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Abstract: Many extensive UAV communication networks have used UAV
cooperative control. Wireless networking services can be offered using
unmanned aerial vehicles (UAVs) as aerial base stations. Not only is coverage
maximization, but also better connectivity, a fundamental design challenge
that must be solved. The number of applications for unmanned aerial vehicles
(UAVs) operating in unlicensed bands is fast expanding as the Internet of
Things (IoT) develops. Those bands, however, have become overcrowded
as the number of systems that use them grows. Cognitive Radio (CR) and
spectrum allocation approaches have emerged as a potential approach for
resolving spectrum scarcity in wireless networks, and hence as technological
solutions for future generations, from this perspective. As a result, combining
CR with UAVs has the potential to give significant benefits for large-scale
UAV deployment. The paper examines existing research on the subject of
UAV covering and proposes a multi-UAV cognitive-based error-free model
for energy-efficient communication. Coverage maximization, power control,
and enhanced connection quality are the three steps of the proposed model.
To satisfy the desired signal-to-noise ratio, the covering zone efficacy is
investigated as a function of the distance among UAVs stationed in a specific
geographic region depending on multiple deployment configurations like
as rural, suburban, and urban macro deployment scenarios of the ITU-R
M.2135 standard (SNR).
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1 Introduction

Wireless communication is a reliable system that makes it easier for people to communicate. To
link the computer systems and mobile nodes, there is no need for any established infrastructure with
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this technique. This technological revolution has resulted in significant advancements in computers
and communication, as well as the availability of promised services at any time and from any location.
In comparison to wired networks, these are low-cost networks. It provides versatile mobility, allowing
users to access information at any time and from any location without relying on a fixed network
link [1,2]. The wireless network allows users and nodes to connect securely with one another. Second
wireless data use is growing at a higher pace in the next wave of wireless communication. However,
the frequency range that can be used is limited and costly. As a result, modern wireless networks must
function efficiently to satisfy the increasing demand for wireless services. As a result, mathematical
optimization approaches, such are multi-objective.

Optimization tools and traditional optimization methods play a critical role in improving the
performance of wireless networks. The communication network for unmanned aerial vehicles has
been the subject of this paper. The UAVs are self-contained and can fly freely or under the guidance
of ground stations. These decentralized nodes’ applications deliver exciting new ways to complete
a project, whether it’s a government or industrial mission. A single UAV design is currently in
development. The Cloud of UAVs, on the other hand, has several advantages. As a result, there are
several providing operational and consulting services in UAVCN [3]. Even so, independent UAVs often
tend to meet the requirements of complex missions, limiting their use in a wide range of applications.
To solve the problem, a collective UAV group must be formed to improve performance, particularly
in data collection and processing. The authors, for example, developed a model of inter cooperative
investigation [4–8]. A collaborative exploration project focused on object tracking, recognition, and
latency was investigated in this study. Aside from covering capacity, there are indeed numerous issues
comprising mobility, longevity, compatibility, and obstructions. Energy deficiency is a major flaw
in UAVs since it can lead to mission failure or even a drone crash if the power can’t keep up with
the drones’ operation completion. As a result, energy-efficient UAV contact in UAV networks must
be thoroughly investigated [9]. When UAVs perform purpose surveillance, they can significantly
increase their ability to adjust to the environment while lowering contact and flight overhead, avoiding
serious consequences. It should be noted that due to the collaborative effect of related UAVs, the
UAV reconnaissance mission can be accomplished. Multi-UAV cooperating surveillance, on the other
hand, is rarely explored because of the challenge to explain the collaborative relationship. The issue
of UAV coverage has been researched. The authors developed a paradigm that reflects the UAV’s
energy usage and communication performance to examine energy-efficient UAV interaction with
a sensing element. Among the several historical optimization approaches, In the current wireless
generation, convergent efficiency has proven to be the best technique for algorithm creation. As a
result, it has become the most common engineering tool among researchers worldwide [10,11]. As
a result, the convex optimization method can be used to optimize the power. The increased capacity
requirements of wireless technologies can only be fulfilled by enormous network densification through
the deployment of UAVs. However, the effectiveness of this deployment principle is contingent on
an effective deployment strategy [12–17]. Previously, the implementation of macro base stations was
primarily focused on improving coverage. This is why researchers all over the world are working
to find coverage gaps, or areas that aren’t covered. The deployment of UAVs paved the way not
just for increased coverage, but also for increased capacity and power optimization. The proposed
method achieves the Inter energy-efficient deployment scenario based on cognitive sensing, which
can effectively explore the optimum elucidation. Meanwhile, the projected model convergence was
demonstrated. It’s worth noting that our research borrows the idea of coverage probability from and
applies it to modeling. The major distinctions can be summarized as follows: Arbitrary installation—
is the most basic cognitive-based UAV deployment strategy, in which UAVs are deployed at random.
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Edge planned deployment—this strategy solves the issue of network coverage by deploying UAVs
in the macro segment without accounting for shadow fading and merely estimating route loss. The
deployment of the farthest clusters—this approach can be used to deploy the farthest cluster center by
creating the area of the cluster per macrocell. A UAV is then placed in the center of each cluster farthest
from its macro BS. The remaining UAVs are distributed at random if the number of UAVs increases
with the number of clusters [11]. The aforementioned distribution model is tough to comprehend,
achieving certain goals while ignoring others. A deployment model should be covering the full
geographical area with the greatest number of users while causing the least amount of interruption
and using the least amount of power. In the following section, a new mathematical method is proposed
for determining the best locations for UAV deployment for power optimization [13]. In the next
section rather than employing a specific criterion for determining whether or not coverage is effective,
aggregating the coverage probability of numerous linked UAVs, altering the coverage probability
function, which improves the precision and efficiency of UAV coverage. The article considers how
transmission power control and position adjustment can improve the energy efficiency of a given
number of UAVs [14–16]. A new real-time small object identification (RSOD) method based on the
feature expression ability of convolutional networks. To deal with the high-density challenge, the
RSOD approach uses shallow feature maps. The Flying Ad Hoc Network is one of the emerging
fields that evolved from Flying Ad Hoc Networks (FANET). In any network, a routing protocol has
a substantial problem selecting the best optimal path. A multi-feature learning model with enhanced
local attention (MFELA) is proposed for vehicle re-identification. The model has both global and
local branches. The global branch takes advantage of both middle and high-level semantic features to
boost global representation capability [17].

A. Contribution

The paper’s key contribution is in the form of a cooperative network of multi-UAV systems
with base station interconnection, which will aid society in the next generation in cognitive radio
scenarios by increasing the system’s QoS parameters in terms of FER. The impact of the suggested
block diagram on diverse deployment configurations of the ITU-R M.2135 standard, such as urban,
suburban, and rural macro deployment setups, is also demonstrated in this study.

B. Organization

The remainder of the paper is laid out as follows. The system model is presented in Section 2,
which also introduces the concept of probability of coverage. Section 3 discusses the organized multi-
UAV network and its system model, while Section 4 wraps up the paper and suggests some future
research topics.

2 System Model and Problem Formulation

Methods for deploying unmanned aerial vehicles (UAVs) to reduce power consumption are
discussed as follows.

2.1 Probability of Coverage

Consider the case of multi-UAV collaboration. As shown in Fig. 1, there is a coverage problem.
For this reason, assume the coverage of the ground unit m. If the likelihood of a given UAV n is Qn,
m, we use a term called “soft coverage” to describe our approach. Calculate the chance of m’s being
covered by a UAV, and come up with the following formula, shown in Eq. (1).

P = 1 − (
1 − Q1,m

) (
1 − Q2,m

) (
1 − Q3,m

)
. . .

(
1 − Qn,m

)
(1)
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Figure 1: Scenario of several interfering UAVs

According to this formula, the more UAVs identified, the greater the possibility of coverage for
the “m” ground unit, which is both fair and realistic.

A subject worth exploring is how to appropriately characterize a mission point’s coverage utility
given the factors of signal power and propagation loss. Consider an air-to-ground network made up
of an “N” number of unmanned aerial vehicles (UAVs) [12].

I ∈ R2 is a continuous region that is meshed uniformly and separated into discrete cells. The state
of UAV n is Sn = {QnPn} with “Qn” and “Pn” representing UAV n’s horizontal position [[XnYn]] and
carrier transmission capacity, respectively. The directional antenna beamwidth of a UAV is denoted

by ∅ = 2π√
N0

, this corresponds to the antenna layout in a planar array with homogeneous antennas,

and the antenna gain of a UAV is denoted by Eq. (2).

G =

⎧⎪⎨
⎪⎩

Gm − φ

2
≤ θ ≤ φ

2
,

1

sin2(3π/2
√

N0

, otherwise
(2)

where Gm denotes main-lobe gain and N0 denotes the number of antenna components. Furthermore,
the side lobe benefit is the second item. The coverage probability is affected by propagation loss,
position, carrier communication bandwidth, and the ecological impact factor. To begin, for air-to-
ground transmission, the route loss L dB is computed by Eq. (3).
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LdB = 10.n0 log
(

4πfcdin

C

)
(3)

where n0 stands for the path loss exponent, fc is the carrier frequency of the UAV, c is the speed of an
electromagnetic wave, and d is the distance between the UAV and mission cell I Second.

Second, there are two types of links: LOS (line-of-sight) and NLOS (non-line-of-sight) due to the
faulty wireless transmission. The chance of LOS is calculated by Eq. (4).

PLOS,n = α

(
180
π

∅in − ∅0

)γ

(4)

at which ∅0 is the reflection threshold, which indicates the lowest elevation angle at which a UAV
can receive a signal from the LAP. Furthermore, α and γ are environmental effect factors that are
constants. As a result, the chance of NLOS is given by Eq. (5).

PNLOS,n = 1 − PLOS,n (5)

As a result, it is possible to estimate the likelihood of a single UAV out of “n” covering a mission
cell “I”, given by Eq. (6).

Qi (Sn) = PLOS,nQ
(

Pmin + LdB − Pn − G + μLOS

σLOS

)
+ PNLOS,nQ

(
Pmin + LdB − Pn − G + μLOS

σLOS

)
(6)

where Pn is the carrier communication power of UAV n, Pmin denotes the minimum power required
for successful detection, and μLOS and σLOS indicate the mean and variance of shadowing for LOS
connections, respectively.

This paper presents the notion of mission area importance to evaluate the overall covering
consequence of the entire assigned area. As a result, the current UAV network’s capacity to cover
assigned cell “I” is limited, refer to Eqs. (7) and (8).

gi,n = σi

{
1 −

∏
n∈N

(1 − Qi (Sn))

}
(7)

where I denote the relevance (traffic, etc.) of mission cell i. As a result, we may determine the coverage
capability of the entire UAV network.

U0 =
∫

i∈I

gi,N di =
∫

i∈I

σi

{
1 −

∏
n∈N

(1 − Qi (Sn))

}
di (8)

Because UAVs use their carrier transmission powers to accomplish coverage tasks, reducing energy
consumption is a major challenge. On the other side, to assure mission execution excellence, the
coverage condition must be met. The UAV setup’s overall energy efficiency G0 is calculated based
on the energy efficiency design of UAV communication, shown in Eq. (9).

G0 =
{

U0∑
i∈N Pi

, U0 ≥ τ

0 otherwise
(9)
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where the coverage threshold of the provided mission requirement is denoted by Furthermore, the
coverage utility per unit of power is reflected in the energy efficiency G0. In particular, a greater G0

indicates that less transmission power is required, and hence a larger coverage utility can be achieved.
As a result, the goal of this model is to discover the best UAV state. Sopt to maximize G0 [11], given by
Eq. (10).

P : Sopt = arg max G0 (10)

2.2 Performance of Organized Multi -UAV Network

Given the various discrete variables in the suggested system model, an efficient solution is
necessary to handle the issues of excessive computing complexity induced by large scheme cosmoses.
Stimulated by advancements in wireless technologies, the model created centralized-distributed opti-
mization architecture of UAVs networks and translated them into a cognitive decision network, where
the suggested problem is handled by an optimized solution. The above works are used as a guide to
solving the given model in this article [17,18].

To begin with, the mission area’s environmental factors as well as all drone information, such as
positions, the ground center receives carrier transmission powers and coalition preferences, where the
UAV system is charted to the virtual decision network [19].

The problem is then solved using an optimization methodology. Finally, Sopt will broadcast the
obtained decision outcomes to drones, which will change their capacity for carrier transfer and fly
to the prescribed sites according to Sopt. Fig. 2’s blue block diagram depicts the preceding phases.
All UAVs transmit data to the ground center, which subsequently calculates decision outcomes and
distributes them to the drones. Sopt is given to all UAVs, and the outcomes of the decision are
carried out.

Figure 2: A schematic depicting multi-UAV coverage in a combat zone
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Determine whether the UAV network’s existing coverage utility satisfies the communication needs
to maximize the Coverage maximization by examining UAVs’ ideal deployment locations with their
supplied maximum carrier transmission powers. If you aren’t satisfied, P doesn’t have a solution; if
you are, find the best power allocation.

Coverage Probability and Cognitive Detection

The difficulty of spectrum sensing can be compared to that of binary hypothesis testing. H0 refers
to the inactive user, who is the principal user, whereas H1 settles the active position. As a result,
hypotheses H0 and H1 can be used to determine activeness and inactivity.

The false alarm probability (Pf = P (H1|H0)), miss detection (Pm = P (H0|H1)), and detection
(Pd = P H1|H1) can all be used to assess the effectiveness of detecting the spectrum. The hypothesis is
chosen based on the threshold calculated using the equation.

Conclusion 1 : mentioning H0 when H0 is true (H0|H0);

Conclusion 2 : mentioning H1 when H1 is true (H1|H1);

Conclusion 3 : mentioning H0 when H1 is true (H0|H1);

Conclusion 4 : mentioning H1 when H0 is true (H1|H0).

When the amount of energy measured exceeds the set limit, H1 is evaluated, indicating that the
principal user is active/present. When the energy measured is less than the threshold value, H0 is used
to indicate that the principal user is inactive or absent (Conclusion 1). Pd, Pf, and Pm’s refer to the
decision on the first user’s or primary user’s activeness. When SU discovered the valid instance, i.e.,
Conclusion 2, Pd is the probability. Even if the PU is operational in Conclusion 3, it is still shown as
inactive. This illustrates the degree to which the second user’s access chance is being squandered. The
probability of miss detection (Pm = 1 − P d) is the amount of interference caused by the second user
in the primary user [20–22].

Let S[n] be the received signal sample from the energy detector, which yields D, which is necessary
for decisions [19], refer to Eqs. (11)–(13).

D = 1
Y

∑Y

n=1
(S [n])2 (11)

where Y is the no. of samples,

Pdet = P (D > T | H1), Pfalse = P (D > T |H0) (12)

Pdet = Q
(

T − μ1

σ 2
1

)
, Pfalse = Q

(
T − μ0

σ 2
0

)
(13)

where T = σ 2
0 Q−1

(
Pfalse

) + μ0

μ0, μ1, σ 2
0 , σ 2

1 respectively the mean and divergence under H0 and H1.

The following are the sample requirements for the Pdet and Pfalse targets, shown in Eqs. (14)
and (15).
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Y = 1
SNR2

(
Q−1

(
Pfalse

) − Q−1 (Pdet)
√

2SNR + 1
)2

(14)

Q stands for the comprehensive Marcum Q-function.

SNR stands for signal-to-noise ratio.

Xs = tY now, where t denotes the sample time.

Xs = t
SNR2

(
Q−1

(
Pfalse

) − Q−1 (Pdet)
√

2SNR + 1
)2

(15)

The likelihood that the Primary user is inactive is P (H0), and P (H1) = 1 − P. (H0)

The objective function that needs to be optimized is as follows, given by Eq. (16).{
max P (H1) TP1 (Xs) + P (HO) TP0 (Xs)

s.t. Pdet ≥ P′
det

(16)

Table 1: Baseline evaluation configuration parameters

Deployment Scenario for
Evaluation

Urban macro − cell Rural macro − cell Suburban macro − cell

Base station (BS)

antenna height
25 m, above rooftop 35 m, above rooftop 35 m, above rooftop

Number of BS antenna
elements

Up to 8 rx Up to 8 tx Up to 8 rx Up to 8 tx Up to 8 rx Up to 8 tx

Total BS transmit power 46 dBm for 10 MHz,
49 dBm for 20 MHz

46 dBm for 10 MHz,
49 dBm for 20 MH

46 dBm for 10 MHz,
49 dBm for 20 MHz

User terminal (UT)

power class
24 dBm 24 dBm 24 dBm

UT antenna system Up to 2 tx Up to 2 Rx Up to 2 tx Up to 2 Rx Up to 2 tx Up to 2 Rx
Minimum distance
betweenUT and
serving cell

>= 25 m >= 35 m >= 35 m

Carrier frequency (CF)

for evaluation
(representative of
IMT bands)

2 GHz 800 MHz 2 GHz

Outdoor to indoor
building penetration
loss

N.A. N.A. 20 dB

Outdoor to in −
car penetration loss

9 dB (LN, σ = 5 dB) 9 dB (LN, σ = 5 dB) 9 dB (LN, σ = 5 dB)

The channel state is assumed to be non-line-of-sight (NLOS), (UT) is User Terminal, (BS) is Base
Station, hBS and hUT are the antenna heights at the BS and UT, ‘W’ is the street width, ‘d’ is the
distance between the BS and the UT, and fc is the carrier frequency in MHz (MHz). Tab. 2 contains a
list of these schemes.
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Table 2: Macro path loss model of urban, sub-urban, and rural

Models Path loss (dB) (fc in GHz and d in m) Range and antenna height values

Urban
Macro

NLoS 161.04 − 7.1 log10(W) + 7.5 log10(h)

− (24.37 − 3.7(h/hBS)
2) log10(hBS)

+ (43.42 − 3.1 log10(hBS))(log10(d)

− 3 + 20 log10(fc)

− (3.2(log10(11.75hUT))2 − 4.97)

10 m < d < 5000 m
hBS = 25 m , hUT = 1.5 m ,
W = 20 m, h = 20 m

Sub
Urban
Macro

NLoS 161.04 − 7.1 log10(W) + 7.5 log10(h)

− (24.37 − 3.7(h/hBS)
2) log10(hBS)

+ (43.42 − 3.1 log10(hBS))(log10(d)

− 3 + 20 log10(fc) − (3.2(log10(11.75hUT))2

− 4.97)

10 m < d < 5000 m
hBS = 35 m , hUT = 1.5 m ,
W = 20 m , h = 10 m

Rural
Macro

NLoS 161.04 − 7.1 log10(W) + 7.5 log10(h)

− (24.37 − 3.7(h/hBS)
2) log10(hBS)

+ (43.42 − 3.1 log10(hBS))(log10(d)

−3+20 log10(fc)−(3.2(log10(11.75hUT))2−4.97)

10 m < d < 5000 m
hBS = 35 m , hUT = 1.5 m ,
W = 20 m, h = 5 m

3 Results and Discussion

To get maximum radial distance coverage, as per ITU-R M.2135 standard, given in Tab. 1, and
meet the threshold requirement, the ideal altitude for the primary UAV to have the minimum transmit
power is shown in Fig. 4. Indeed, the ideal height is the lowest probable elevation that provides the
lowermost path loss and transmits power between both the UAV and the user on the ground. In the
absence of interruption, this results in preeminent excellence in communication. The best altitude and
the least transmit power are also dependent on the transmission location, as shown in Fig. 4. In Rural
suburban and urban environments, this finding is critical for minimizing power consumption in multi-
UAV network planning.

In a stationary UAV deployment, transmission power can have a significant impact on coverage
probability for a given UAV, as shown in Fig. 3. We’ll use a ground mission cell to capture two UAVs
in separate locations to compare.

Fig. 3 shows different curves. It demonstrates that the more transmission power a UAV carries,
the greater the chance of successful ground cell coverage.

As transmission power is increased, the coverage probability approaches the peak and then
gradually flattens off. It’s worth noting that, additionally, there is a fixed UAV deployment, a drone’s
power choices influence the possibility of its noticeable area cells being covered to capture optimal
transmission power, the article design UAV n’s individual utility function.
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Figure 3: Probability of coverage for a terrestrial mission cell from a specific UAV when the
transmission power is taken into account

Figure 4: For urban, Suburban, and rural environments, UAV altitude vs. transmit power

The best position for the primary UAV to have the minimum transmission rate to give the greatest
radial distance coverage while meeting the threshold requirement (11) is shown in Fig. 4. The ideal
height is the lowest possible altitude that provides the lowest path loss and transmits power between
the UAV and the ground user. In the absence of interruption, this leads to good information exchange.
The optimal altitude and lowest transmit power are also dependent on the propagation environment,
as shown in Fig. 4. The ideal altitudes for urban suburban and rural environments, for example, are
360 meters, 300 meters, and 120 meters, respectively. This finding is critical for minimizing power
consumption in multi-UAV network planning.

The following is the conclusion drawn from Figs. 5 and 6. When all of the deployment scenarios in
the ITU-R M.2135 are compared, the urban macro comes out ahead. The graphs show that in the high-
speed deployment scenario, i.e., urban macro, the total power per subcarrier receives less FER/BER
than the other two sectors [23–27].
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Figure 5: For urban, suburban, and rural environments, FER vs. SNR

Figure 6: For urban, suburban, and rural environments, FER vs. SNR

4 Conclusion

In this paper, the model for multi-UAV network deployment is both energy-efficient and cost-
effective. Multi-UAV coverage is a new idea that reflects UAV teamwork and improves coverage
reliability and efficiency. We devised a scenario for UAV coverage to address the issue of energy
scarcity by incorporating energy efficiency according to ITU-R M.2135 standard. The ideal separation
distance between UAVs to avoid co-channel interference and enhance overall coverage performance
has been investigated in rural, suburban, and urban settings. For this, a synchronized multi-network
was created, allowing us to provide important insights into UAV communications integration. The
quantity of UAVs, the weather, the deployment coordinates, or the construction of a network and
spacing between UAVs all affect the coverage area performance, according to the findings of this paper.
In reality, balancing the co-channel interference with a good modification of the UAV spacing can
prevent coverage loss outside the intended area. This research could be expanded to UAVs operating
in a massive MIMO environment. In this situation, the ideal UAV heights and separation distances for
coverage by many UAVs can be identified via a multi-dimensional search. By applying the GMLSTTC
to the Massive MIMO situation, the system’s performance can be significantly improved.
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