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Abstract: Coronary artery disease (CAD) is one of the most authentic cardio-
vascular afflictions because it is an uncommonly overwhelming heart issue.
The breakdown of coronary cardiovascular disease is one of the principal
sources of death all over the world. Cardiovascular deterioration is a challenge,
especially in youthful and rural countries where there is an absence of human-
trained professionals. Since heart diseases happen without apparent signs,
high-level detection is desirable. This paper proposed a robust and tuned ran-
dom forest model using the randomized grid search technique to predict CAD.
The proposed framework increases the ability of CAD predictions by tracking
down risk pointers and learning the confusing joint efforts between them.
Nowadays, the healthcare industry has a lot of data but needs to gain more
knowledge. Our proposed framework is used for extracting knowledge from
data stores and using that knowledge to help doctors accurately and effectively
diagnose heart disease (HD). We evaluated the proposed framework over two
public databases, Cleveland and Framingham datasets. The datasets were pre-
processed by using a cleaning technique, a normalization technique, and an
outlier detection technique. Secondly, the principal component analysis (PCA)
algorithm was utilized to lessen the feature dimensionality of the two datasets.
Finally, we used a hyperparameter tuning technique, randomized grid search,
to tune a random forest (RF) machine learning (ML) model. The randomized
grid search selected the best parameters and got the ideal CAD analysis. The
proposed framework was evaluated and compared with traditional classifiers.
Our proposed framework’s accuracy, sensitivity, precision, specificity, and f1-
score were 100%. The evaluation of the proposed framework showed that it
is an unrivaled perceptive outcome with tuning as opposed to other ongoing
existing frameworks.
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1 Introduction

Heart disease due to hypertension, CAD, or stroke is the fundamental reason for death in the USA.
In 2019, new statistics from the American heart association (AHA) showed that: 46% of adults in the
USA had hypertension. These results are related to the guidelines of hypertension clinical practice in
2017. On average, somebody dies of cardiovascular disease (CVD) every 38 seconds. Based on 2016
data, CVD caused approximately 2,303 deaths daily, and stroke caused 389.4 deaths daily [1].

There are distinct types of heart illness. The widely recognized types are CAD and Heart Failure
(HF). HF is the inability of the heart to intake an adequate measure of blood to address the issues of the
body. Blockage or narrowing of the coronary arteries is the primary driver of HF. Coronary arteries
are conduits responsible for conveying blood to the heart [2,3]. CAD is a typical class of coronary
illness and a notable wellspring of cardiovascular failures on the planet [4].

Diverse risk factors that lead to HF and CAD have been accounted for. These risk factors are
isolated into two groups. The primary group incorporates the patient’s family ancestry, gender, and age;
these risk factors can’t be changed. In any case, the subsequent group includes risk factors identified
with the patient’s way of life. Henceforth, these variables can be changed, e.g., elevated cholesterol
level, smoking, actual idleness, and hypertension [2]. Subsequently, the risk factors, which are below
average, can be eliminated or constrained by changing the way of life and medicine.

CAD analysis requires an exhaustive investigation of various elements, which makes the doctor’s
responsibilities extreme. These issues rouse the advancement of non-nosy parts for the recognition
of CAD. Moreover, regular CAD finding methodologies zeroed in on assessing a patient’s clinical
history, assessment of different manifestations by a cardiologist, and actual interrogation reports.
In this manner, the ordinary strategies utilized for CAD determination are tedious and may yield
mistaken analytic outcomes because of human blunders [5,6]. To avoid these issues, we must build up
a computerized learning framework for the proficient and quick conclusion of CAD. Subsequently, a
machine learning-based expert framework can decrease the related well-being risk of the clinical test.
Simultaneously, it can help with improving the determination cycle.

This paper proposes a robust, tuned random forest model using the randomized grid search
algorithm to predict CAD. First, we utilized Cleveland and Framingham datasets, cleaned them, and
normalized them. Second, the PCA technique is used to lessen the feature dimensionality of the two
datasets. Finally, the randomized grid search selects the best parameters for the trained random forest
classifier to get the ideal CAD analysis. The main contributions of this paper are

• For CAD prediction, a novel, robust tuned random forest model using the randomized grid
search algorithm is proposed to predict coronary heart diseases.

• We utilized Cleveland and Framingham datasets, and we applied data mining techniques to
clean and normalize Cleveland and Framingham datasets.

• PCA feature selection algorithm is executed to eliminate irrelevant and duplicate features and
to enhance the framework performance.

• A random forest ML classifier is trained.
• The randomized grid search selects the best parameters for the trained random forest classifier.

In contrast to other recent systems, the proposed classifier has a higher accuracy of 100% in
CAD prediction.

The remainder of this paper is formulated as follows. Section 2 presents a literature review of
CAD diagnostic systems. Section 3 displays the methodology of the proposed framework, the pre-
processing of the two datasets, and the training of ten classifiers. The experimental results of the
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proposed framework are shown in Section 4. Finally, the conclusion of our proposed framework is
provided in Section 5.

2 Literature Review

To predict hospital mortality in spontaneous coronary artery dissection (SCAD) patients, the
authors in [7] used data from electronic health records (EHR) and a deep neural network. They applied
several ML and deep learning (DL) models to the patient data that they extracted from the EHR of
an extensive urban health system.

The authors in [8] used deep learning to predict heart disease better. They developed an enhanced
stacked sparse autoencoder network (SSAE). To fine-tune the stacked sparse autoencoder’s parame-
ters, they proposed a particle swarm optimization (PSO)-based method.

The authors in [9] looked at the utility of a few supervised machine learning algorithms (decision
tree (DT), boosted decision tree, RF, support vector machine (SVM), neural network (NN), and
logistic regression (LR)). They used them for anticipating clinical functions regarding their internal
legitimacy and accuracy. Three data models were expounded, and a relative methodological investiga-
tion between the diverse ML techniques was done. The authors presumed that ML techniques could
strengthen customary regression strategies’ symptomatic and prognostic limits. Contrasts between
the appropriateness of those calculations and the outcomes acquired were a component of the
product stages utilized in the information examination. The authors in [10] inspected robotized CAD
classification utilizing deep learning techniques and introduced various approaches to classify and
anticipate the CAD.

The authors in [11] proposed the utilization of a chi-square (CHI) with PCA-head part investiga-
tion to enhance the expectation of ML techniques. The objective of the model was to anticipate whether
a patient has an HD or not. The authors applied feature dimensionality decrease strategies to enhance
the crude results. For the seventy-four attributes given, they chose three gatherings of attributes and
accomplished the high execution. It was discovered that among the models, the proposed model with
RF had the most excellent performance, where the accuracy for Cleveland dataset was 98.7%, for the
Hungarian dataset was 99.0% and for the Cleveland-Hungarian dataset was 99.4%.

An improved ML technique was proposed in [12] for the expectation of HD risk. The procedure
included arbitrarily dividing the dataset into more modest subsets utilizing a mean-based splitting
algorithm. The different allotments were then demonstrated using the classification and regression tree
(CART). A homogeneous group was made from the distinctive CART models utilizing the accuracy
of the aging model ensemble, which was an alteration of the weighted aging classifier ensemble (WAE).
The methodology guarantees ideal execution is accomplished. The accuracy of using Framingham and
Cleveland datasets was 91% and 93%, separately, which outflanked other ML techniques.

Reference [13] predicted the risk of CAD utilizing ML techniques, such as RF, DT, and K-nearest
neighbors (KNN). Additionally, a near report among them based on forecast accuracy was performed.
Likewise, k-fold Cross Validation was utilized to create irregularity in the dataset. These techniques
were tested over a dataset named Framingham heart study. It has 4240 rows. The accuracy of DT, RF,
and KNN was 92.7%, 96.8%, and 92.89% individually. Consequently, by applying the pre-processing
steps, the RF classifier gave better exact outcomes than other ML techniques.

Reference [14] proposed and built up a half-and-half particle swarm optimization-based extraor-
dinary learning machine (PSO-ELM) to determine CAD utilizing the freely accessible Z-Alizadeh sani
dataset. A feature selection method, specifically Fisher, was utilized to discover more discriminative
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feature subsets. The proposed approach accomplished the highest accuracy by utilizing just the 10-
highest level of features selected by the Fisher technique.

Reference [15] Using data extraction methods, KNN and Naïve Bayes (NB) by the orange device
to anticipate heart illness. The authors utilized the Cleveland heart disease and stat log heart datasets
from the UCI heart disease dataset. They inferred that the highest accuracy was KNN which gave 88%
accuracy, while the NB classifier gave 85%.

Reference [16] Compared techniques of LR, Artificial Neural Network (ANN), KNN, NB, and
RF classification, looking for better execution in heart illness analysis. The dataset Framingham
comprises 23138 cases and sixteen attributes. RF gave a precise value contrasted with different
techniques; the minimal one was LR.

Reference [17] proposed a novel method for using parameters to predict cardiovascular disease
in India. The authors used Python-based machine learning techniques for this study: RF, DT, NB,
KNN, and SVM. RF was the best method with hyperparameter tuning with 87.72% accuracy, while
NB was better without parameter tuning with 82.63% accuracy. Table 1. Presents a summary of the
state-of-art in this area.

Table 1: Summary of existing methods for CAD prediction

Reference Methodology Accuracy Feature
selection

Datasets

[9] RF, SVM, Neural network,
DT, Boosted decision tree,
and LR

R-Studio (NA, NA, NA,
84%, 85% and 84%)
RapidMiner (NA, NA,
NA, 85%, 63% and 63%)

No Framingham

[11] CHI-PCA with RF 98.7% Yes Cleveland
99.0% Hungarian
99.4% Cleveland-

Hungarian
[12] CART dividing the

training dataset into more
modest subsets utilizing a
mean-based splitting
algorithm

93% No Cleveland

91% Framingham
[13] RF, DT, KNN, K-fold

cross-validation. The best
model was RF

(96.8%, 93.33% and
91.52%)

No Framingham

[15] KNN and NB (88% and 85%) No Cleveland and
Statlog

[16] RF, KNN, ANN, LR, and
NB

(99.49%, 97.55%, 94.11%,
85.32% and 81.76%,

No Framingham

[17] DT, RF, KNN, SVM, and
NB

83%, 87%, 81%, 85%, and
82%.

Yes Dataset collected
from Jammu and
Kashmir

From the previous review of the current studies conducted recently, we can conclude that no study
achieved 100% accuracy. However, with the Cleveland dataset, our proposed framework achieved
100% accuracy, precision, sensitivity, specificity, and f1-score.
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3 Scientific Background
3.1 Principal Component Analysis

Principal Component Analysis (PCA) is a dimensionality-reduction technique that is extensively
used to lessen the feature dimensionality of massive datasets by changing an enormous set of features
into a more modest one that contains most of the data in the vast dataset. Decreasing the number
of features of a massive dataset typically comes to the detriment of precision. However, the stunt in
dimensionality reduces to exchange a little exactness for effortlessness. Since more modest datasets are
simpler to investigate and imagine, examining data is a lot more straightforward and quicker for AI
calculations without superfluous attributes to process. To summarize, the possibility of PCA is direct
- diminish the number of attributes of large datasets while protecting as much information as possible.

4 Materials and Methods
4.1 Datasets Descriptions

The proposed framework considers Cleveland and Framingham datasets for CAD prediction.
Tables 2 and 3 display the attributes of Cleveland and Framingham datasets, and they include 2981
and 4700 records of patients, respectively.

Table 2: Cleveland dataset

Feature name Range

Age [29, 77] years
Sex (male or female) [0, 1]
CP (Chest Pain Type) [1, 4]
Trestbps (Resting Blood Pressure) [94, 200]
Chol (Serum Cholestoral in mg/dl) [126, 564]
Fbs (Fasting Blood Sugar >120) [No, Yes]
Restecg (Resting Electro Cardiographic) [0, 2]
Thalach (Maximum Heart Rate Achieved) [71, 202]
Exang (Exercise Induced Angina) [0, 1]
Oldpeak (ST Depression Induced by Exercise Relative to Rest) [0.0, 6.2]
Slope (the Slope of the Peak Exercise ST Segment) [0, 2]
Ca (Number of Major Vessels) [0, 4]
Thal (Thalium Stress: Normal, Fixed Defect, Reversible Defect) [1–3, 6, 7]
Target (Diagnosis of Heart Disease) [0, 1]

Table 3: Framingham dataset

Feature name Unit/Range

Id (Patient identifier) int
Sex (male or female) [1, 2]
Sbp (Systolic blood pressure) mm Hg
Dbp (Diastolic blood pressure) mm Hg

(Continued)
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Table 3: Continued
Feature name Unit/Range

Scl (Serum cholesterol) mg/100 ml
Age (at baseline exam) Years
Bmi (Body mass index) kg/m 2

Month (Month of year of baseline exam) int
Followup (Subject’s follow-up) Days since baseline
Chdfate (Event of CHD at end of follow-up) 1 = patient developed CAD at follow-up

0 = otherwise

The correlation among features could influence the execution of the ML model. Pearson’s
Correlation Coefficient (PCC) could be used to estimate the connection among attributes. PCC differs
from −1 to +1, with a negative value and a positive value showing an exceptionally negative and
positive relationship among the features, respectively, and a value near zero demonstrating a low
relationship among them. The heatmap correlation between attributes for the dataset is shown in
Fig. 1:

Figure 1: The heatmap correlation between attributes for the cleveland dataset

Fig. 1 depicts the relationship of the Cleveland UCI dataset features to the target and association
of each unique with the other. As it is noticed from the figure; only one feature is negatively associated
to the target variable; thalach (−0.42), while the most highly correlated features with the target are
(thal, ca, oldpeak, exang, cp) and were among the higher positively correlated features with correlation
values (0.52, 0.46, 0.42, 0.41), respectively.

4.2 Framework Architecture and Model Training

This research objective is to extend the capability of CAD expectations by discovering danger
indicators and learning the confounding joint efforts between them. Moreover, we hope to understand
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all the significant highlights and conditions that cause the CAD similarly to consider the precision of
a tuned random forest classifier using the randomized grid search method in CAD desire.

In the following subsections, the architecture of the proposed framework is described. The
proposed framework is depicted in Fig. 2. The first step was data pre-processing. Data mining
techniques were applied to the two datasets to clean, normalize and detect outliers. The second step
split the dataset into a training dataset with 70% and a test dataset with 30%. In the third step, the
PCA was executed on the two datasets to select the valuable features. In the fourth step, the randomized
grid search algorithm selected the best parameters for the trained random forest classifier. In the fifth
step, we utilized the two datasets for training a random forest classifier. The proposed framework was
implemented by the algorithm depicted in Fig. 3.

Train     Test Split

Data Pre-processing

Data Cleaning

Data Normalization

Data Cleaning

orma

a Clea

Testing 
Data 20%

Tainting 
Data 20%
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Model Initialization 
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Figure 2: The architecture of the proposed framework

The Proposed Framework’s Algorithm

Input:  Random Forest Model.

Output: Tuned Random Forest Model.

Begin:
1-Datasets Processing.

2-Split the input dataset into a test dataset and a training 
dataset.

3-Select features by PCA.

4-Tune RF by the randomized grid search algorithm.

5-Train the tuned RF algorithm using the training 
dataset.

6-Test the tuned RF model using the test dataset.

Figure 3: The proposed framework’s algorithm
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4.2.1 Data Pre-Processing

Data cleaning, normalization, and outlier detection are performed in the data pre-processing step
as critical steps. It is essential before applying ML algorithms because the real-world data may need
to be more reliable, consistent, noisy, and complete. Hence, data mining techniques are applied to
the real-world heart disease dataset to derive meaningful data and to represent the data effectively to
extract the trends and the relationship of attributes in the dataset.

Data Cleaning

Data quality plays an essential role, and it is the most carefully depicted thing. In the proposed
framework, data cleaning is performed to improve the quality of Cleveland and Framingham datasets.
Data cleaning by eliminating irrelevant and redundant attributes will make the two datasets more
precise. Moreover, the features with Null (NaN) values are removed from the two datasets to make
them more valuable because NaN values decrease the productivity of the prediction algorithm.

Normalization

Cleveland and Framingham datasets have several features, including various numerical values.
These feature values impact the prediction process. Hence, the min-max normalization technique, a
data mining technique, is utilized to normalize the single dataset between 0 and 1. It ensures that
the feature values do not have any ambiguity after the normalization process and simplifies the
computation process while applying the prediction algorithm of CAD. The min-max normalization
method is defined in Eq. 1 [18]:

Xnorm = (X − Xmin)/(Xmax − Xmin) (1)

Outlier Detection

Outliers are values that represent abnormal distances from comprehensive data. Outliers mean is a
fluctuation in measurement or errors in the experimental results. In other words, an outlier indicates an
observation that veers from complete data. These deviations may be due to noise. Hence data mining
algorithms should be careful whether the variations are actual or are due to noise. The detection of
truly unusual behavior in each dataset is called outlier analysis. Outlier detection is an essential part
of data pre-processing that should be implemented to ensure the quality of a dataset [18].

4.2.2 Feature Selection Using PCA

PCA is used to decompose a multivariate dataset in a set of successive orthogonal components
that explain a maximum amount of variance. There are fourteen attributes in the UCI dataset, and
the target attribute is one of the attributes in the dataset. In the practical experiments, we have
turned thirteen attributes into two attributes, PC1 and PC2, using the help of PCA. PC1 is the linear
combination of the original features that can explain the maximum variance, and PC2 is the orthogonal
vector to PC1 that describes the following best amount of variance.

As shown in Fig. 4 and Table 4, PC1 is substantial and positive for chol, while being marginally
positive for sex and cp, indicating that individuals who score well in this component will have an
extraordinarily minor impact on heart disease. Still, people with higher chol have a higher risk of heart
disease. However, PC2 is highly negative for thalach, cp and slope, indicating that individuals scoring
high in this component have a minimal risk of heart disease. Age and trestbps are both moderately
positive.
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Figure 4: Features weights

Table 4: Applying the PCA technique

PC 1 PC 2

Explained variance 0.7476 0.1504
age 0.0395 0.1822
sex −0.0018 0.0008
cp −0.0015 −0.0125
trestbps 0.0476 0.1038
chol 0.9981 −0.0194
fbs 0.0001 0.0005
restecg −0.0016 −0.0012
thalach −0.0074 −0.9772
exang 0.0006 0.0075
oldpeak 0.0013 0.0179
slope −0.0001 −0.0104
ca 0.0015 0.0101
thal 0.0012 0.0026

4.2.3 Tuning Parameter Using Grid Search Optimization

In this step, we made hyperparameter tunning by the algorithm shown in Fig. 5. The cycle of
determining the correct combination of hyperparameters is called hyperparameter tuning. It allows the
model to maximize its execution. Using the right combination of hyperparameters is the only strategy
to get the best performance out of models. In the random search technique, a grid of hyperparameter
values is created. Every loop endeavors a random combination from this grid keeps the execution
and, in conclusion, gets a variety of hyperparameters, which gives high performance. We used the
randomized grid search algorithm to select the best parameters for the ten models.

The best parameters for the random forest model are max_depth, min_samples_leaf, min_samples_split,
n_estimators, and Criterion. Table 5 shows the meaning and best value for each parameter, and Table 6
shows the different ranges of the parameters.
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Tuning Parameter Algorithm 

Input:  Random Forest Model.

Output: Tuned Parametrized Random Forest Model.

Begin:

1- Keep a piece of the training dataset as the test dataset.

2- Assign random values for each random forest parameter.

3- Finding the best combination of different parameters utilizing the grid search technique.

4- Train RF algorithm using train dataset.

5- Utilize the test dataset as a watch_list to train the model again with the best combination of parameters. 

6- See how the test dataset scores change in every combination. 

End.      

Figure 5: Tuning parameter algorithm

Table 5: Tuned parameters for random forest

Parameter Meaning Best
value

max_depth The longest path between the root node and the leaf node
(Maximum number of levels in the tree).

70

min_samples_leaf This parameter specifies the minimum number of samples present
in the leaf node after splitting a node (Minimum number of samples
required at each leaf node).

4

min_samples_split This parameter tells the decision tree in a random forest the
minimum required number of observations in any given node to
split it (minimum number of samples required to split a node).

10

n_estimators This parameter refers to the number of trees required to be built
before taking the maximum voting or averages of predictions
(Number of trees in the random forest).

400

Criterion This parameter refers to the selection criterion (loss function) used
to determine model outcomes.

gini

Table 6: The range of hyperparameters

Parameter Range

max_depth [start=10, stop=110, increment=10]
min_samples_leaf [1, 2, 4]
min_samples_split [2, 5, 10]
n_estimators [start=200, stop=2000, increment =10]
Criterion “gini”, “entropy”, “log_loss”
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5 Results and Discussion
5.1 Experimental Setup

The ML models were implemented and evaluated using the Kaggle environment. Kaggle allows
data scientists and developers to host datasets, write and share code, and participate in machine
learning competitions. The PC used for the experiments possesses the following characteristics:
Intel(R) Core (TM) i7-10510U CPU @ 1.80 GHz 2.30 GHz, 16 GB Memory, 64-bit Operating System
(Windows), x64-based processor.

5.2 Evaluation Metrics

In this paper, ten machine learning models were tested by evaluating the confusion matrix
elements, which are the True Positives (TP), the True Negatives (TN), the False Positives (FP), and
the False Negatives (FN). Furthermore, we used the f1- score, receiver operating characteristic curve,
Logarithmic loss, and Mathew correlation coefficient. TP and TN are correctly classified as CAD
and non-CAD, respectively; FN is CAD that is misclassified as non-CAD; non-CAD is incorrectly
classified as CAD is defined as FP. Moreover, several standard performance metrics are applied to
evaluate the prediction performance of the ten machine learning models, such as accuracy, precision
rate, specificity, and sensitivity, which are defined in Eqs. (2)–(5) [19,20].

Accuracy = (TP+TN)/ (TP+TN+FP+FN) (2)

Precision = TP/(TP+FP) (3)

Sensitivity = TP/(TP+FN) (4)

Specificity = TN/(TN+FP) (5)

TP, FP, TN, and FN denote true positive, false positive, true negative, and false negative,
respectively. The f1 score is the weighted average of Recall (Sensitivity) and Precision. It considers
both FP and FN. The f1 score is typically more valuable than accuracy, assuming you have an uneven
class distribution. Accuracy works well if FP and FN have comparable expenses. If the expenses of FP
and FN are different, it’s smarter to check out both Precision and Recall. f1- score is defined in Eq. (6)
[18,19].

F1 − Score = 2 * (Recall * Precision)/(Recall + Precision) (6)

The receiver Operating Characteristic (ROC) curve is the general visualization method that
presents the implementation of a binary model. ROC curve is a graphical plot that presents the ability
of a binary model as its threshold is changed. The ROC curve on the X-axis shows a model’s FP
measure from 0 to 1.0, and on the Y-axis, it shows a model’s TP measure from 0 to 1.0. In the Roc
curve, the ideal point is one where the model accomplishes zero, an FP measure of zero, and a TP
measure of one. It will be in the upper left corner. Therefore, in the ROC space, curves show various
tradeoffs as the decision threshold is changed for the model. Due to the variation of the decision
threshold, we’ll have various values of TPs and FPs, which we could plot on a chart. The ROC curve
is a tool for choosing the ideal model [18,19].

Logarithmic Loss (Log Loss) rates the execution of a prediction machine learning technique. The
result of log loss is a likelihood value between 0 and 1. The log loss of a perfect model would be the
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value 0. When the prediction label differs from the actual label, the value of log loss increases. It is
calculated in Eq. (7) [18].

Log Loss = −(y log (p))+(1-y) log (1-p) (7)

where log is the natural logarithm, y is a binary indicator (0 or 1), and p is the model’s predicted
probability.

The Mathew correlation coefficient (MCC) is a solid statistical measure. It gets a high score
provided that the prediction got great outcomes in all four confusion matrix categories (TP, FN, TN,
and FP), relative to the size of the dataset’s positive and negative rows. MCC varies from −1 to +1.
MCC is calculated as in Eq. (8) [18].

MCC = (TP.TN − FP.FN)√
(TP + FP) . (TP + FN) . (TN + FP) . (TN + FN)

(8)

5.3 Evaluation

Table 7 shows the mentioned metrics for the ten machine learning models (Random Forest (RF),
Multi-Layer Perceptron (MLP), K-Nearest Neighbors (KNN), Extra Tree, XGBoost, Support Vector
Machine (SVM), Stochastic Gradient Descent (SGD), Ada Boost, Decision Tree (DT) and Gradient
boosting (GB)) individually before the feature selection process. From Table 7, we found that using
Cleveland UCI, SVM accuracy is the highest. SGD precision is the highest. Extra Tree and XGB are
the highest in sensitivity, specificity, f1-score, and ROC, respectively. SGD Log_Loss is the lowest.
SVM MCC is the highest. Moreover, using Framingham, we found that RF accuracy and precision
are the highest. SGD sensitivity and specificity are the highest. RF, MPL, and SVM f1- scores are the
highest. SGD ROC is the highest. RF Log_Loss is the lowest. SGD MCC is the highest.

Table 7: The metrics for the ten machine learning algorithms

Dataset Measure
metrics

RF MLP KNN Extra
tree

XGB SVM SGD Ada
Boost

DT GB

Cleveland
UCI

Accuracy % 81.94 82.81 76.17 79.29 80.24 84.17 77.09 76.17 81.94 82.98
Precision % 94.12 96.55 96.77 94.44 94.44 94.12 100.0 80.00 94.12 82.68
Sensitivity% 91.43 80.00 85.71 97.14 97.14 91.43 40.00 80.00 91.43 85.37
Specificity% 92.75 87.50 90.91 95.77 95.77 92.75 57.14 80.00 92.75 80.36
F1-Score % 0.91 0.80 0.86 0.97 0.97 0.91 0.40 0.80 0.91 84.00
ROC % 91.87 88.08 90.93 94.73 94.73 91.87 70.00 76.54 91.87 82.86
Log_Loss % 0.83 0.75 0.81 0.90 0.90 0.83 0.47 0.53 0.83 87.02
MCC % 81.94 82.81 76.17 79.29 80.24 84.17 77.09 76.17 81.94 65.87

Framingham Accuracy % 85.80 85.34 84.17 77.43 83.30 85.34 78.40 83.98 72.82 73.98
Precision % 100.00 0.00 36.96 15.22 27.66 0.00 31.17 14.29 16.92 17.32
Sensitivity % 2.50 0.00 11.26 11.48 8.61 0.00 40.00 1.64 21.85 20.53
Specificity % 4.88 0.00 17.26 13.08 13.13 0.00 35.04 2.94 19.08 18.79
F1-Score % 100.00 100.00 96.70 88.89 96.13 100.0 84.94 98.29 81.57 83.16
ROC % 51.25 50.00 53.98 50.18 52.37 50.00 62.47 49.96 51.71 51.85
Log_Loss % 4.90 5.06 5.47 7.80 5.77 5.06 7.46 5.53 9.39 8.99
MCC % 0.15 0.00 0.14 0.00 0.08 0.00 0.23 0.00 0.03 0.03

Table 8 shows the metrics for the ten machine learning algorithms after applying the PCA
technique. From Table 8, we found that using Cleveland UCI, RF accuracy, sensitivity, f1-score, ROC,
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and MCC are the highest, DT precision is the highest, XGB specificity is the highest, and DT Log_Loss
is the lowest. Moreover, using Framingham, we found that XGB accuracy is the highest. RF precision
is the highest. DT sensitivity is the highest. XGB specificity is the highest. SVM f1-score is the highest.
KNN ROC is the highest. XGB Log_Loss is the lowest. RF and XGB MCC are the highest.

Table 8: The metrics for the ten machine learning algorithms after applying the PCA technique

Dataset Performance RF MLP KNN Extra
tree

XGB SVM SGD Ada
Boost

DT GB

Cleveland
UCI

Accuracy % 90.21 82.98 79.15 88.94 88.09 81.70% 77.87 82.55 90.16 82.98
Precision % 87.88 80.29 77.61 88.19 88.62 79.41 72.90 81.06 91.43 82.68
Sensitivity% 94.31 89.43 84.55 91.06 88.62 87.80 91.87 86.99 91.43 85.37
Specificity% 85.71 75.89 73.21 86.61 87.50 75.00% 62.50 77.68 91.43 80.36
F1-Score % 90.98 84.62 80.93 89.60 88.62 83.40% 81.30 83.92 88.46 84.00
ROC % 90.01 82.66 78.88 88.83 88.06 81.40% 77.19 82.34 89.95 82.86
Log_Loss % 38.04 58.90 72.18 38.14 41.53 64.00% 76.28 60.60 34.00 58.90
MCC % 80.55 66.17 58.28 77.83 76.12 63.53% 57.31 65.10 80.00 65.87

Framingham Accuracy % 95.27 85.32 86.89 87.74 95.39 85.44 79.25 86.29 93.33 86.77
Precision % 97.65 33.33 61.54 95.24 94.57 0.00 30.83 76.92 75.59 92.31
Sensitivity % 69.17 0.83 26.67 16.67 72.50 0.00 34.17 8.33 80.00 10.00
Specificity % 80.98 1.63 37.21 28.37 82.08 0.00 32.41 15.04 77.73 18.05
F1-Score % 99.72 99.72 99.43 99.86 99.29 100.00 86.93 99.57 95.60 99.86
ROC % 84.44 50.27 97.16 58.26 85.89 50.00 60.55 53.95 87.80 54.93
Log_Loss % 1.63 5.07 4.57 4.23 1.59 5.03 7.17 4.74 2.31 4.57
MCC % 0.80 0.03 0.28 0.37 0.80 0.00 0.20 0.22 0.74 0.28

Table 9 shows the metrics for the ten machine learning algorithms after applying PCA and hyper-
tuning parameterization. From Table 9, we found that using Cleveland UCI, RF achieves the highest
accuracy, precision, sensitivity, specificity, f1-score, ROC, and MCC. In addition, RF Log_Loss is the
lowest. Moreover, using Framingham, we found that RF and Extra Tree accuracies are the highest.
RF and MLP precisions are the highest. DT sensitivity is the highest. RF specificity is the highest.
RF, MLP, and SVM f1-scores are the highest. Extra Tree ROC is the highest. Log_Loss of RF and
Log_Loss of Extra Tree are the lowest. RF MCC and MLP MCC are the highest.

Table 9: The metrics for the ten machine learning algorithms after applying PCA and hyper tuning
parameterization

Dataset Performance RF MLP KNN Extra
tree

XGB SVM SGD Ada
Boost

DT GB

Cleveland
UCI

Accuracy % 100 88.52 83.61 93.44 95.08 95.08 90.16 71.8 90.16 95.08
Precision % 100 91.18 93.1 94.29 94.44 97.06 93.94 94.12 91.43 94.44
Sensitivity% 100 88.57 77.14 94.29 97.14 94.29 88.57 91.43 91.43 97.14
Specificity% 100 89.86 84.38 94.29 95.77 95.65 91.18 92.75 91.43 95.77
F1-Score % 100 88.46 92.31 92.31 92.31 96.15 92.31 0.91 88.46 92.31
ROC % 100 88.52 84.73 93.30 94.73 95.22 90.44 91.87 89.95 94.73
Log_Loss % 0.00 3.96 5.66 2.26 1.70 1.7 3.40 2.26 3.40 1.70
MCC % 1.00 0.77 0.69 2.26 0.90 0.90 0.80 0.83 0.80 0.90

Framingham Accuracy % 96.36 85.56 87.01 96.36 95.39 85.44 86.04 86.29 93.45 87.38

(Continued)



4646 CMC, 2023, vol.75, no.2

Table 9: Continued
Dataset Performance RF MLP KNN Extra

tree
XGB SVM SGD Ada

Boost
DT GB

Precision % 100 100 68.57 98.91 94.57 0.00 66.67 88.89 77.50 90.00
Sensitivity % 75.00 0.83 20.00 75.83 72.50 0.00 8.33 6.67 77.50 15.00
Specificity % 85.71 1.65 30.97 85.85 82.08 0.00 14.81 12.40 77.50 25.71
F1-Score % 100 100 98.44 99.86 99.29 100 99.29 99.86 96.16 99.72
ROC % 87.50 50.42 59.22 87.85 85.89 50.00 53.81 53.26 86.83 57.36
Log_Loss % 1.26 4.99 4.49 1.26 1.59 5.03 4.82 4.74 2.26 4.36
MCC % 0.85 0.08 0.32 0.85 0.80 0.00 0.20 0.22 0.74 0.34

5.4 Results Analysis

The experimental results showed that the tuned random forest model performed best with
Cleveland and Framingham datasets after applying PCA. Using the Cleveland dataset, the tuned
random forest model had an accuracy of 100%, a precision of 100%, a specificity of 100%, a sensitivity
of 100%, a ROC value of 100%, a log loss of 0, f1-score of 100% and MCC of 1. Using the Framingham
dataset, the tuned random forest model had an accuracy of 96.36%, a precision of 100%, a specificity
of 85.71%, a sensitivity of 75%, a ROC value of 87.50 %, a log loss of 1.26, f1-score of 100% and MCC
of 0.85.

5.5 Discussion of the Results with the Literature

In Table 10, we present a detailed comparison of existing state-of-art methods using Cleveland
and Framingham heart disease datasets.

Table 10: Comparison results between the proposed framework and the recent models

Reference Model Dataset Accuracy Precision Sensitivity Specificity F1-Score

[11] RF and
chi-square
with PCA

Cleveland 98.7% 100% 97.1% NA NA

[12] CART Cleveland 93% 96% 91% NA 93%
[15] KNN Cleveland 88% NA NA NA NA
Proposed
framework

Tuned RF
With PCA

Cleveland 100% 100% 100% 100% 100%

[9] Boosted
decision tree

Framingham 85% NA 6% 99% NA

[13] RF Framingham 96.8% 98.94% 94.4% 99% 96.61%
[16] RF Framingham 99.49% 99% 100% NA 100%
Proposed
framework

Tuned RF
With PCA

Framingham 96.36% 100% 75.00% 85.71% 100%

Table 10 shows that [11,12,15] and the proposed framework used the Cleveland dataset. In [11], the
random forest technique had the best performance. It achieved 99.4% accuracy, 100% precision, 98.6%
sensitivity and 99.3% f1-score [12] applied randomized decision tree ensemble, accuracy, precision,
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sensitivity, and f1-score were 93%, 96%, 91%, and 93%, respectively [15] applied KNN and Naïve Bayes
on Cleveland and Stat log datasets, and KNN had the best performance with an accuracy of 88%.
In the proposed framework, the tuned random forest achieved 100% accuracy, precision, sensitivity,
specificity, f1-score, ROC, MCC, and 0 in Log_Loss. Moreover, Table 10 shows that [9,13,16] and
the proposed framework used the Framingham dataset. In [9], the decision tree achieved an accuracy
of 85% in RapidMiner. In [13], the random forest was the best model because it achieved 96.71%,
98.94%, 94.4%, 99%, 96.61%, and 100% for accuracy, precision, sensitivity, specificity, f1-score, and
AUC, respectively. In [16], logistic regression, artificial neural organization, KNN, Naïve Bayes, and
random forest are implemented; the random forest had the best performance with 99.49%, 99%, 100%,
and 100% for accuracy, precision, sensitivity, and f1-score respectively. In the proposed framework,
the tuned random forest achieved 96.36% in accuracy, 100% in precision, 75% in sensitivity, 85.71%
in specificity, 100% in f1-score, and 87.50% in ROC, 85% in MCC, and it achieved 1.26 in Log_Loss.
Therefore, in our proposed framework, the tuned random forest achieves the best performance in
comparison with the state -of -art in this field.

6 Conclusion

This paper proposed a robust and tuned random forest classifier using the randomized grid
search algorithm. The proposed framework increases the ability of CAD predictions by tracking
down risk pointers and learning the confusing joint efforts between them. First, we used Cleveland
and Framingham datasets and pre-processed them using data mining techniques, such as cleaning,
normalization, and outlier detection techniques. Second, the PCA algorithm was utilized to lessen
the feature dimensionality of the two datasets. Finally, a random forest machine learning model was
tuned using a hyperparameter tuning technique, namely a randomized grid search, to select the best
parameters for the ideal CAD analysis. The proposed framework was evaluated and compared with
conventional classifiers. The accuracy, specificity, sensitivity, ROC value, and f1-score of the tuned
random forest classifier are 100%, and the log loss is 0 using the Cleveland dataset.

Moreover, using Framingham, it achieved 96.36% in accuracy, 100% in precision, 75% in sensi-
tivity, 85.7% in specificity, 100% in f1-score, and 87.50% in ROC, 85% in MCC, and it achieved 1.26
in Log_Loss. The measures of the tuned random forest classifier are higher than the recent existing
classifiers. The prediction time is a limitation of our proposed framework. Therefore, our future work
is to improve the prediction time of the proposed framework by utilizing more optimization and feature
selection approaches. Moreover, we will use different datasets of images to identify heart disease.
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[6] M. Adar, W. Książek, R. Acharya, R. S. Tan, V. Makarenkov et al., “A new machine learning technique
for an accurate diagnosis of coronary artery disease,” Computer Methods and Programs in Biomedicine, vol.
179, no. 13, pp. 104992, 2019.

[7] C. Krittanawong, H. U. H. Virk, A. Kumar, M. Aydar, Z. Wang et al., “Machine learning and deep learning
to predict mortality in patients with spontaneous coronary artery dissection,” Scientific reports, vol. 11, no.
1, pp. 1–10, 2021.

[8] I. D. Mienye and Y. Sun, “Improved heart disease prediction using particle swarm optimization based
stacked sparse autoencoder,” Electronics, vol. 10, no. 19, pp. 2347, 2021.

[9] J. J. Beunza, E. Puertas, E. G. Ovejero, G. Villalba, E. Condes et al., “Comparison of machine learning
algorithms for clinical event prediction (risk of coronary heart disease),” Journal of Biomedical Informatics,
vol. 97, pp. 103257, 2019.

[10] M. JayaSree and L. K. Rao, “Survey on - identification of coronary artery disease using deep learning,”
Materials Today: Proceedings, no. 2214–7853, pp. 1–5, 2020.

[11] G. E. Anna, H. Amir and A. Emmanuel, “Classification models for heart disease prediction using feature
selection and PCA,” Informatics in Medicine Unlocked, vol. 19, no. 3, pp. 100330, 2020.

[12] M. Domor, S. Yanxia and W. Zenghui, “An improved ensemble learning approach for the prediction of
heart disease risk,” Informatics in Medicine Unlocked, vol. 20, no. 8, pp. 100402, 2020.

[13] D. Krishnani, A. Kumari, A. Dewangan, A. Singh and N. S. Naik, “Prediction of coronary heart disease
using supervised machine learning algorithms,” in Proc. 2019 IEEE Region 10 Conf. (TENCON), Kochi,
India, pp. 367–372, 2019.

[14] A. H. Shahid, M. P. Singh, B. Roy and A. Aadarsh, “Coronary artery disease diagnosis using feature
selection based hybrid extreme learning machine,” in Proc. the 3rd Int. Conf. on Information and Computer
Technologies (ICICT), San Jose, CA, USA, pp. 341–346, 2020.

[15] M. S. Maashi, “Analysis heart disease using machine learning,” Multi-Knowledge Electronic Comprehensive
Journal for Education and Science Publications (MECSJ), vol. 29, pp. 1–15, 2020.

[16] A. Baidya, “Comparative analysis of multiple classifiers for heart disease classification,” International
Journal of Advanced Research in Computer Science, vol. 11, no. 3, pp. 1–6, 2020.

[17] J. Ahamed, A. M. Koli, K. Ahmad, M. A. Jamal and B. B. Gupta, “CDPS-IoT: cardiovascular disease
prediction system based on IoT using machine learning,” International Journal of Interactive Multimedia
and Artificial Intelligence, vol. 7, no. 4, pp. 1–9, 2021.

[18] P. N. Tan, M. Steinbach, A. Karpatne and V. Kumar, “Introduction to data mining,” in Computers, 2nd
edition, London, UK: Pearson, pp. 1–864, 2018.

[19] M. Z. Naser and A. H. Alavi, “Insights into performance fitness and error metrics for machine learning,”
CoRR, vol. abs/2006.00887, pp. 1–18, 2020.

[20] M. Hossin and M. N. Sulaiman, “A review on evaluation metrics for data classification evaluations,”
International Journal of Data Mining Knowledge Management Process, vol. 5, no. 2, pp. 1–11, 2015.


	A Robust Tuned Random Forest Classifier Using Randomized Grid Search to Predict Coronary Artery Diseases
	1 Introduction
	2 Literature Review
	3 Scientific Background
	4 Materials and Methods
	5 Results and Discussion
	6 Conclusion
	References


