers use ANN
for various optimization and mathematical problems such as classification, identification of objects
and images, signal processing, prediction of seismic events, temperature and weather forecasting,
bankruptcy, tsunami strength, earthquake, sea level, etc. [20–22]. Hybrid models for disease detection
and classification were also proposed in the literature [23,24]; the table below shows various studies
with their outcomes and limitations on datasets related to the medical field.

The literature shows that no work measures the initial weights for ANNs based on the outputs
of the supervised classifiers. Therefore, to carry out the predictive analysis using the NN classifier,
the present study uses the hybrid method by computing the initial weights using supervised-learning
settings. For the description of the proposed technique, see the next section.

This paragraph describes the short form of the spelled-out abbreviations used in Table 1. Acute
Myeloid Leukemia (AML), Acute Lymphocytic Leukemia (ALL), Global Cancer Map (GCM), Small
Round Blue Cell Tumors (SRBCT), National Cancer Institute (NCI60), Home Based Primary Care
(HBC), Decision Tree (DT), Principal Component Analysis (PCA), Heteroscedastic Discriminant
Analysis (HDA), Diagonal Linear Discriminant Analysis (DLDA), Quadratic Discriminant Analysis
(QDA), Naïve Bayes (NB), Area Under the Curve (AUC), Logistic Regression (LR), Negative
Predictive Value (NPV), False Positive Rate (FPR), Leave One Out Cross Validation (LOOCV),
Wisconsin Breast Cancer Diagnosis (WBCD), Namazi Hospital Breast Cancer Data (NHBCD),
Multi-Layer Perceptron (MLP), Self-Organizing Map (SOM), Probabilistic Neural Network (PNN),
General Regression Neural Network (GRNN), Radial Basis Function (RBF), Radial Basis Function
Network (RBFN), True Positive Rate (TPR), True Negative Rate (TNR), False Negative Rate
(FNR), Multivariate Adaptive Regression Splines (MARS), Rough Set (RS), Logistic Regression (LR-
ANN), Artificial Neural Network-Genetic Algorithm (ANN-GA), Central Nervous System (CNS),
Convolution Neural Network (CNN), Randomised Cross-Fold-Validation (RCFV), Chest X-Ray
(CXR), Deep Learning (DL), Receiver Operating Characteristic (ROC), Magnetic Resonance Imaging
(MRI), Visual Geometry Group (VGG-16), Residual Networks (Resnet).

3 Datasets and Methods

The upcoming section includes details about the methods used in the proposed study, along with
datasets. This presented study uses two publicly available datasets, discussed in the datasets section,
various traditional ML algorithms, and the proposed methodology. The last part of this section
presents the evaluation metrics used to analyze the results.

3.1 Datasets

The current analysis uses two publicly available GE microarray datasets. The colon cancer dataset
[13] includes a genetic profile of 39 patients with colon cancer and 23 healthy subjects. The factor
grouping describes the patient status, and the numeric variables give the gene value. The breast cancer
dataset [14] includes gene expression values for 295 breast cancer patients, of whom 115 were affected
by the disease while 180 were healthy. Table 2 describes the characteristics of the datasets used in this
research work.
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Table 2: Characteristics of datasets used

Datasets No. of features No. of samples Class 1 Class 2

Colon [13] 2000 62 Positive (39) Negative (23)
Breast [14] 2000 295 Positive (115) Negative (180)

3.2 Methodology

The proposed methodology, which works on supervised ML algorithms coupled with ANN, is
presented in this section. ANN models accomplish the organization and functions of biological neural
networks. ANN’s basic building blocks are artificial neurons. Inputs are weighted at the start of the
artificial neuron by a product of each input and its weight. A function in the internal neuron sums
up all weighted inputs and biases. The overview of previous weighted inputs and biases on output
neurons are passed on to the activation function. The following equation indicates ANN products
with k elements:

y (x) =
∑k

i=1
wiyi(x) (1)

Here “yi” and “wi” are the output and weights at layer “i”, respectively.

This presented work uses the multilayer perceptron model of ANN. In MLP, like a multistage
graph, neurons are organized into layers. Each node on each layer receives input from an associated
node on the previous layer. It then calculates a function’s value and provides the computed value as an
input to the linked node on the next layer, as depicted in Fig. 1. These layers are known as the input,
hidden, and output layers. The intermediate layer does not connect with the initial input layer, and the
final output layer is the hidden layer. In various fields, such as forecasting, economic modelling and
medical applications, the neural network has widespread uses [43]. Several types of research relevant
to cancer classification [32] and other bioinformatics fields [25] use ANN. Moreover, [44,45] discussed
the additional utilities of ANN models.

Figure 1: Artificial Neural Network with one hidden layer

Generally, in ANNs, there are different schemes for weights initialization, including zero, random,
He, and Xavier initializations [10,11]. This work proposes to initialize the weights of inputs by
computing them using a supervised framework. ML literature offers different supervised learning
algorithms for predictive analysis [46,47]. However, studies show that the following learning algorithms
suit GE microarray data-based predictive systems [48,49]. The learning algorithms used in this study
to estimate the initial weights are as follows.
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3.2.1 Support Vector Machines

The Support Vector Machine (SVM) was initially developed by Cortes et al. [6] to build predictive
systems to solve problems using regression and classification methodologies. SVMs have been demon-
strated to be successful in various pattern recognition tasks [50] and outperform other traditional
classification algorithms. The variant of SVM for binary classification divides a group of training
samples into two classes. One may define training samples as:

(x1, y1), (x2, y2), . . . , (xn, yn) (2)

Here, xi ∈ XD signifies vectors in a D dimensional feature space and yi ∈ {−1, +1} is a class label.

The SVM model is created by producing a new higher-dimensional feature space from the input
samples indicated as ϕ : XD → HF, where D < F is the dimension of the input vectors. Then, the kernel
function k(xi, xj), which is the product of input vectors xi and xj (k

(
xi, xj

) = ϕ (xi) .ϕ(xj)), generates
an optimum separating hyperplane in the new feature space. In the literature, for SVMS several kernel
functions have been proposed.

The technique of a linear kernel-based SVM maps the nonlinear input space into the new linearly
separable space. All vectors on one side of the hyperplane are labelled “−1”, while all vectors on the
other are labelled “+1”. Support vectors are the training examples in the converted space closest to
the hyperplane. The margin of the hyperplane, and decision surface, is determined by the number of
these support vectors, which is generally tiny compared to the size of the training set, as depicted in
Fig. 2.

Figure 2: Support vector machine with linear separability

Other commonly used kernel functions are the Polynomial and Gaussian Radial Basis (RBF),
which are kpoly

(
xi, xj

) = (xi . xj + 1)p, where p is the degree of the polynomial and kgaussian

(
xi, xj

) =
e
‖(xi−xj‖2

2σ where σ is gaussian sigma, respectively.

According to the literature, there is no formal technique to determine the optimum kernel function
for a given domain problem. However, linear, polynomial, and RBF kernels are the most widely used
and compared among different kernel functions in various domain problems [51].
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3.2.2 Linear Discriminant Analysis (LDA)

It is a classification system developed by R. A. Fisher in 1936 [5]. Numerous fields used this
method, such as machine learning [49], identification of patterns [52] and statistically based research.
This approach is mathematically stable and straightforward. It provides a model with good precision
for finding linear arrangements of samples to distinguish them between two or more groups of events
or objects. LDA is applicable for linear classification or dimension reduction.

LDA has also been used to find certain variables with a linear combination that helps distinguish
two groups robustly, as illustrated in Fig. 3. Although LDA uses predictive classes, it is not considered a
classifier. Still, the outcomes are known as part of the linear classification. Before using any alternative
method, such as nonlinear techniques, it carries out dimensionality reduction. In GE microarray data
processing, LDA is commonly used [27,49,53].

Figure 3: Linear discriminant analysis

3.2.3 Random Forest (RF)

A classifier consisting of a group of organized tree classifiers, such as

h(x, Θk), k = 1, . . . (3)

is usually referred to as a random Forest where {Θk} is self-regulating identically distributed random
vectors, and each tree casts a unit vote at the input x for the best standard class. In all these processes,
the collective element is that a random vector �k is produced for the kth tree sovereign over the
previous random vectors. These steps make use of both equal circulation and training sets. Finally,
based on �k a tree is formed, generating a classifier h(x, �k) where x represents an input vector. For
instance, the M random vectors � are generated in bagging as per the counts in N . Here, N represents
the number of instances in the training set. A classifier is built and tested for each random vector M.
Finally; the output is produced by aggregating the outputs of all the M. Fig. 4 portrays this process.

In the literature on machine learning, researchers use the random forest technique for gene
selection and microarray data classification [49,54].
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Figure 4: Random forest selection process

3.2.4 k-Nearest Neighbour

It is recognized that the k-nearest neighbour classifiers (kNN) are the most helpful example-based
learners. kNN operates on the premise that examples are likely to fit into the same class of nearby space.
Calculations that measure the distance between two points are Euclidian, Manhattan, Minkowski, etc.
and their formulae are:

Euclidean =
√∑n

i=1
(xi − yi)

2 (4)

Manhattan =
∑n

i=1

∣∣xi − yi

∣∣ (5)

Minkowski =
(∑n

i=1

(∣∣xi − yi

∣∣)q
)1/q

(6)

A kNN assigns the class that is most persistent among the neighbouring k samples. k is a control
to fine-tune the algorithm for classification.

3.3 Working of Proposed Methodology

In ML, the process of cross-validation and classification is characterized by a series of steps, as
illustrated in Fig. 5. Generally, a classification task considers a dataset having various samples and
groups defined by the following relation.

χ = {xr, yr}N
r=1 (7)

Here, x represents the feature space, y represents the target, and r represents an example in the
dataset χ . Targets may be categorical values (in the case of a classification problem) or continuous
values (in the case of a regression problem).
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Different models, each generating a classifier, are learned using learning algorithms (discussed in
the next section). The purpose of the classifier is to measure the class association scores and assign to
unseen samples a discrete class mark (from one of the target values), i.e.,

y = f (x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
2
3
...

(8)

Whereas in-case of binary classification, the target will be

y = f (x) =
{

1if x ∈ + ive class
0 if x ∈ − ive class

(9)

The train and test sets are obtained using the notion of CV after constructing folds. For this
purpose, data is split into k-folds to provide a generalized predictive model (Fig. 5). In k-fold cross-
validation, the data is first partitioned into k segments or folds of equal (or almost equal) size.
Subsequently, k-training and test iterations are carried out so that a different fold of the data is kept
out for testing within each iteration. In contrast, the remaining k − 1 folds are used for learning.

The proposed method uses the training data set to build the predictive model and the test set to
evaluate the performance of the constructed model. During the testing process, the method computes
the scores of the class association of the test data set. Then, the neural network uses these scores
as initial weights to build the predictive model. In the next step, the proposed method uses the
performance measures (discussed later) to evaluate the built model., as shown in Fig. 5.

Figure 5: Proposed methodology

The error rate is the measure to gauge the efficiency of a classifier. If the classifier is not sufficiently
accurate for the job, it is possible to consider other techniques. In this analysis, class association scores
generated by predictive models built using traditional ML algorithms are used as initial weights to
construct NN hybrid models, as demonstrated in Fig. 6.
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Figure 6: NN-based hybrid model

Factors w1, w2, . . . , wn are weights to determine the strength of input vectors X = [x1, x2, . . . .xn]T .
These weights are determined by conventional ML classifiers using the proposed process. Eq. (10)
computes the product of each input and the associated neuron withX Tw. The positive weights excite,
while the negative weights inhibit node production.

X = X T .w = x1w1 + x2w2 + . . . + xnwn =
n∑

i=1

xiwi (10)

The nodes’ interval threshold φ is the magnitude offset. It affects the activation of node output O
as follows:

O = f (X) = f

{
n∑

i=1

iiwi − �k

}
(11)

ANN needs to be trained for the networks to generate the desired input-output mapping for the
classification task. The neural network uses example data and link weights for training a model. These
weights are measured and adapted using traditional ML algorithms (LDA, SVM, kNN, RF).

The proposed method utilizes the default values to initialize the rest of the parameters for neural
network training, and all the outputs (possible system responses) have the same probability. The
weights that define the relationships between nodes adjust the value during the network learning
process, and it modifies the structure based on the input and hidden values. That means different
neural network configurations are possible by changing the solution’s steps and the mechanism of
weights calculation.

For the training of ANN with m number of training data, the squared error can be given as

E =
∑m

i=1
(ti − pi)

2 (12)

Here t is the performance goal, and p is the estimated output from training data. Different
techniques have been used in the literature for optimal network efficiency when training ANNs, such as
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the Back Propagation Algorithm or Delta Rule. Studies reported in ML literature show that adjusting
start weights to class association scores for classification has not yet been used in the ANN framework.
The following algorithm summarizes the complete mechanism of the proposed study.

3.4 Algorithm

Input: (χ , tAlgo,CriOpL); where

• χ = {xr, yr}N
r=1is a matrix of original data where xr is the feature space, yr the target, while

r denotes an example in the dataset χ .

• tAlgo; a list of traditional learning algorithms.

• CriOpL; a list of parameters (desired outcomes) for robust classifier selection.

Output: Robust Classifier (RCls) using Eq. (12) based on criterion CriOpL set by the user.

1. Split data χ into k folds, i.e., Dk = χn
k=1

2. Repeat steps 3 to 9 for each fold k, where k : = 1 to n

3. trk := Dn − 1 train set

4. tsk := Dn test set

5. Repeat steps 6 to 9 for each tAlgoc where c : = 1, 2, 3, ..., t

6. [Modelk,tAlgoc , CAScorestAlgoc ] : = BuildClassifier(trk, tAlgoc)

7. Modelk,NN : = BuildClassifier(trk, CAScorestAlgoc)

8. TClsResultk,tAlgoc
: = TestModel

(
Modelk,tAlgoc , tsk

)
9. HybClsResultk,tAlgoc

: = TestModel(Modelk,NN, tsk)

10. Repeat steps 11 to 13 for each TClsResultr + HybClsResultr where r : = 1, 2, 3, ..., t

11. Repeat step 12 for each fold k, where k : = 1, 2, 3, ..., n

12. avgResFldsk : = avg(TClsResultr,k + HybClsResultr,k)

13. ClsFinalResultsr : = avgResFlds

14. RCls := optimum(ClsFinalResultsr, CriOpL)

15. Return RCls

The algorithm starts by taking a matrix of original data (χ = {xr, yr}N
r=1) where xr is the feature

space, yr is the target, and r represents an example in the dataset χ . The algorithm splits the original
data χ n

k=1 into k distinct folds (Dk). Please refer to line 1.

In lines 3–4, considering all k folds, alternatively, each fold is used as a test set (tsk) while the
remaining folds are as a train set (trk). For each of the traditional learning algorithms TLAlgoc, a
predictive model is learned (line 6), and the proposed model using ANN with class association scores
(CAScores) as initial weights is also built (line 7). Lines 8–9 perform the testing of newly built models.
For each combination of traditional and hybrid learning algorithms, from all k folds, the mean values
of performance measures are calculated (refer to lines 10–12). Finally, from these average results, a
robust classifier is obtained and returned using lines 14–15.
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Generally, the efficiency of a classifier is calculated by the rate of misclassification or accuracy,
although there are other ways to assess performance other than accuracy. Therefore, various parame-
ters other than accuracy and error rate are also considered in this analysis to determine the classifier’s
efficiency.

3.5 Evaluation Measures

The performance of a classification model is measured using a confusion matrix. This matrix
represents the classification result in four categories: True Positive (TP), True Negative (TN), False
Positive (FP), and False Negative (FN). Other evaluation metrics are formed based on these four
categories.

3.5.1 Accuracy (ACC)

The quintessential classification metric is accuracy. Accuracy is the proportion of correct predic-
tions among the total cases evaluated. It is suitable for binary and multiclass classification problems
and is quite simple to comprehend. It can be computed from the following equation using the well-
established notion of a confusion matrix.

Accuracy = (TP + TN)/(TP + FP + FN + TN) (13)

3.5.2 Sensitivity (SN)

Sensitivity (recall) refers to how many of the actual positive cases the constructed model was able
to predict accurately. It is a remarkable statistic that FN is more concerned than FP. It is critical in
medical situations when it does not matter whether it raises a false alert; the TP cases should not go
unnoticed. It is the ratio of the total number of TP to the total number of actual positives.

Sensitivity (Recall) = TP/(TP + FN) (14)

3.5.3 Specificity (SP)

Specificity is the proportion of TN to all adverse outcomes. This measure is helpful if the accuracy
of the negative rate is of interest and a positive output comes at a high cost. The following formula
computes specificity:

Specificity = TN/(TN + FP) (15)

3.5.4 Precision (PREC)

Precision reveals how many of the accurately predicted instances turned out to be positive in the
end. The precision measure becomes a handy tool when FP is more of a problem than FN. The number
of TP divided by the number of predicted positives is the precision of a label.

Precision = TP/(TP + FP) (16)

3.5.5 Lift

The ML algorithms employed to solve classification problems often yield a probability. The
algorithms use this probability to make the final prediction. The lift curve uses this returning
probability to evaluate how effectively the model detects positive and negative instances in data sets.
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Lift compares prediction performance to randomly generated predictions in the classification domain
using the following relation:

Lift = (TP/(TP + FP))

(TP + FN) /(TP + FP + FN + TN)
(17)

3.5.6 F-Measure

It is the harmonic mean of precision and recall. It is critical to use if a data set’s class distribution
is unequal and the cost of FP and FN differs. The F-score represents the balance between recall and
precision. If there is a balance between Precision and Recall, F-measure is higher, and if one of these
metrics increases at the expense of the other, it does not become too high.

FMeasure = 2 ∗ (Recall ∗ Precision)/(Recall + Precision) (18)

3.5.7 Matthews Correlation Coefficient (MCC)

The MCC assesses the relationship between actual and predicted classes. Its range is [−1, +1],
with −1 denoting perfect misclassification and +1 denoting perfect classification, whereas MCC = 0
represents random guessing. MCC would return a high score only if the prediction performed well in
all of the confusion matrix groups (TP, FP, TN, FN) proportionally to the size of positive and negative
elements in the data set. Therefore, it is encouraged to consider this evaluation metric in ML and data
science projects.

MCC = (TP ∗ TN) − (FP ∗ FN)√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

(19)

3.5.8 Area Under the Curve (AUC)

The AUC measures a classifier’s ability to discriminate between classes. The AUC indicates how
well the model performs at different threshold points between positive and negative class samples.
The higher the AUC, the better the performance of the model. When AUC is equal to 1, the classifier
can correctly discriminate between all positive and negative class points. When the AUC is zero, the
classifier predicts all negatives as positives and vice versa. The classifier cannot discriminate between
the positive and negative classes when AUC equals 0.5.

3.5.9 Kappa

Like classification accuracy, Cohen’s Kappa (or simply Kappa) is standardized at the baseline of
the random chance of a dataset. It is a better metric to utilize when there is an unequal distribution of
classes. In classification, Kappa is a measure of agreement between observed and predicted or inferred
class predictions for instances in a test data set. Its definition is as follows:

Kappa = (total accuracy – random accuracy)/(1 − random accuracy) (20)

where random accuracy is defined as the sum of the products of reference likelihood and resultant
likelihood for each class label.

Other performance metrics calculated from the confusion matrix include Negative Predictive
Value (NPV), False Positive Rate (FPR), False Discovery Rate (FDR), and False Negative Rate
(FNR).
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4 Results and Discussion

This study assesses the exhibition of various ML classifiers to improve the classification ability
of the traditional NN model through hybridization mechanisms. Experiments performed on cancer
datasets are used to compile the results (based on several evaluation measures) of the proposed
hybrid models, the traditional ML and the traditional ANN-based classifiers. For each model, this
study evaluated the ACC, SN, SP, Kappa, PREC, MCC, AUC, Lift, F-Measure, and other metrics
using Eqs. (13)–(20), respectively. Each experiment uses parameter optimization and 10-fold cross-
validation to avoid overfitting. Tables 3–6 show the performances of traditional and hybrid models
using obtained evaluation metrics.

Table 3: Evaluation metrics of colon cancer classification using traditional methods (10-fold CV)

LDA SVML SVMR SVMS KNN RF NN

ACC 81.48 82.29 80.86 83.71 85.71 86.81 72.38
SN 00.80 00.82 00.89 00.86 00.85 00.90 00.82
SP 00.88 00.88 00.82 00.90 00.90 00.90 00.96
PREC 00.72 00.73 00.62 00.77 00.78 00.77 00.77
NPV 00.88 00.88 00.93 00.88 00.90 00.93 00.86
FPR 00.12 00.12 00.18 00.10 00.10 00.10 00.04
FDR 00.28 00.27 00.38 00.23 00.22 00.23 00.23
FNR 00.20 00.18 00.11 00.14 00.15 00.10 00.18
Lift 02.18 02.24 02.41 02.34 02.30 02.44 02.16
F-measure 00.66 00.71 00.66 00.74 00.75 00.76 00.87
MCC 00.74 00.70 00.66 00.75 00.77 00.79 00.80
AUC 00.80 00.80 00.77 00.82 00.84 00.85 00.78
Kappa 01.08 01.08 01.08 01.07 01.06 01.06 01.70

Table 4: Evaluation metrics of colon cancer classification using hybrid methods (10-fold CV)

ldaNN svmlNN svmrNN svmsNN knnNN rfNN nnNN

ACC 85.71 83.31 84.19 86.38 87.62 89.24 76.19
SN 00.75 00.90 00.83 00.86 00.87 00.90 00.82
SP 00.90 00.87 00.89 00.91 00.92 00.93 00.93
PREC 00.77 00.71 00.80 00.82 00.82 00.85 00.80
NPV 00.89 00.87 00.88 00.89 00.88 00.92 00.84
FPR 00.10 00.13 00.12 00.09 00.08 00.07 00.07
FDR 00.23 00.29 00.20 00.18 00.18 00.15 00.20
FNR 00.13 00.10 00.18 00.14 00.13 00.10 00.18
Lift 02.44 02.38 02.13 02.34 02.40 02.43 02.22
F-measure 00.83 00.77 00.79 00.81 00.83 00.84 00.85
MCC 00.77 00.71 00.69 00.73 00.77 00.79 00.76

(Continued)
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Table 4: Continued
ldaNN svmlNN svmrNN svmsNN knnNN rfNN nnNN

AUC 00.79 00.81 00.84 00.85 00.87 00.88 00.80
Kappa 01.05 01.06 01.07 01.06 01.05 01.05 01.06

Table 5: Evaluation metrics of breast cancer classification using traditional methods (10-fold CV)

LDA SVML SVMR SVMS KNN RF NN

ACC 67.77 65.07 67.77 69.15 63.35 68.13 63.80
SN 00.75 00.73 00.68 00.70 00.70 00.69 00.73
SP 00.53 00.50 00.73 00.75 00.47 00.68 00.48
PREC 00.77 00.74 00.96 00.95 00.78 00.93 00.73
NPV 00.50 00.48 00.14 00.20 00.34 00.20 00.47
FPR 00.47 00.50 00.27 00.25 00.53 00.32 00.52
FDR 00.23 00.26 00.04 00.05 00.22 00.07 00.27
FNR 00.25 00.27 00.32 00.30 00.30 00.31 00.27
Lift 01.14 01.12 01.04 01.06 01.06 01.05 01.11
F-measure 00.76 00.73 00.80 00.80 00.74 00.79 00.72
MCC 00.28 00.22 00.19 00.25 00.14 00.21 00.20
AUC 00.63 00.61 00.55 00.57 00.56 00.57 00.60
Kappa 01.02 01.02 01.02 01.02 01.02 01.02 01.02

Table 6: Evaluation metrics of breast cancer classification using hybrid methods (10-fold CV)

ldaNN svmlNN svmrNN SvmsNN knnNN rfNN nnNN

ACC 71.80 70.71 71.01 72.20 67.95 70.41 66.42
SN 00.77 00.77 00.77 00.79 00.73 00.75 00.74
SP 00.59 00.57 00.57 00.61 00.58 00.60 00.55
PREC 00.82 00.80 00.80 00.82 00.82 00.81 00.77
NPV 00.53 00.53 00.54 00.58 00.37 00.47 00.47
FPR 00.41 00.43 00.43 00.39 00.44 00.40 00.44
FDR 00.18 00.20 00.20 00.18 00.16 00.19 00.23
FNR 00.23 00.23 00.23 00.21 00.27 00.25 00.26
Lift 01.18 01.17 01.18 01.20 01.10 01.15 01.12
F-measure 00.79 00.78 00.79 00.79 00.77 00.78 00.75
MCC 00.36 00.33 00.34 00.38 00.24 00.33 00.26
AUC 00.67 00.66 00.67 00.69 00.60 00.65 00.62
Kappa 01.02 01.02 01.02 01.02 01.020 01.02 01.02
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4.1 Colon Cancer Result Evaluation

The results in Table 3 show that different traditional ML classifiers performed well on the Colon
cancer dataset. ANN classifier achieves the maximum SP (00.96), F-measure (00.87), MCC (00.80)
and Kappa (01.70), followed by the RF classifier. Similarly, RF obtained the highest ACC (86.81%),
highest SN (00.89), lowest NPV (0.92), and highest lift (02.44); additionally, the AUC curve for the
RF classifier is around 0.84.

Tables 4 and 6 show the results of hybrid models. In these tables, the names of hybrid models
consist of lowercase letters followed by capital letters. The lowercase letters refer to the traditional
ML algorithms used to compute the class association scores. In contrast, the capital letters (NN) refer
to the neural network model. Here, the scores from traditional ML algorithms are used in NN to
build the hybrid models. The results show that rfNN achieved a better accuracy of (89.24%) compared
to other hybrid and traditional models, as shown in Fig. 7. Similarly, the SN and SP obtained by
rfNN were 00.89 and 00.93, where svmlNN provided the maximum of (00.89) SN and knnNN reached
00.92 SP. Moreover, the maximum separation obtained by rfNN is 00.88, whereas knnNN has an
AUC value equal to 00.87. Similarly, for imbalanced data, the MCC is a better evaluation metric;
rfNN obtained (00.79) MCC value compared to other hybrid classifiers. rfNN provides a better F-
measure and NPV value of 00.84 and 00.91, respectively. In the case of performance metrics other
than the ones mentioned above, svmlNN obtains the highest values of FPR (00.13) and FDR (00.28) ,
whereas svmrNN provides FNR (00.17) and Kappa (01.06). For a detailed view of metric values, refer
to Table 4.

The comparison of the misclassification rate indicates that all the hybrid models built using
the proposed framework outperformed the traditional approaches (Fig. 7). The proposed hybrid
framework also has reasonably good F-measures above 00.80 other than svmlNN, which indicates
quite good performance.

Figure 7: Accuracies comparison of traditional and the proposed framework using the colon cancer
dataset



CMC, 2023, vol.75, no.2 4311

Results using the proposed framework on the Colon cancer gene expression dataset indicate that
the rfNN model from hybrid methods performed best with the proposed approach with the minimum
errors reported with tenfold cross-validation. Moreover, in all cases, hybrid models have better results
than traditional methods.

4.2 Breast Cancer Result Evaluation

This section presents the results obtained from the experiments of the proposed methodology
using the breast cancer dataset. The results are shown in Table 5 for traditional and Table 6 for hybrid
methods.

The results in Table 5 show that using traditional ML classifiers on the breast cancer dataset,
SVMS provides a maximum accuracy of 69.15% and the highest F-Measure and SP of 00.80 and
00.75, respectively. LDA provides a better AUC of 00.63 with an MCC equal to 00.28, followed by
SVMS, which has an MCC value of 00.25. Moreover, LDA has greater values for Lift (01.14), NPV
(00.50) and SN (0.75). In the case of Precision and FNR, SVMR performs better, and NN has values
of 00.27 and 01.02 for FDR and Kappa, respectively.

Table 6 contains the outcomes of hybrid models. The results show that svmsNN outperforms all
the other hybrid models and gives better values for most performance metrics. It predicts a better
accuracy of 72.20% along with max values of SN (00.79), SP (00.61), PREC (00.82), NPV (00.58), Lift
(01.20), F-measure (0.79), MCC (00.38) and AUC (00.69). The knnNN has the highest value for FPR
(00.44), Kappa (01.02) and FNR (00.27).

Fig. 8 compares the accuracies of traditional and hybrid models, showing that the hybrid models
built using the proposed framework have better accuracy in all the cases. The hybrid ML techniques
also have a reasonably good MCC above 00.30 other than knnNN, which has an excellent performance
in imbalanced classification problems.

Figure 8: Average accuracies comparison of breast cancer

Overall results indicate that hybrid models have better results than other methods. The svmsNN
model from the hybrid ML models performed best with the proposed approach with minimum errors,
as reported with tenfold cross-validation.
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5 Conclusion

Neural network-based prediction models are considered the most appropriate models in the ML
domain. Initial weights are one of the most critical factors affecting NN-based models’ performance.
The most widely used method to initialize the initial weights is random initialization. This study
proposes to have initial scores computed by traditional ML algorithms rather than initializing them
with random numbers. The hypothesis was that the more realistic initial weights this study has, the
more accurate the NN-based models would be. This study used two publicly available GE microarray
datasets to test the proposed framework. The reported results based on confusion matrix-based
measures show the usefulness of the proposed framework.

Overall results indicate that the rfNN and svmsNN models from the hybrid framework performed
better than traditional approaches on the colon and breast cancer datasets with minimum errors, as
reported with tenfold cross-validation. Moreover, hybrid models have better results than other ANN-
based methods used in this study.

6 Future Directions

This study exemplifies the solicitation of supervised machine learning methodologies for classify-
ing cancerous datasets by utilizing microarray gene expression profiles of samples. The comparison and
analysis of obtained results based on predictive models show the usefulness of the proposed method.
This classification framework requires no selection of gene features and gives acceptable accuracy.

This work presents a step forward in the prediction of various types of cancer. Numerous
investigators have worked on this as a binary classification task and achieved different precisions.
Although this study shows that the proposed framework performs better than traditional approaches,
certain aspects are still unexplored. For example, the applications of the proposed framework in areas
other than GE microarray analysis require investigation. Moreover, the impacts of using the proposed
framework with different activation functions may be of interest.
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