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Abstract: High-resolution medical images have important medical value, but
are difficult to obtain directly. Limited by hardware equipment and patient’s
physical condition, the resolution of directly acquired medical images is often
not high. Therefore, many researchers have thought of using super-resolution
algorithms for secondary processing to obtain high-resolution medical
images. However, current super-resolution algorithms only work on a single
scale, and multiple networks need to be trained when super-resolution images
of different scales are needed. This definitely raises the cost of acquiring
high-resolution medical images. Thus, we propose a multi-scale super-
resolution algorithm using meta-learning. The algorithm combines a meta-
learning approach with an enhanced depth of residual super-resolution
network to design a meta-upscale module. The meta-upscale module utilizes
the weight prediction property of meta-learning and is able to perform the
super-resolution task of medical images at any scale. Meanwhile, we design a
non-integer mapping relation for super-resolution, which allows the network
to be trained under non-integer magnification requirements. Compared to
the state-of-the-art single-image super-resolution algorithm on computed
tomography images of the pelvic region. The meta-learning multiscale super-
resolution algorithm obtained a surpassing of about 2% at a smaller model
volume. Testing on different parts proves the high generalizability of our
algorithm. Multi-scale super-resolution algorithms using meta-learning can
compensate for hardware device defects and reduce secondary harm to
patients while obtaining high-resolution medical images. It can be of great
use in imaging related fields.
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1 Introduction

High-quality and high-resolution medical images are very important in medical clinical and diag-
nostic applications. For example, the diagnosis of mild bone fractures or bone spurs, the detection of
early lymphomas or hemangiomas, automatic classification of pneumothorax [1], etc., are essential. In
addition to clinical diagnostic applications, high-resolution imaging data are necessary for alignment,
segmentation, and fusion operations. However, direct access to high-resolution medical images is
challenging due to inter-city medical resource allocation and hardware equipment limitations, and
the problem that high-dose radiation can cause severe secondary damage to patients. Therefore, it is
valuable to introduce super-resolution (SR) technology into the medical field to enhance the resolution
of the obtained medical images through technical means. This means of secondary processing can
improve the quality of medical images without increasing the cost and reducing the harm to the patient
[2]. The SR method is to establish feature mapping between low-resolution (LR) images and high-
resolution (HR) images by technical means and to expand LR images into SR images by filling the
low-resolution images with pixels that conform to the logical relationships through functions that
simulate the mapping relationships [3–5]. The SR image thus obtained retains all the known details
in the LR image and has an image quality approximating the HR image. SR methods are generally
divided into single-image super-resolution (SISR) and multi-image super-resolution. Since medical
images require image details to be as realistic as possible, we focus on the SISR method. The traditional
SR method is to artificially create an appropriate function by which the mapping relationship between
LR images and HR images is simulated. This method relies on manual selection of parameters and
has low generalizability and poor structure. With the development of deep learning, the field of SR
started to use a lot of deep learning methods to simulate the mapping relationship between LR images
and HR images by themselves. These SR methods using convolutional neural networks (CNNs) and
generative adversarial networks (GANs) have achieved good results [6–9]. However, the current SR
methods are all capable of super-resolution work on only one scale. Obtaining SR results at different
scales would require training networks at multiple scales. Most of the current methods can only work
on SR at integer multiples of scales, and cannot handle non-integer multiples of scales.

In this work, we propose a multi-scale network model using meta-learning. This model allows
for training a single network weight to perform SR tasks at multiple scales. Meanwhile, the meta-
learning module incorporated into the network can reduce the network complexity, making the
network lightweight and consuming fewer computer resources. This work has important implications
for acquiring high-resolution medical images with limited hardware devices. This work has important
implications for acquiring high-resolution medical images with limited hardware devices. It also has
an extremely important role in improving the quality of low-dose radiological images and preventing
secondary patient harm.

2 Related Work
2.1 Single-Scale Super-Resolution of a Single Image

Traditionally, SISR methods improve the resolution of the input LR image by various interpola-
tions [10], reconstruction [11], neighborhood embedding [12], and sparse coding [13]. However, these
methods cannot simulate the nonlinear transformation from LR image features to HR image features,
and the quality of the generated super-resolution images is poor. With the rapid development of deep
learning, many researchers began to introduce deep learning into the field of super-resolution. The
large number of applications to neural networks makes it possible to establish a nonlinear relationship
from LR images to HR images. Dong et al. [14] pioneered the use of SRCNN to solve the SR problem
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with natural images, achieving better performance than traditional methods. The performance was
further improved by using residual blocks to deepen the number of network layers for super-resolution
using very deep convolutional networks (VDSR) [15]. After the introduction of generative adversarial
networks (GANs) [16], Ledig et al. continued the idea of VDSR combined with a combination of
GANs to propose SRGAN [17], trained using visual geometry group (VGG)-based perceptual losses
[18] and GANs. This approach is different from the CNN-based super-resolution approach, where
the GAN-based approach generates a new image directly from the noise information. The new image
seeks to retain the stylistic features of the original image. Although the GAN-based super-resolution
method obtains a high mean opinion score (MOS), the generated image is hardly guaranteed to retain
all the detailed information in the original image, especially for large-scale super-resolution operations.
In contrast, the super-resolution approach of the CNN-base generates a high-resolution image directly
from a low-resolution image after interpolation, which can retain the true details of the original image
to a greater extent. The enhanced deep residual networks for super-resolution (EDSR) proposed by
Lim et al. [19] based on the idea of VDSR has better performance by removing the BN blocks that can
affect the super-resolution effect. Zhang et al. designed the Residual Dense Network for Image Super-
Resolution (RDN) [20] using dense feature fusion (DFF) to take full advantage of common features
between levels. Tong et al. proposed Super-Resolution Using Dense Skip Connections (SRDenseNet)
[21], which combines low-level features with high-level features by introducing dense skip connections
in a very deep network. All of these methods have achieved good SR results, but all of them can be
implemented at only one magnification scale, so improved RDN using meta-learning (MetaRDN)
[22] is proposed for free-scale SR tasks. It introduces a meta-upscale module that predicts a weight
matrix and replaces the upper sample convolution layer with a matrix multiplication. Instead of
learning the up-sampling transformation from a specific scale, this new advanced module learns the
interrelationship between up-sampling and different scales, and by establishing this relational equation
the new module is able to perform super-resolution tasks at different scales. And Zhu et al. used the
meta-upscaling module in combination with GAN in Arbitrary Scale Super-Resolution for Medical
Images (MIASSR) [23] to get excellent results on magnetic resonance imaging (MRI) images.

2.2 Medical Image Super-Resolution

With the development of deep learning super-resolution algorithms, the use of SR algorithms
in the medical field has started to increase [2]. Compared with the super-resolution task for natural
images, medical images have a larger threshold interval, and this characteristic determines that medical
images have richer edge information. Therefore, medical image SR requires higher sensitivity and
restoration of high-frequency information, focuses more on the preservation of organ structures,
and does not need to process the image’s color information due to the image’s single-channel
characteristics. Due to the difficulty of access and privacy protection, medical images are difficult
to obtain a large number of learning samples, which is disastrous for GAN-based super-resolution
algorithms. Therefore, CNN-based super-resolution methods are more widely used in the medical
field, especially when used as a pre-processing process for operations such as alignment, segmentation,
and fusion. However, the current medical alignment methods are mostly fixed-scale, and obtaining
images at different scales requires training network weights at multiple scales. Even non-integer
magnification scales cannot be obtained with the existing medical SR algorithms, which is unfavorable
for subsequent medical tasks. So we introduce meta-learning into the field of medical SR and propose
an arbitrary-scale super-resolution method, which attempts to apply meta-learning to the CNN-base
super-resolution method to handle arbitrary-scale SR tasks. The specific contributions of this paper
are as follows.
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1) We apply meta-learning to the SR task of medical images for the first time and propose a
free-scale algorithm for medical image super-resolution. The algorithm in the paper performs
only the highest x4 scale magnification, but the algorithm can also be applied to higher
magnifications if appropriate data can be prepared.

2) In the super-resolution training phase, we use a training strategy that combines traditional
learning with meta-learning. This allows our algorithm to have a smaller network weight
volume and a lighter network architecture compared to current medical SR algorithms.

3) Due to the high sensitivity of meta-learning to small samples, the generalizability of the
network is greatly improved after multi-source and multi-site data participate in the training
set. The covariate sample network has good super-resolution results on cone beam computed
tomography (CBCT), plan-computed tomography (pCT), and MRI that good generalization
results on the head, neck, pelvis, and liver.

3 Method

The purpose of SISR is to recover the detailed features Ihr of HR images from the image features
Ilr of LR. In general, LR images are modeled as follows [4].

Ilr = (Ihr ⊗ κ) ↓s +n (1)

Ihr ⊗ κ denotes the convolution between the blur kernel κ and the HR image Ihr. ↓s denotes the
down-sampling operation with scale s and n represents the noise. In the SISR task, we tried to reverse
the degeneracy equation in Eq. (1) to obtain a new super-resolution image Isr from Ilr.

Isr = G (Ilr, s; θG) (2)

G is a fitting function to obtain the SR image and θG represents the parameter weights that can
be trained in the function. During each iterative training step, the similarity difference between Isr and
Ihr is measured by a loss function LSR. This similarity difference is back-propagated to calculate the
gradient value and update the network weights θG [5].

θ̂G = arg minθG
LSR (G (Ilr) , Ihr) (3)

3.1 Enhanced Deep Residual Networks for Super-Resolution (EDSR)

EDSR retains the use of a residual network and the extraction of high-frequency information
using SRGAN, but removes the original batch normalization (BN) blocks in the residual network to
avoid the loss of high-frequency information and improves the recovery of high-frequency information
from the hyper-segmented images [19]. As a widely verified method in the CNN series of super-division
methods, its recovery of high-frequency image details and the universality and stability of the code are
suitable for medical images.

Referring to the training set preparation method for general super-resolution training and Ma
et al. [24] LMISR-GAN study, we used the pCT image group with high-frequency information and
precise edges as the EDSR training set, and the bicubic image set obtained by bicubic interpolation
as the low-resolution set (LR). The original pCT image set was taken as the high-resolution set
(HR). The 0-bit bias module in the original EDSR network was adjusted for medical images, and
a super-resolution weight model suitable for medical images was obtained after training. However, the
model trained by this method retains the original noise and light spots after super-resolution CBCT
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processing, which interferes with the alignment process. The EDSR network architecture is shown in
Fig. 1.

Figure 1: Meta-learning multi-scale super-resolution network based on EDSR (MESR) feature
extraction design. (a) Shows the underlying architecture of the MESR network. (b) Shows the EDSR-
lite module used for network feature extraction. (c) Shows the composite loss function used by the
network. (d) Shows the design architecture of the network meta-upscaling module

The meta-learning multi-scale super-resolution network, which is improved on the basis of EDSR,
mainly lies in the increase of sampling module on meta-learning. Replacing the original single-scale
upscale module, the new meta-learning upscale module can utilize the weight prediction property of
meta-learning itself to store the trend of weight changes at multiple scales in the module. In this way,
the weight data of the scale can be quickly obtained based on the input scale data only when used, and
the network size is reduced without taking up additional storage space. Meanwhile, the meta-learning
multi-scale super-resolution network adopts a compound loss function to improve the accuracy of
super-resolution results as much as possible while ensuring the rapidity.

3.2 Multi-Upscale Module

To generate HR outputs from LR inputs at different scales, the extraction formula for the low-
dimensional feature mapping can be defined as:

Isr = Us (Flr; ϕs) (4)

Isr denotes the pixel values in the SR image, Us represents the up-sampler of the super-resolution
network, Flr denotes the pixel features in the LR image, and ϕs denotes a set of parameters at the s
scale. The up-sampler in a regular super-resolution network [25] can only learn a set of parameters at
a specific SR scale.

The meta-upscaling module [22] used in our approach learns the weight parameters at all training
scales and performs the corresponding tuning. For a single pixel (i, j) on the SR image, the values are
determined by the feature mapping of the corresponding point (i′, j′) on the LR image. For each scale
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the pixel mapping parameters νi,j can be expressed as:
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W is the weight prediction network for the meta-upscaling module. �∗� is floor function. Each
pixel value ISR(i, j) in the SR image can be obtained by Eq. (6).

Isr(i, j) = νi,j × Flr(i′, j′) (6)

And for the meta-up sampling module, the whole mapping relation equation can be expressed as:

Isr(i, j) = W(i, j; s) × Flr(i′, j′) (7)

Based on the Eq. (7) meta-upscaling module, a single network model can be implemented for
multi-scale super-resolution processing by predicting the network weight values at different scales.
Fig. 2 shows the mapping relationship between images at different scales.
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Figure 2: Process demonstration using non-integer multiplicative scale factor s = ∗.5 upscaled feature
maps. For the sake of simplicity, here we only show the upscaling of the one-dimensional features

3.3 Loss Functions

There are three commonly used loss functions for CNN-based super-resolution networks, L1 loss,
VGG loss, and GAN loss. To ensure rapidity while improving accuracy in multi-scale model training,
we choose a compound loss of three losses as the loss function feedback for the network.
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3.3.1 L1 Loss

The SISR task requires calculating the similarity difference between SR images and HR images
and iterating the network weights by the similarity difference. Therefore, the pixel-level error calcu-
lation is essential for the training and testing of SR networks. We chose the L1 loss as the error loss
function, which is based on the principle of calculating the mean absolute error (MAE), a loss function
that has the advantage of being computed quickly and has excellent fast performance. It can be defined
as:

L1 (Isr, Ihr) = 1
Spix

∑
(i,j)∈I

||Ihr (i, j) − Isr (i, j)|| (8)

Spix represents the total number of pixels in the image. The L1 loss function is used more often in
super-resolution networks. However, this function is relatively smooth and does not restore the real
texture details well, while the real texture details are very important in medical images. Therefore, we
introduced perceptual loss and adversarial loss into the training.

3.3.2 VGG-Based Perceptual Loss

The perceptual loss function of the VGG-base was first proposed by Johnson et al. [18] in 2016
and has since been widely used in super-resolution tasks [8–9,26]. It gives the root mean square error
(MSE) between the feature domains of the SR image and the HR image. It can be defined as:

Lperc (Fsr, Fhr) = E
(||Vl (Fhr) − Vl (Fsr)||2

)
(9)

V is a pre-trained VGG19 model and F denotes the feature maps of the specific layerV . Our feature
map F was generated by U-shaped network layers, and by hopping together convolutional layers of
different depths, richer texture details can be obtained.

3.3.3 Adversarial Loss

We apply Wasserstein GAN-based adversarial loss to generate more perceptually realistic images
in our method. GAN mainly contains a generator and a discriminator, and the generator has to
generate as realistic an image as possible to pass the discriminator’s judgment [26]. However, this
general GAN architecture suffers from the problems of unstable training and crash-prone patterns.
Therefore, Arjovsky et al. proposed Wasserstein GAN to solve these problems. They introduced the
Wasserstein distance as a counteracting loss to reflect the difference between the generated image and
the real image.

LWGAN = EIlr
[D (G (Ilr))] − EIhr

[D (Ihr)] (10)

An essential trick of the Wasserstein algorithm is to clip the ownership values of the discriminator
to a constant range that satisfies the conditions for the derivable Wasserstein distance. However, when
using shearing methods to restrict the discriminator’s weights, it tends to focus on the maximum
and minimum values. This makes the discriminator approximate a binary network and reduces the
nonlinear simulation capability of GANs. Therefore, a gradient penalty is used instead of the shearing
operation. This approach allows the gradient of the discriminator not to jump, and the adversarial
loss function using this approach is expressed as:

Ladv = LWGAN + EI

[||∇ID(I)||p − 1
]2

(11)

||||p is the p-norm. In summary, the total loss function can be defined as:
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LSR = λ × L1 + γ × Ladv + η × Lperc (12)

λ, γ , and η are scale factors to balance each part of the loss function.

4 Experiment and Result

In our experimental arrangement, data sets from three different sources and different sites were
selected for validation. The SR task arranged six scales with magnifications between (1,4]. To evaluate
our method, three metrics, Peak Signal-to-Noise Ratio (PSNR), Structure Similarity Index Measure
(SSIM), and Normalized Root Mean Square Error (NRMSE), were chosen to determine the similarity
differences between SR images and HR images and to compare them with four SR algorithms.

4.1 Data and Pre-Processing

The network architecture was obtained based on a pelvic clinical dataset trained from CBCT
and pCT images of 18 patients at different time periods. Since the study focused on two-dimensional
orientation, the data were selected for cross-sectional slices, where pCT was approximately 130
sized 512 × 512 per patient and CBCT was approximately 80 sized 384 × 384 per patient. The pixel
thresholds for all images were constrained to be between [0-2000 Hounsfiled Unit (HU)]. The
HR images were obtained by segmenting the background of the original slices and removing the
information. Too much background information is worthless for training and slows down the training
time, so the background was removed as much as possible during segmentation. The LR images were
not obtained by downsampling the corresponding HR according to the traditional method [23], but by
selecting the pre-collimated low-dose CBCT slices corresponding to the pCT slices as the LR images.
In our experiments, we fixed all pCT images to 384 × 384 and made training sets at different scales by
Bicubic interpolation of CBCT images. one HR image set with 622 slices, and six LR image sets with
3732 slices corresponding to six scales. The test set was set to 200 CBCT slices, derived from randomly
selected CBCT slices from patient data that did not participate in the training set.

4.2 Metrics

In our experiments, we chose three quality assessment functions to evaluate the image quality
of SR images after super-resolution processing. We used PSNR, SSIM, and NRMSE to evaluate the
results. PSNR measures the ratio between effective image information and noise and reflects whether
an image is distorted. SSIM uses windowed values to compare the differences in brightness, contrast,
and structure between the two images and uses normalized data to show the degree of similarity
between them. NRMSE is the normalization algorithm of RMSE, which measures the deviation
between the super-resolution image and the original image. It is sensitive to outliers in the data and
reflects whether there is noise in the super-resolution image.

RMSE =
√√√√ 1

pix

pix∑
x,y

(HR (x, y) − SR (x, y))
2 (13)

NRMSE = RMSE
SR(x, y)max − SR(x, y)min

(14)

(x, y) is the image pixel coordinates, HR(x, y) is the pixel value of the original high-definition
image, SR(x, y) is the pixel value in the image obtained after over-division, and pix is the total number
of pixels in the image.
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PSNR = 10 × log
(

MAX 2

RMSE

)
(15)

MAX is the maximum pixel intensity in the image.

SSIM = (2μHRμSR + c1) (2σHRSR + c2)(
μ2

HR + μ2
SR + c1

) (
σ 2

HR + σ 2
SR + c2

) (16)

μHR and μSR are the average values of the high-definition image and the super-resolution image,
σHR and σSR are the standard deviations of the two images, σHRSR is the covariance of the high-definition
image and the super-resolution image.

4.3 Implementation Details

We use PyTorch to build the entire network, process the Dicom format data, and transform it into
‘.npy’ format data for training and testing. We divided the data of 18 patients into training and test sets
in the ratio of 5:1. 4354 paired slices were produced in the training set, corresponding to 622 HR image
sets and 3732 LR data sets with six different scales. We used 600 slices for training and 22 slices for
testing and set the patch size to 96 and the batch size to 8 to reduce the video memory consumption.
All experiments were performed with NVIDIA RTX 2080Ti.

Due to the direct processing of medical image data matrices with large thresholds, the hyperpa-
rameter configuration under the general common format images cannot be used. We cancel the bias
setting in the convolutional layer and set the number of feature maps to 64. Due to the experimental
equipment limitation, we limit the training input batch size to 8 and the original patch size is set to
96 × 96. The learning rate is set to 0.0004 and the learning rate decay coefficient for step decay is set
to 0.5.

4.4 Multi-Scale Results Analysis

In this section of experiments, we focus on testing the processing effect and network performance
of the proposed multi-scale super-resolution network. This section does not involve the comparative
study with other publicly available models and the generalizability test of the proposed network in
different parts. Therefore, this section mainly uses a single CT dataset of pelvic sites for testing, with
three test patient samples and 200 test slices. This section evaluates the super-resolution performance
at different scales, using three evaluation metrics with pixel-level visualization difference maps in terms
of both numerical and visualization effects, respectively. The visualization effect of super-resolution
processing at different scales is shown in Fig. 3.

Table 1 shows the performance of the six scales of SR processing results under three evaluation
metrics tested at 200 slices. The table reflects the general trend that the larger the scale, the lower the
quality of the super-resolution processing results. However, based on the general analysis of the above
graphs, it can be seen that, concerning the results obtained so far, the single-model multi-scale super-
resolution processing network has undoubtedly met the requirements for image augmentation and
guaranteed image quality. Even the 4x SR processing with the lowest performance can still guarantee
a PSNR of about 33 and an SSIM index above 0.95, which has met the requirements of multiple
processing methods for image quality. For example, alignment, segmentation, fusion, diagnosis, etc.
This shows that our proposed network has an excellent application on a single source with a single site.
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pCT(x1.0):PSNR/SSIM/NRMSE

pCT(x1.5):41.23/0.9928/0.0078 pCT(x2.0):38.72/0.9859/0.0116 pCT(x2.5):36.23/0.9802/0.0141

pCT(x3.0):36.84/0.9785/0.0144 pCT(x3.5):34.15/0.9706/0.0187 pCT(x4.0):33.82/0.9682/0.0204

pCT(x1.0):PSNR/SSIM/NRMSE

pCT(x1.5):42.69/0.9934/0.0073 pCT(x2.0):38.58/0.9876/0.0117 pCT(x2.5):36.52/0.9844/0.0135

pCT(x3.0):36.64/0.9804/0.0147 pCT(x3.5):35.37/0.9746/0.0169 pCT(x4.0):34.66/0.9696/0.0184

400

200

0

-200

-400

Figure 3: Results of pCT 6-scale SR images of the pelvis

Table 1: Testing patient performance metrics under 6-scale SR processing

Scale x1.5 x2.0 x2.5 x3.0 x3.5 x4.0

PSNR 42.24 37.59 36.37 35.57 34.48 33.74
±0.55 ±1.16 ±0.49 ±0.81 ±0.63 ±0.73

SSIM 0.9928 0.9852 0.9804 0.9763 0.9692 0.9661
±0.0006 ±0.0018 ±0.0021 ±0.0031 ±0.0038 ±0.0045

NRMSE 0.0077 0.0133 0.0152 0.0167 0.0183 0.0206
±0.0005 ±0.0012 ±0.0014 ±0.0017 ±0.0018 ±0.0021

4.5 Performance Comparison with Different Methods

The validation of the sample using only our proposed net is unreliable, and the lack of comparative
experiments on other methods of the same type is difficult to argue for the novelty and superiority of
our method. In this section, we choose some SR methods that have been widely used and some new
ones that have been proposed in recent years to compare with our whole network. Since our network is
modeled on a private dataset, validation is performed on a public dataset. So we reconstructed all the
comparison network models and trained them using our private dataset to achieve the fair comparison
condition, which may be slightly different from the data in the original paper on the comparison model.
The specific experimental data table is shown in Table 2. By comparing the data in Table 2, we can see
that our method performs the best under all three performance indicators for the same SR task at the
same scale in the same part. In particular, under the SSIM, which is a crucial structural evaluation
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metric for medical imaging, our method has the highest 15% improvement over the conventional SR
methods in the same field.

Table 2: The performance of our method was compared with seven methods in the field of SR

Bicubic SRGAN
[17]

EDSR
[19]

RDN
[20]

SRDense
Net [21]

MetaRDN
[22]

MIASSR
[23]

Ours

PSNR 25.51 28.79 35.71 35.95 35.83 36.84 36.46 37.59
SSIM 0.7662 0.8380 0.9541 0.9574 0.9548 0.9627 0.9576 0.9852
NRMSE 0.3903 0.1774 0.1021 0.0821 0.0766 0.0472 0.0499 0.0133
Params - 4.5 M 127.5 M 17.2 M 30.4 M 5.8 M 1.5 M 5.1 M

Even for the MetaRDN method, which has been the best performing method in recent years, we
have about a 2% improvement. Regarding network lightweighting, we still have a particular gap in the
MIASSR method, which has done the best lightweighting in recent years. However, with only a 5.1 M
complete weight model, we still have an advantage over other networks in the same field in network
lightweighting. The experiments in this section prove that our proposed multi-scale SR method is a
high-performance, lightweight SR processing algorithm with high practical value.

4.6 Generalizability of Different Sites

In this section, we will test the generalizability of the network using CT slices from three locations:
pelvis, chest, and liver. Testing whether the network can have large enough adaptability that a single
set of training for but one site can meet the SR requirements for multiple sites, allowing the network to
have higher convenience without needing repeated training operations for different site intervals. The
experimental results are shown in Figs. 4 and 5. The specific experimental data are shown in Table 3.

CT(HR)/PSNR/
SSIM/NRMSE

CT(x2)/34.79/
0.9558/0.0172

CT(x3)/32.37/
0.9319/0.207

CT(x4)/30.81/
0.9197/0.255

CT(HR)/PSNR/
SSIM/NRMSE

CT(x2)/33.88/
0.9497/0.0196

CT(x3)/32.01/
0.9283/0.225

CT(x4)/29.96/
0.9064/0.274

Figure 4: Generalization results of multiscale SR on lung images
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CT(HR)/PSNR/
SSIM/NRMSE

CT(x2)/31.26/
0.9185/0.0209

CT(x3)/28.72/
0.8650/0.0262

CT(x4)/25.57/
0.8179/0.0334

CT(HR)/PSNR/
SSIM/NRMSE

CT(x2)/32.44/
0.9227/0.0199

CT(x3)/29.38/
0.8872/0.0238

CT(x4)/26.13/
0.8281/0.0302

Figure 5: Generalization results of multiscale SR on liver images

Table 3: Super-resolution effect under different parts in 2x scale

EDSR-lung EDSR-liver RDN-lung RDN-liver Ours-lung Ours-liver

PSNR 33.42 30.51 33.85 31.07 34.19 31.18
SSIM 0.9379 0.9154 0.9455 0.9190 0.9517 0.9221
NRMSE 0.0191 0.0248 0.0176 0.0231 0.0172 0.0212

The results in Table 3 show that our proposed SR algorithm is superior in terms of generalization
to different parts compared to the two deep learning SR methods. The test sample used in the lung
visualization results in Fig. 4 is a 512 × 512 slice, while the liver test sample in Fig. 5 is a 160 × 192
slice. Comparing the SR results of the two figures shows that the SR processing results are better at
high magnification when the LR image contains more information. Although the 4x SR results are
not ideal in the liver, the quality of the results of 2x SR is sufficient for use. Therefore, it can be verified
that the generalizability of our proposed method to different sites is also excellent.

5 Discussion

We propose a multi-scale medical super-resolution network in the present work using meta-
learning. It uses a meta-learning module in both the training and up-sampling parts. It can not only
accomplish the single-model multi-scale SR task, but also significantly reduce the model size to make
the network lightweight, and has good generalizability.

We tested the amplification performance of the multi-scale SR network at six scales using 200
slices from the pelvic region, which included amplification ratios with non-integer multiples. With the
experimental results in Section 4.4, it can be demonstrated that our multi-scale SR network has good
performance on both integer-fold and non-integer-fold amplification. Even with the highest 4-fold
SR test, our network can achieve an average SSIM value of 0.96 or higher, which has high practicality.
We used seven algorithms from the SR domain to compare with our proposed network. Among them,
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Bicubic, SRGAN [17], EDSR [19], and RDN [20] are well-established algorithms that have been widely
validated, and SRDenseNet [21], MetaRDN [22], and MIASSR [23] are novel SR algorithms that have
been proposed in recent years. The experimental comparison in Section 4.5 demonstrates that our
network achieves excellent SR results while achieving network lightweighting. The improvement is
15% compared to the earlier SRGAN algorithm and 2% compared to the best-performing MetaRDN
algorithm. We also performed generalizability tests on the chest and liver datasets using the model
obtained from pelvic training. Although there is a slight shortfall in the 4-fold SR metric, the excellent
performance in the 2-fold and 3-fold metrics is sufficient to demonstrate the good generalizability of
the model. In future studies, we will improve the model to address the shortcomings of the high-fold
SR operation. And we will extend the algorithm to the 3D direction to avoid the extra cost when
converting the real-harvested images to 2D slices. The three experiments are sufficient to demonstrate
that our proposed multi-scale SR algorithm has a high practical value. This method can compensate
for the hardware device deficiency and reduce patient harm while obtaining high-resolution medical
images by post-algorithms. It has an essential role in the radiological examination of elderly patients
and the practical application of radiological imaging in small cities.

6 Conclusion

This work proposes a multi-scale super-resolution algorithm with meta-learning. The problem
that the current SR algorithm only works for a single scale is solved. A network lightweighting
improvement is accomplished to reduce the occupation of hardware resources. It can compensate for
hardware defects, reduce extra harm to patients, and obtain high-resolution medical images. It has an
essential medical clinical value.
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