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Abstract: The COVID-19 outbreak began in December 2019 and was declared
a global health emergency by the World Health Organization. The four
most dominating variants are Beta, Gamma, Delta, and Omicron. After the
administration of vaccine doses, an eminent decline in new cases has been
observed. The COVID-19 vaccine induces neutralizing antibodies and T-cells
in our bodies. However, strong variants like Delta and Omicron tend to escape
these neutralizing antibodies elicited by COVID-19 vaccination. Therefore, it
is indispensable to study, analyze and most importantly, predict the response
of SARS-CoV-2-derived t-cell epitopes against Covid variants in vaccinated
and unvaccinated persons. In this regard, machine learning can be effectively
utilized for predicting the response of COVID-derived t-cell epitopes. In this
study, prediction of T-cells Epitopes’ response was conducted for vaccinated
and unvaccinated people for Beta, Gamma, Delta, and Omicron variants. The
dataset was divided into two classes, i.e., vaccinated and unvaccinated, and
the predicted response of T-cell Epitopes was divided into three categories,
i.e., Strong, Impaired, and Over-activated. For the aforementioned prediction
purposes, a self-proposed Bayesian neural network has been designed by
combining variational inference and flow normalization optimizers. Fur-
thermore, the Hidden Markov Model has also been trained on the same
dataset to compare the results of the self-proposed Bayesian neural network
with this state-of-the-art statistical approach. Extensive experimentation and
results demonstrate the efficacy of the proposed network in terms of accurate
prediction and reduced error.
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1 Introduction

Since its outbreak, the COVID-19 virus has affected our society and economies in several ways
[1,2]. Around 200 countries have been affected by this ongoing disease. As of 17 August 2022, there have
been around 589.68 million confirmed cases, including approximately 6.43 million deaths. After an
extensive administration of vaccine doses, an eminent decline in new cases has been observed. However,
the virus is still mutating, and the new variants of COVID-19 are more dangerous and dreadful than the
previous ones. The four most dominating variants are Beta, Gamma, Delta, and Omicron. The health
department first detected the Beta variant in the Nelson Mandela Bay metropolitan area of Eastern
Cape Province of South Africa on December 18, 2020 [3]. The Gamma variant of SARS-CoV-2 was
first detected by the National Institute of Infectious Diseases (NIID) of Japan on 6 January 2021 in
four patients who had arrived in Tokyo and had recently visited Brazil [4]. On the other hand, the
Delta variant (B.1.617) was first detected in October 2020. It turned out to be twice contagious as
the previous variants [5]. Patients affected by the delta variant were more likely to be hospitalized
than earlier variants. Lastly, the Omicron (B.1.1.529) variant was detected in November 2021 and is
considered more transmissible than the Delta variant [6].

The response of the human body’s immune system plays a critical role against viruses or other
foreign particles [7]. The COVID-19 vaccination induces the neutralizing antibodies and T-cells in
our body [8]. The Omicron variant has been reported to escape these neutralizing antibodies elicited
by COVID-19 vaccination extensively. T-cells are the main components of our immune system and
are developed from the stem cells in our bone marrow. T-cells play a pivotal role in the immune
response to viral infections. The foreign particle is commonly termed an antigen that could be a
bacteria or a virus. An antibody, on the other hand, is a Y-shaped protein used by the immune system to
identify and neutralize foreign particles (bacteria/viruses). Whereas an epitope is the part of an antigen
molecule to which an antibody attaches itself [9–12]. The response of T-cells against different variants
of COVID-19 is a vital parameter to gauge the strength of the immune system and the effectiveness
of the administered vaccine doses. The virus-specific T-cells, i.e., Cluster of differentiation (CD8+
and CD4+), exert antiviral functions leading to rapid control of viral infection and reducing disease
severity [13].

It is still under investigation whether or not the Omicron variant completely evades the T-cell
immunity elicited by COVID-19 vaccination. Therefore, it is indispensable to study, analyze, and most
importantly predict the response of SARS-CoV-2-derived t-cell epitopes against different Covid vari-
ants in vaccinated and unvaccinated persons. In this regard, machine learning methods can effectively
predict the response of COVID-derived t-cell epitopes in vaccinated and unvaccinated persons, which
could help and further the vaccine development studies by providing realistic prediction data.

This paper focuses on the machine learning-based prediction analysis of T-cell epitope’s response
against different Covid variants in vaccinated and unvaccinated persons. The prediction analysis has
been carried out using a self-proposed Bayesian neural network by combining variational inference
and flow normalization optimizers. Furthermore, the Hidden Markov Model (HMM) has also been
trained on the same dataset to compare the results of the self-proposed Bayesian neural network
with this state-of-the-art statistical approach. Extensive experimentation and results demonstrate the
efficacy of the proposed network in terms of accurate prediction and reduced error.

The main contributions of this paper are:

1. A self-proposed Bayesian Neural Network with Variational Inference and flow normalization
optimizer has been developed to predict the response of T-cell epitope against four variants of
COVID-19 in both vaccinated and unvaccinated persons.
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2. The self-proposed Bayesian Neural Network has been compared with the Hidden Markov
Method for validation purposes.

3. To validate the cross-variational inference of the proposed Bayesian Neural Network, it has
been compared with the Monte Carlo method. Similarly, HMM has been cross-validated with
the Support Vector Machine (SVM).

2 Related Work

In literature, Bayesian Neural Network and Hidden Markov Method can be found for several
related applications; for instance, a shallow long short-term memory (LSTM) based neural network
has been proposed in [14] to predict the risk category of a country. A Bayesian optimization framework
has been utilized to optimize and automatically design country-specific networks. The results show
that the proposed pipeline outperforms state-of-the-art methods for data from 180 countries and can
be helpful for such risk categorization. Furthermore, a hybrid approach has been proposed in [15] for
forecasting COVID-19 time series methods based on combining three deep learning models, i.e., multi-
head attention, long short-term memory (LSTM), and convolutional neural network (CNN) with the
Bayesian optimization algorithm. All models are designed based on the multiple-output forecasting
strategy, which allows forecasting multiple time points. Moreover, in [16] the spatial epidemic dynamics
of the COVID-19 outbreak in Italy were modelled by employing an Object-Oriented Bayesian Network
to explore the dependence relationships, statically and dynamically, among the weekly incidence rate,
the intensive care units occupancy rate and that of deaths. Vaccination risk-benefit analysis has been
challenging because of rapidly evolving data and/or transmission levels. To optimize the risk-benefit,
a Bayesian network has been used in [17,18] to integrate local and international data, government
reports, published literature and expert opinion. The model estimates probabilities of outcomes under
different scenarios of age, sex, low/medium/high transmission, SARS-CoV-2 variant, vaccine doses,
and vaccine effectiveness. The model can be rapidly updated to incorporate new data, adapted for other
countries, extended to other outcomes (e.g., severe disease), or used for other vaccines. Similarly, a
probabilistic model (a Bayesian network) has been presented that tells the users about the likelihood of
asymptotic, mild or severe COVID-19 (past, present and projected). When embedded in a smartphone
app, the model can detect new outbreaks in a monitored population and identify outbreak locations
as early as possible.

Hidden Markov models (HMMs) capture randomnesses in Spatio-temporal dynamics and uncer-
tainty in observations. In recent literature, several articles utilize the Hidden Markov Method for the
prediction analysis of COVID data; for example, in [19] the LSTM-Markov model has been presented
for the efficient prediction of COVID cases. The Markov model has been integrated with the LSTM
model to reduce the prediction error of the LSTM model. Compared with the prediction results of the
classical LSTM model, the average prediction error of LSTM-Markov has been reduced by more than
75%. Similarly, in [20] the problem of modelling constrained hospital resources during the pandemic
has been solved using a proposed ‘aggregate count explicit-duration hidden Markov model’. Instead
of daily patient admission count, authors have modelled aggregated counts of used resources. Results
show that the presented approach provides competitive probabilistic forecasts for the future even as the
dynamics of the pandemic shift. Besides, in another study [21], a Markov model was developed to study
the clinical risk factors of patients based on cardinal data and clinical symptoms. The Markov model
predicts the number of COVID-19 infections was constructed. Furthermore, the patient’s general
information, clinical characteristics, and prevention methods were analyzed. The authors concluded
that the Markov model could be utilized to judge the time course of COVID-19 in various development
states. Furthermore, the severity of COVID-19 in different states has been predicted using the HMM
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model [22]. Authors have further aggregated the severity level of each region over a fixed period to
visualize the time evolution and propagation across regions. Results from the implemented HMM
are consistent with what was observed in Italy and the USA. Similarly, the Hidden Markov Chain has
been utilised to forecast the evolution of COVID-19 in Morocco [23]. The recorded and forecasted data
for the cumulative number of confirmed, recovered and active cases had been presented correctly. In
addition to the Bayesian and HMM models, various hybrid models can also be found in literature,
e.g., a Bayesian Ridge Regression has been hybridized with an n-degree Polynomial in [24]. It utilizes
a probabilistic distribution to estimate the value of the dependent variable instead of using traditional
methods for Covid-19 analysis.

While Bayesian networks (BNs) have drawn more scientific interest, their use in practice has
lagged, despite their potential to impact healthcare positively. The variety of medical diseases for which
healthcare-related BN models have been presented has been improved, as have the approaches taken
by the models when applied to the most prevalent medical conditions. According to recent studies [25–
28], nearly two-thirds of all healthcare BNs utilize a Bayesian network to focus on the four conditions
cardiac, cancer, psychiatric, and lung illnesses.

After an extensive literature review, the research gap found in the existing literature to the
authors’ knowledge is that machine learning-based prediction for the T-cell epitopes’ response against
Covid-19 has not been performed on four different variants. Hence, in this research, a robust analysis
was conducted on four different variants of Covid-19 to predict the trend of upcoming variants or
similar diseases using imbalanced and new datasets and that too in a resource constraint environment,
i.e., for small datasets and low computation power.

3 Materials and Methods
3.1 Dataset

In this study, the dataset has been divided into two categories, i.e., vaccinated and unvaccinated.
The Microarray datasets have been utilized for inscribing Gene Expression Omnibus of the National
Centre of Biotechnology to extract the raw gene of “SARS-CoV” [29]. In addition, the T-cells
epitope Affymetrix microarray dataset was gathered for different variants under vaccination and non-
vaccination phases. The utilized dataset consists of 1781 samples for affected + vaccinated T-cells
epitopes, 6621 samples for affected + unvaccinated T-cells epitopes, and 4023 samples for the mild
affected/not affected T-cells epitopes. These samples have been obtained from four COVID-19 variant
categories, i.e., beta, Gamma, delta, and Omicron, as shown in Table 1.

Table 1: Dataset division for different groups, including vaccinated and unvaccinated

Variants Vaccinated T-cell epitope
(affected)

Non-Vaccinated T-cell
epitope (affected)

Vaccinated T-cell epitope
(not affected/mild affected)

Beta 234 1749 1108
Gamma 228 1612 1161
Delta 1208 2948 1556
Omicron 111 312 198
Total 1781 6621 4023
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3.2 Design Approach

The overall design approach structure is shown in Fig. 1. In the design approach, initially, the
dataset is distributed in two categories, i.e., vaccinated and unvaccinated. Furthermore, variants
affected groups were subdivided. Moreover, the deep neural networks were trained on P-100 GPU.
Comparative analysis was conducted with state-of-the-art networks to confirm the usefulness of the
proposed model.

Figure 1: Integrated proposed architecture of dataset and proposed model

3.2.1 Self-Proposed Bayesian Neural Network

The proposed Bayesian neural network approach helps to enhance the predictability of
COVID-19 variants and their effects on T-cells Epitopes. Especially this method is beneficial for
Omicron Variant, which can help researchers to achieve analysis in a sophisticated manner with
limited data. Bayesian Neural Network, in comparison to the standard neural network is more
marginalized, and weights tend towards probabilistic distributions instead of single set weights
distribution. It also helps in approximate predictive analysis. In this paper, the utilized technique to
implement a Bayesian neural network includes integrating a variational inference with deep learning.
Initially, the TensorFlow probability library is imported, and a sequential module is initialized. The
model is divided into three parts, i.e., the input layer, the hidden layer and the output layer. The
variational inference is applied as a dropout layer to obtain an approximate prediction analysis of
different variants of COVID-19 on T-cell epitopes. Moreover, the optimization technique of variational
inference using a flow normalization surrogate has been used to enhance results. Fig. 2 depicts the
proposed model. Similarly, a basic variational model along with flow normalization is given in Fig. 3.
The Imbalance of the dataset is explained for different distributions followed by Gaussian distribution
to tackle the dataset’s misinformation and compensate for it.
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Figure 2: Detailed structure of self-proposed Bayesian neural network

Figure 3: Basic variational inference model using normalization flow

In this study, the surrogate is built using normalization flow. Normalization flow helps to build
custom probability distributions. This is different from the Bijector-based surrogate, in which a new
Bijector (also known as Inverse Autoregressive flows (IAF)) transformation has to be established and
have been implemented in [30–34]. IAFs are normalizing flows that employ neural networks to cap-
ture complicated, nonlinear dependencies between distribution components. We utilized variational
inference to fit a straightforward model, linear regression with intercept and slope, to data with and
without a normalizing flows-based surrogate density. To check whether VI with Normalization Flows
give many results on a given dataset of 4 different variants of COVID-19 against T-cell Epitopes,
analysis is made in Results Section.

3.2.2 Hidden Markov Structure Implementation

The model of HMM is prepared using PyTorch Libraries, inculcating forward and backward
propagation techniques for minimizing the total probability difference with respect to actual figures.
Prediction analysis was carried out on a P100 Graphic Processing Unit (GPU). The GPU had a
frequency of 1190 MHz with a memory unit of 715 MHz. Being a dual-slot card, the NVIDIA Tesla
P100 PCIe 16 GB drew power from a 1x 8-pin power connector, with a power draw rated at 250 W
maximum.
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The HMM architecture depicting the emission probabilities is shown in Fig. 4. Emission prob-
abilities depict how likely any COVID variant will act against the T-cell epitopes of vaccinated or
unvaccinated samples, e.g., state-1 represents the Gamma variant. It depicts how the gamma variant
will affect the T-cell epitopes in an unvaccinated sample. State-1 to State-4 show the future state
prediction analysis via Emission probabilities, respectively. These states describe the T-cell epitope
response on the Gamma variant in three categories, i.e., M1 (affected epitopes), M2 (strong epitopes),
and M3 (over-activated Epitopes) due to the effect of the Covid-19 Variant. The design approach for
HMM is described as shown in Fig. 5.

Figure 4: Emission matrix analysis for vaccinated and unvaccinated groups

4 Results and Discussion
4.1 Self-Proposed Bayesian Neural Network

The training performance of the model was evaluated with different parameters. The parameters
inscribed prediction analysis, mean losses, median losses, IAF surrogate losses, and Prediction density
prediction with respect to intercept.

4.1.1 Predication Analysis

Firstly, prediction analysis of the response of T-cell epitope with respect to different variants was
observed after rigorous training in the case of unvaccinated people. The overall analysis predicted that
the Delta variant was more impairing towards T-cell epitope with respect to the Omicron variant, as
shown in Table 2. Furthermore, graphical analyses of results are shown in Fig. 6.

Moreover, similar training was performed on the vaccinated group. The results depicted that the
Omicron was less affected by the T-Cell epitope, which shows that the T-cell is attacking or protecting
the body from the Omicron variant, as shown in Table 3. Furthermore, graphical analyses of results
are shown in Fig. 7.
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Figure 5: Detailed design approach for predicting COVID variants’ response to a T-cell epitope

Table 2: Prediction of T-cell epitopes’ response for unvaccinated samples using the proposed network

Variant Strong T-cell epitope Impaired T-cell epitope Over-activated T-
cell epitope

% Prediction effect by Beta 41.22% 29.1% 16%
% Prediction effect by Gamma 55.046% 34.58% 16.15%
% Prediction effect by Delta 58.17% 51.91% 23.89%
% Prediction effect by Omicron 41.4% 37.13% 11.99%
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Figure 6: Graphical analysis of prediction results for vaccinated samples

Table 3: Prediction of T-cell epitopes’ response for vaccinated samples using the proposed network

Variant Strong T-cell epitope Impaired T-cell epitope Over-activated
T-cell epitope

% Prediction effect by Beta 69.5% 13.2% 13.1%
% Prediction effect by Gamma 74.07% 8.76% 18.9%
% Prediction effect by Delta 68.17% 31.23% 24.111%
% Prediction effect by Omicron 73.19% 28.2% 9.2%

Figure 7: Graphical analysis of prediction results for unvaccinated samples
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While comparing Tables 2 and 3 for Bayesian Neural Network, the vaccine effect on T-cell
epitopes is the most notable, even in the presence of different variants. For example, in the unvaccinated
group, the most dominating and affected variant on T-cell epitopes is the Delta variant (effect
predictability due to previous states = 51.91%), followed by Omicron that is 37.33% as second
dominant, Gamma 29.1% as third dominant, and Gamma, at last, resulting as 34.58%. Moreover, over-
activated T-cell epitopes also result in an overactive immune response (symptoms are Fatigue, Joint
Pain, and Recurring fevers), which can also be the downside that variants affect. On the other hand,
in the vaccinated group Delta variant is still the most dominating, but the rate of effect is at 31.23%.
Similarly, Omicron is observed as a low-effecting variant on T-cell epitopes for over-activation.

The holistic scope of this study is towards an in-depth comparison of HMM and a self-proposed
model in terms of accuracy and computational power (will be discussed in an upcoming section).
However, the accuracy of state-of-the-art HMM and Bayesian models is near and reasonable. However,
to cross-verify the proper working and methodology of the Self-proposed Bayesian Model, further
analyses are performed in further sections for satisfactory cross-validating results.

4.1.2 Model Fitting Analysis of Bayesian Neural Network

To assess convergence, the progress of the model fitting process was followed. These optimizations
can be observed under loss functions in the fitting process. The mean squared error (MSE) loss
function has been used. The loss plots of the IAF surrogate in Fig. 8 show mean and median negative
estimations. Each graph is modelled at 6 data points, calling six samples in code. Minimization in losses
appears after 37,889 iterations, and the model resulted in less noisy. However, the noise still appeared.

Figure 8: Mean and median loss analysis for prediction analysis using IAF surrogate in Bayesian neural

The evidence lower bound (ELBO, also known as the variational lower bound) is a lower bound
on the likelihood of seeing some data in a given model. It is an important parameter to be observed
and gives direction about how well surrogate density performs for a specific prediction model, for
example, prediction analysis of variants with respect to t-cell epitopes in our study.

The sample size is enhanced and then observed for better convergence of the model. The ELBO for
this model is predicted to be ELBO = −661.4, and given the comparison with earlier loss numbers, it
appears plausible that the ELBO should be slightly less. However, the difference is minor and arguably
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negligible. Even though the noise parameter is enhanced by increasing the sample size to 30, the
ELBO value is only slightly enhanced. The drawback of noise is that it can disturb the stability of
the whole case, as shown in Fig. 9. Noise analysis is vital because the dataset used in this research is
imbalanced. For noise detection in a Bayesian neural network, surrogate losses help to identify the
amount of noise produced via an imbalanced dataset. In this study, variational inference using a flow
normalization surrogate helped reduce network noise. ELBO values, as discussed before, help to tune
noise parameters. The noise density for the proposed model came out to be approximately 670 decibels
A (dBA) which is optimal with respect to the threshold level (that is 1000 ideally).

Figure 9: Noise and destabilization analysis of normalization flow NF (IAF) surrogate at increased
sample points

4.1.3 Cross Validation with Markov Chain Monte Carlo (MCMC) Method

After the abovementioned analysis, a question arises whether flow normalization performs better
in Variational Inference. Because the ELBO value was not much differentiating at different sample
points, this density comparison for all variants of COVID-19 prediction was estimated for the model
against the T-Cell epitopes dataset. We compare density estimates from the VI IAF model with
those from Just Another Gibbs Sampler (JAGS) to see if normalizing flows have helped with our
current modelling difficulty (which uses MCMC). As it does not use any surrogate density, the
Markov chain Monte Carlo sampling becomes the preferred approach here, as shown in Fig. 8. The
first step in applying a Monte Carlo simulation was to determine the transfer equation. Then we
had to define the distribution and parameters of each input used in the transfer equation. The last
step involves analyzing the simulation output and comparing the input variables for the required
probabilistic output. The comparison in Fig. 10 is carried out for two variables, i.e., MCMC and flow
normalization with respect to density variations [35]. Intercept is the threshold point where values
of density variations cross the threshold level, and the density variations are the difference in the
probabilistic outputs.

Fig. 10 shows that the normalizing flows model is significantly closer to MCMC findings than
either of the Gaussian surrogates, and IAF is nearly equal to MCMC for the intercept. The holistic
limitation of this whole model is that although additional diagnostic checks are required, it is still a
very effective strategy for many problems.
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Figure 10: Comparison analysis of flow normalization surrogate with respect to the Markov standard-
ized model. The X-axis represents the intercept, and Y-axis shows density measurements

4.2 Hidden Markov Model

The training performances of the model were evaluated with different parameters. The parameters
inscribed prediction analysis, comparison analysis with SVM and processing analysis.

4.2.1 Predication Analysis

Firstly, prediction analysis of the response of T-cell epitope with respect to different variants
was observed after rigorous training in the case of unvaccinated people. The overall results analysis
predicted that the Delta variant was more impairing towards T-cell epitope with respect to the Omicron
variant can be shown in Table 4. Graphical analysis is depicted in Fig. 11.

Similarly, the same training methodology was implemented on the vaccinated group, and the
results depicted that Omicron was less affected by the T-Cell epitopes. This portrays that T-cells might
be protecting the body from the Omicron variant, as shown in Table 5. Graphical analysis is illustrated
in Fig. 12.

Table 4: Prediction analysis of T-cell epitope on variant analysis for nonvaccinated samples after
training

Variant Strong T-cell epitope Impaired T-cell epitope Over-activated
T-cell epitope

% Prediction effect by Beta 47.32% 32.67% 15.41%
% Prediction effect by Gamma 56.44% 31.23% 17.55%
% Prediction effect by Delta 31.85% 56.56% 25.78%
% Prediction effect by Omicron 44.12% 39.22% 14.48%



CMC, 2023, vol.75, no.2 3529

Figure 11: Graphical analysis of prediction results for unvaccinated samples

Table 5: Prediction analysis of T-cell epitope on variant analysis for vaccinated samples after training

Variant Strong T-cell epitope Impaired T-cell epitope Over-activated
T-cell epitope

% Prediction effect by Beta 73.11% 11.8% 5.06%
% Prediction effect by Gamma 71.01% 7.22% 9.88%
% Prediction effect by Delta 63.67% 33.001% 14.11%
% Prediction effect by Omicron 71.9% 26.90% 9.64%

Figure 12: Graphical analysis of prediction results for vaccinated samples
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In Tables 4 and 5, the most notable thing is the vaccine effect on T-cell epitope’s even in
the presence of different variants. For example, in the unvaccinated group, the most dominating
and affected variant on T-cell epitopes is the Delta variant (effect predictability due to previous
states = 56.56%), followed by Omicron is 39.33% as the second dominant, Beta 32.67% as third
dominant, and Gamma, at last, resulting as 31.23%. Moreover, over-activated T-cell epitopes also
result in an overactive immune response (symptoms are Fatigue, Joint Pain, and Recurring fevers),
which can also be the downside that variants affect. On the other hand, in the vaccinated group Delta
variant is still the most dominating, but the rate of effect is at 33.001%. Similarly, Omicron is observed
as a low-effecting variant on T-cell epitopes for over-activation.

4.2.2 Cross-Validation of HMM with SVM

SVM categorizes data points even when they are not linearly separable by mapping the data to
a high-dimensional feature space. The data are changed to enable the hyper plane representation of
the separator once a separator between the categories has been found. Therefore, cross-validation with
SVM was carried out to cross-check HMM on this dataset, and the results were considerable, as shown
in Fig. 13. Trend shows that HMM outperformed SVM at the 36th bulk epoch size. A support vector
machine is a validation factor because it helps map high dimensional points at dataset imbalance [36].

Figure 13: Prediction analysis with respect to HMM and SVM

4.3 Comparison of Self-Proposed Bayesian Neural Network and HMM

The comparison analysis was carried out as given in Table 6. After in-depth comparison analysis, it
was noted that Delta variants most affected vaccinated and unvaccinated groups in all three categories:
strong T-cell epitope, impaired, and over-activated. Furthermore, Omicron was the second variant to
affect the unvaccinated group. Moreover, Gamma and beta variant stats were more or less severely
affecting the unvaccinated group but mildly affecting the vaccinated group.

Comparison analysis was conducted to determine whether the proposed Bayesian neural network
is in proper directives. So, by comparing the values with the state-of-the-art Hidden Markov model, the
% error was relatively less in string and impaired the T-Cell epitope’s analysis. Furthermore, the edge
of the self-proposed Bayesian Neural network on the Hidden Markov model was that no data cleaning
was required. On the other hand, data cleaning was required in the Hidden Markov model for accuracy.
Moreover, the processing time of Self proposed model was less than the Hidden Markov model and
other Bayesian Neural Networks already on the market. Similarly, cross-check optimizations were
performed for the Bayesian Neural network, and cross-check validation was performed with the
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state-of-the-art Monte Carlo method. It was observed that the Bayesian Neural network performed
exceptionally well. The graphical trend is shown in Fig. 14.

Table 6: In-depth comparison of self-proposed Bayesian neural network (BNN) and HMM

HMM BNN HMM BNN HMM BNN

Variant (%) Strong T-cell
epitope

% error Impaired T-cell
epitope

% error Over-activated
T-cell epitope

% error

Prediction effect
by Beta

73.11% 69.5% 3.61% 11.8% 13.2% 1.4% 5.06% 13.1% 8.04%

Prediction effect
by Gamma

71.01% 74.07% 3.06% 7.22% 8.76% 1.54% 9.88% 18.9% 9.02%

Prediction effect
by Delta

63.67% 68.17% 4.5% 33.001% 31.23% 1.77% 14.11% 24.111% 10%

Prediction effect
by Omicron

71.9% 73.19% 1.29% 26.9% 28.2% 1.3% 9.64% 9.2% 0.44%

Figure 14: Graphical analysis of prediction results for vaccinated samples

4.4 Training Loss and Computational Performance Analysis

Training losses were computed before model optimization and after model optimization. Training
Losses were computed, and 10,000 numbers of training steps were performed. After optimization
of the Bayesian model, training losses were significantly reduced, as shown in Fig. 15. Optimization
analysis was performed using variational inference, as mentioned in previous sections. The learning
rate was set to 0.0001, the number of epochs was kept at 10000, and the dataset split was 70:30.

Average Processing time and computational cost at different states were observed in Table 7.
Furthermore, model complexity can be described in two categories: expressive capacity and model
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complexity. So, during training and time analysis, the HMM against computational resources gave
considerable outputs and results in model framework, data complexity, model complexity, and
optimization processing. According to the dataset, the overall computation analysis shows that the
proposed Bayesian network was slightly lighter than the Hidden Markov model under rigorous
training, as shown in Table 7.

Figure 15: The left figure represents the training loss before optimization, and the right figure
represents the training loss after optimization

Table 7: Computational analysis of Bayesian network and hidden Markov model

Variant prediction analysis Bayesian model (epoch = 1000) Hidden Markov model (epoch = 1000)

Gamma 2 h 46 min 2 h 51 min
Beta 2 h 39 min 2 h 44 min
Delta 3 h 56 min 3 h 59 min
Omicron 49 min 1-h 5 min

5 Conclusion & Future Work

This paper presents a self-proposed Bayesian neural network with variational inference and
normalization flow for the prediction analysis of T-cell epitopes’ response against four Covid variants,
i.e., Beta, Delta, Gamma, and Omicron response for vaccinated and unvaccinated samples. The
dataset was divided into two categories: vaccinated and unvaccinated. The least affected variant in the
unvaccinated group predicted through a self-proposed Bayesian neural network was the Beta variant of
Covid-19, standing at 29.1% among the impaired group. Furthermore, the least affected variant in the
vaccinated group was the Gamma variant. A comparison analysis was made with Hidden Markov
Model to validate results further. The results were similar to the self-proposed model. However,
the additional advantage of our self-proposed network included reduced computational complexity
compared to the standard Hidden Markov model. Furthermore, it was predicted that under the
unvaccinated category delta variant was creating the most impaired T-cell epitopes with a ratio of more
than 50%. On the other hand, in the vaccinated category, this percentage was considerably reduced in
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all variants, especially the delta variant. For future work, the proposed algorithm can be deployed on
real time devices, and the network can also be trained in a distributed manner by exploiting federated
learning techniques. In clinical practices, such algorithms on real time devices can help predict the
impacts of COVID-19 variants on vaccinated and unvaccinated people.
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