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Abstract: The extent of the peril associated with cancer can be perceived
from the lack of treatment, ineffective early diagnosis techniques, and most
importantly its fatality rate. Globally, cancer is the second leading cause of
death and among over a hundred types of cancer; lung cancer is the second
most common type of cancer as well as the leading cause of cancer-related
deaths. Anyhow, an accurate lung cancer diagnosis in a timely manner can
elevate the likelihood of survival by a noticeable margin and medical imaging
is a prevalent manner of cancer diagnosis since it is easily accessible to people
around the globe. Nonetheless, this is not eminently efficacious considering
human inspection of medical images can yield a high false positive rate. Inef-
fective and inefficient diagnosis is a crucial reason for such a high mortality
rate for this malady. However, the conspicuous advancements in deep learning
and artificial intelligence have stimulated the development of exceedingly
precise diagnosis systems. The development and performance of these systems
rely prominently on the data that is used to train these systems. A standard
problem witnessed in publicly available medical image datasets is the severe
imbalance of data between different classes. This grave imbalance of data can
make a deep learning model biased towards the dominant class and unable
to generalize. This study aims to present an end-to-end convolutional neural
network that can accurately differentiate lung nodules from non-nodules and
reduce the false positive rate to a bare minimum. To tackle the problem of
data imbalance, we oversampled the data by transforming available images in
the minority class. The average false positive rate in the proposed method is
a mere 1.5 percent. However, the average false negative rate is 31.76 percent.
The proposed neural network has 68.66 percent sensitivity and 98.42 percent
specificity.

Keywords: Convolutional neural networks; medical image processing; lung
nodule identification; data imbalance; deep learning

https://www.techscience.com/
https://www.techscience.com/journal/cmc
http://dx.doi.org/10.32604/cmc.2023.035672
https://www.techscience.com/doi/10.32604/cmc.2023.035672
mailto:kimdh@jejunu.ac.kr


462 CMC, 2023, vol.75, no.1

1 Introduction

Cancer is a disease that causes unrestrained growth of abnormal cells in the body of the patient,
which can lead to a number of abnormalities in the body and eventually results in the death of the
patient. Development of cancer takes place when the body’s normal control mechanism ceases to work,
old cells do not die instead they start uncontrolled growth of abnormal cells and sometimes these
irregular cells form a mass of tissue called a tumor [1]. According to the statistics of the world health
organization, cancer is the second leading cause of death in the world, about 1 in every 6 deaths is
because of cancer just in 2018 almost 9.6 million people died of cancer among which 70 percent of
those deaths were registered in underdeveloped countries. The most common types of cancer are breast
cancer, lung cancer, colorectal, prostate, skin cancer, and stomach cancer and in 2018, 2.09 million lung
cancer patients were registered around the globe [2]. This makes lung cancer the second most common
type of cancer and the real problem is the high mortality rate of lung cancer. In 2018, lung cancer
accounted for the death of over 1.76 million people, which is approximately a mortality rate of 84
percent to put that in perspective it indicates that 84 out of every 100 people diagnosed with lung
cancer died [2].

As stated by the world health organization, cancer treatment works more effectively at the early
stages of cancer, so we can conclude that the patient’s probability of survival can improve significantly if
cancer is diagnosed at an early stage. There are two components of early cancer detection, one of those
components is educating people about early diagnosis and the other one is medical image screening
[2]. Cancer screening is a primary method for cancer diagnosis at an early stage; medical imaging such
as computer tomography (CT) scan is a predominant practice for cancer screening as it is accessible in
most countries. However, manual inspection of medical images is subject to a high error rate so much
so that for an individual going through 14 screening trials the cumulative risk of a false positive can
be as high as 50 percent. Male patients have a higher risk of false positives as compared to female
patients, for men, the risk of having at least one false positive per 14 tests is approximately 60 percent
and for women; the risk is around 48 percent [3]. These results indicate the inconsistencies in the human
analysis of CT scan for cancer screening which can be fatal in the case of cancer. Flawed, as it may
seem, cancer screening is still an effective way to diagnose cancer at an early stage and it can prove
to be very beneficial in the treatment of cancer. Nevertheless, novel computer-aided detection CADe
and computer-aided diagnosis CADx techniques are being developed to ameliorate cancer screening
using medical images, and artificial intelligence is at the center of modern medical image processing
systems.

The revolution in deep learning started with the arrival of AlexNet in 2012 as it changed the
general perspective of people regarding deep learning models and deep neural networks. Deep learning,
since then has shown tremendous success in many domains including medical image processing [4].
Leveraging deep learning techniques to process medical images is a propitious innovation in health care
as deep convolutional neural networks (DCNN) have exhibited exceptional results in CADx systems
[5,6]. The escalation in AI research is evident from the upsurge of publications in the domain of AI,
the annual publications in artificial intelligence rose from 100–150 in 2007–2008 to 700–800 in 2017–
2018. Fifty percent of the published articles are related to MRI or CT scans and AI-based systems
can produce highly accurate results and even identify abnormalities undetectable by the human eye
[7]. Machine-learning is a sub-domain of AI, which has shown tremendous results in complex pattern
recognition systems. Machine-learning systems learn from existing data and make a prediction about
unobserved data [8]. Deep learning is a class of machine learning algorithms used to extract and
transform features; another term used for deep learning is neural networks [9,10]. Deep learning
earned this name because it is designed to mimic the human brain’s neural structure of the human
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brain but a neural network requires a massive amount of data to extract features that will enable it
to predict unseen data. Prior to deep learning the features for nodules, classification was manually
engineered by domain experts or identified after months if not years of study [11]. Data plays a
significant role in determining the performance of the neural network [12] and that is the reason why
the advent of publicly available largescale lung CT datasets such as lung image database consortium
(LIDC) and Lung nodule analysis 2016 also known as LUNA16 has boosted lung nodule detection
and classification research [13]. A number of effective computer-aided diagnosis/detection systems
have been proposed using these datasets.

LUNA16 dataset is used in this study for the generation of nodule candidates, it consists of 888
cases and it is derived from the LIDC dataset that contains 1018 cases [14]. There are a total number
of 551,065 candidate nodules in this dataset. Out of these candidates, only 1351 are nodules and the
rest of the candidates are non-nodules, which represents the severe data imbalance in this dataset,
which results in the deep learning model being biased towards the dominant class and hinders the
generalization ability of the model. This problem of data imbalance is often observed in publicly
available medical image datasets as the class of negative cases dominates the class with positive cases.
This muddle up the learning phase [15] and it is difficult to assess the performance of the model on
imbalanced data, which makes training effective classification models relatively difficult. Two common
techniques to deal with data imbalance are sampling and cost-sensitive learning, sampling can further
be divided into three types, random oversampling [16–18], under-sampling [19,20], and synthetic
minority oversampling technique commonly known as SMOTE [21]. Under-sampling is a technique
in which we reduce the number of data points in the majority class to balance the data but it can lead
to massive information loss. In random oversampling, we take random data points from the minority
class, duplicate those data points and augment those data points in the minority class to balance the
data. Effective as it may seem but oversampling can lead to model overfitting the training data and
failing to generalize. SMOTE is quite an effective technique but it is also subject to generalization
problems [22]. Even with its flaws, random oversampling is the simplest and very effective technique to
tackle data imbalance. Aside from the lopsided distribution of data points among the classes, another
issue is structuring the neural network that can yield the ideal outcomes as the neural network gets
deeper and more complicated it requires more computational power to process data, given constrained
resources this impediment can hinder the training process. This problem gets even more cumbersome
in the case of CT images as these are 3-dimensional images and require 3-dimensional convolutional
neural networks to process them.

The aim of this study is to design an end-to-end convolutional neural network that can reduce
the false positive rate in nodule classification and modify random oversampling by applying image
transforms to distort pixels of images being oversampled. We extracted patches of 2D images from
3D CT scans. We redefined the problem to a simple 2D binary classification instead of a 3D binary
classification problem. The extracted images are normalized using the Hounsfield units provided
by the official LUNA16 web repository. We proposed a simple 2D end-to-end convolutional neural
network to identify lung nodules and we achieved our goal of a low false positive rate but at the cost
of a high false negative.

The rest of the article is set out in the following order, Section 2 accommodates literature review,
Section 3 contains Dataset characteristics, Section 4 contains image transformation and oversampling,
Section 5 contains proposed neural network, Section 6 discussed results, and Section 7 presented the
conclusions.
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2 Literature Overview

The arrival of LIDC and LUNA16 datasets, and the deep learning revolution started by AlexNet
in 2012, has led to the development of a few systems to classify lung nodules from CT scans. Al-
Shabi et al. [23] proposed a novel technique deep local–global network to classify malignant nodules.
Deep local–global networks use residual blocks with a 3 × 3 kernel for local feature extraction and
non-local blocks for global feature extraction. The essential idea of the global Block is to use matrix
multiplications between features on the feature maps. Their proposed network produced an AUC of
95.62 percent. Apart from using CNN for feature extraction, different studies have been conducted
to use different feature extractors. Kumar et al. [24] presented an auto-encoder and decoder method
to extract nodule features and classify malignant and benign nodules. For feature extraction, they
used a five-layered de-noising auto-encoder trained by L-BFGS with an iteration set to 30 and
a batch size of 400. They used a binary tree classifier. They achieved an average accuracy of 75
percent along with a sensitivity of 83.35 percent. Nibali et al. [25] proposed a residual network-based
pulmonary nodule classification system. They modified the ResNet architecture to accommodate
64 × 64 images. Secondly, they reduced the number of feature maps to support their three-column
configuration and they converted the ResNet into a fully convolutional network by trimming the
fully connected layer. They used 2D planar views instead of 3D volume to reduce the input size of
images. They achieved a sensitivity of 91.07 percent, specificity of 88.64 percent, and overall accuracy
of 89.90 percent. Shen et al. [26] presented a multi-scale CNN. Their MCNN takes multi-scale raw
nodule patches, instead of segmented regions, this proves that information gained from raw nodule
patches is also useful and can provide reasonable information for classification. Their proposed multi-
scale convolutional neural network was also able to handle noisy points. The scales they used are
96 × 96 × 96, 64 × 64 × 64, and 32 × 32 × 32 in pixels. They achieved an average accuracy of 84.86
percent in nodule classification. Jiang et al. [27] proposed a lung nodule detection system, which is
based on multi-group patches cut out from the lung images and enhanced by the Frangi filter. They
combined two groups of images and a four-channel convolutional neural network for detecting lung
nodules of four levels. Their proposed system achieved an accuracy score of 80.06 percent and 4.7 false
positives per scan. Their paper also displayed the tradeoff between sensitivity and false positive rate. At
94 percent sensitivity, the false positive rate was increased to 15.1 per scan. Huang et al. [28] proposed
a 3D convolutional neural network for nodule detection from low-dose CT scans. Their system takes
advantage of the prior knowledge about nodules as well as machine-learned features. They used a
geometric-model-based filter to generate candidate nodules. The generated candidates were 3D cubes
that were fed into a 3D convolutional neural network for classifying whether the candidate is nodule
or non-nodule. Their system achieved a sensitivity of 90% percent with five false positives per scan.
Other neural network approaches that can be applied to the lung nodule classifications are presented
in [29–32].

We leveraged the potential of 2D convolutional neural networks to address this problem. We
propose an end-to-end convolutional neural network that takes a 2D image patch, resizes it and
predicts whether the candidate is a nodule or non-nodule, instead of passing the image through a
complex machine-learning pipeline. Our proposed solution provides a specificity of 98.42 percent at
the cost of sensitivity. However, sensitivity can be improved but at the cost of specificity.

3 Dataset

For this study, we used the publicly available LUNA16 dataset. Lung nodule analysis 2016
(LUNA16) dataset was originally made public in 2016 to encourage the development of lung nodule
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segmentation systems [14]. It contains 888 cases with nodules > = 3 mm accepted by at least 3
radiologists and this dataset also contains an annotation CSV file which contains the series of the
candidate nodule and X Y Z coordinates to locate the candidate nodule and the class label of the
nodule, class 0 represents non-nodules and class 1 represents nodules. LUNA16 is divided into 10
subsets that can be beneficial in the process of cross-validation. The LUNA16 is derived from the
Lung Image Database Consortium image collection (LIDC IDRI) dataset. The (LIDC-IDRI) consists
of lung cancer screening computed tomography (CT) scans with annotated lesions. It is publicly
available on a web repository to assist in the development of computer-aided diagnosis systems, and
it was initiated by the National Cancer Institute (NCI) [33]. There is a total number of 1018 cases
in this dataset; each case contains the CT scan images associated with an XML file that contains an
annotation of that case marked by four experienced radiologists [34]. LUNA16 provides a thorough
tutorial for candidate nodule extraction to help researchers in extracting the relevant data. Each
potential nodule is present in the candidates_v2 CSV file with its X Y Z coordinates and each subset
contains images, pixel spacing, and origin, using the CSV file, the scan with the candidate nodule is
loaded and rescaled from world coordinates to voxel coordinates then normalized and saved in the
desired location [33].

4 Image Transformation and Augmentation

Oversampling has proven to be remarkably effective in the case of data imbalance. It not only
balances the distribution of data in the classes but also prevents loss of information [17]. Oversampling
is a technique in which we augment the minority class to overcome the data imbalance between
different classes. This technique can also be used if there is a small number of data points in the
dataset that is the reason why in this study we used oversampling to overcome the problem of data
imbalance in the dataset. The total number of potential nodules was 551, 065 among which only 1351
were nodules and the rest of the candidates were non-nodules. If an imbalanced dataset is fed to the
model for training, then it will result in a biased model because as the model tries to optimize the loss
function it will classify all the points to the dominant class. To mitigate this problem, we can under-
sample the dominant class or oversample the minority class. However, under-sampling the majority
class results in massive information loss, which can hinder the performance of the resultant model.
Therefore, we used oversampling to avoid information loss, and instead of oversampling random
points, we oversampled each image in the training set of the nodule class, and each image except the
image that was separated for testing was augmented 440 times and, in each augmentation, a random
transform is applied to the image. We used four image transforms for image augmentation: vertical
flip with random rotation, horizontal flip with random rotation, and color jitter. The augmentation
and transformation algorithm is shown in Table 1. Prior, to augmentation we separated 300 images
from the nodule class and 38,375 images from the non-nodule class for testing. Fig. 1 represent three
samples of original images, and Fig. 2 represent their corresponding transformed images.

Table 1: Image augmentation and transformation algorithm

1: images ← ImagePathString
2: destinationFolder ← DestinationPathString
3: for each path in images do

(Continued)
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Table 1: Continued

4: image ← readImage (path)
5: while iterations ! = 440 do
6: transform ← RandomTransform()
7: image = transform (image)
8: SaveImagetoDestination
9: end while
10: end for
11: Procedure: RandomTransform()
12: randomNumber ← pseudoRandomInterger(0 − 4)
13: if randomNumber == 0 then
14: Return RandomRotationTransform(0 − 360)
15: else if randomNumber == 1 then
16: Return VerticleFlipTransform, RandomRotataionTransform(0 − 360)
17: else if randomNumber == 2 then
18: Return HorizontalFlipTransform, RandomRotationTransform(0 − 360)
19: else if randomNumber == 3 then
20: Return ColorJ itterT ransform((1, 2),(1, 2),(1, 2),(−0.1, 0.1)
21: else if randomNumber == 4 then
22: Return EmptyTransform
23: end if

Figure 1: Three samples original images

Figure 2: Three corresponding transformed images
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5 Proposed Convolutional Neural Network
5.1 Network Architecture and Description

The proposed network architecture is shown in Fig. 3. The goal of the proposed work is the
development of a lightweight end-to-end model that can be used as a backbone in a lung nodule
detection and image segmentation system. In 2016, researchers at Nvidia demonstrated the power of
end-to-end CNNs when they developed a neural network for a self-driving car [35]. Our proposed
model is inspired by the architecture of VGG-16 network that won the image net competition
in 2014 and Nvidia’s end-to-end self-driving car model that displayed the potential of end-to-end
convolutional neural networks [35]. The aim of this network is to minimize binary cross-entropy
loss also referred to as log loss and optimize the parameters for correct nodule identification. We
used Adam [36] optimizer algorithm with a learning rate of 0.0001 for swift convergence, weights for
this network were initialized using the Xavier Uniform initializer also known as the Glorot uniform
initializer. The flow chart of the proposed CNN algorithm is shown in Fig. 4.

Figure 3: Proposed network architecture

5.2 Mathematical Representation of Log Loss

j (w) = − 1
N

∑N

n=1

[
yn log ŷn + (

1 − yn

)
log

(
1 − ŷn

)]
(1)

where N is the total number of points. y is the true label and ŷ is the predicted label.

Xavier Initializer Equation

∂ =
√

2
in + out

(2)

where in is the number of input units and out is the number of output units.
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Figure 4: Flow chart of proposed network architecture

The proposed network contains five convolutional layers followed by a dense layer and output
layer, each convolution layer has a kernel size of 3 × 3 and uses rectified linear unit more commonly
known as ReLu as an activation function. First, four convolutional layers are followed by max-pool
layers with a kernel of size 2 × 2. The proposed network takes a 3 channel 64 × 64 image as input
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after passing the image through the convolutional layers the output matrix is flattened into a 28,800-
feature array afterward, it is passed through the first dense layer followed by a dropout layer with
a dropout probability of 0.25 on a scale of 0–1. Table 2 contains the description of the layers of the
neural network. The network is trained on Nvidia 920 m GPU with 2GB VRam. The utilization of
GPU was necessary for accelerated learning. The laptop used had 8GB of RAM, 500GB of SSD, and
an Intel i5 processor.

Table 2: CNN algorithm attributes setup

Layer Layer attributes

2D Convolutional Layer 1 Input channels: 3
Output channels: 8
Activation Function: ReLu
Kernel Size: 3 × 3, Stride: 1 × 1, Padding: 4 × 4

Maxpool Layer Kernel Size: 2 × 2
2D Convolutional Layer 2 Input channels: 8

Output channels: 16
Activation Function: ReLu
Kernel Size: 3 × 3, Stride: 1 × 1, Padding: 4 × 4

Maxpool Layer Kernel Size: 2 × 2
2D Convolutional Layer 3 Input channels: 16

Output channels: 32
Activation function: ReLu
Kernel Size: 3 × 3, Stride: 1 × 1, Padding: 4 × 4

Maxpool Layer Kernel Size: 2 × 2
2D Convolutional Layer 4 Input channels: 32

Output channels: 64
Activation Function: ReLu
Kernel Size: 3 × 3, Stride: 1 × 1, Padding: 4 × 4

Maxpool Layer Kernel Size: 2 × 2
2D Convolutional Layer 5 Input channels: 64

Output channels: 128
Activation Function: ReLu
Kernel Size: 3 × 3, Stride: 1 × 1, Padding: 4 × 4

Dense Layer 1 Input Features: 28, 800
Output Features: 128
Activation Function: ReLu
Bias: True

Dense Layer 2 Input Features: 128
Output Features: 2
Activation Function: ReLu
Bias: True

(Continued)
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Table 2: Continued
Layer Layer attributes

Dropout Layer Probability: 0.25
Optimizer Adam [32]
Learning rate 0.0001
Output Layer Input features: 128

Output: 2

Each epoch took approximately 30 min to finish and a batch of 128 images is fed to the network
per iteration. Prior to training, 300 data points from the nodule class and 38,375 images from the
non-nodule class are separated for the testing set, separation of data points was carried out before
augmentation to avoid the repetition of training data points in the testing set. The training set is
oversampled to reduce data imbalance but nodule images in the testing set were not oversampled.
The validation set was derived from the training set. Fig. 5 represents the increase in accuracy on each
epoch, over the course of 25 epochs, training and validation accuracy is increasing along with each
epoch. The horizontal axis represents the epochs and the vertical axis represents the accuracy on a
scale of [0, 1] where 0 is the minimum and 1 is the maximum accuracy. The accuracy can be seen to
improve even after the 13th epoch however testing showed that the model started overfitting the training
data after the 13th epoch. On the other hand, Fig. 6 represents the decrease in the log loss over each
epoch. The loss value of each iteration of the epoch is calculated and added to the total loss value of
the epoch and by the end of each epoch, the total loss value is set back to zero.
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Validation Accuracy Training Accuracy

Figure 5: Training and validation accuracy over epochs

6 Results

We validated the model on 38,675 data points to verify the performance of the proposed model
but data points from the minority class were not oversampled during the testing phase. The validation
set consisted of 300 nodules and 38,375 non-nodules. We ran ten times on validation data to verify
the model’s consistency and achieved an average accuracy score of 95 percent. However, the model
displayed a tradeoff between false positive and false negative rate. As the false positives dropped, the
false negative increased. It can be inferred from the confusion matrix that out of 300 points in the
nodule class 206 were correctly classified as nodules and 94 were misclassified as non-nodules and out
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Figure 6: Training loss over epochs

of 38,375 non-nodules 37,769 were correctly classified and only 606 were misclassified as nodules. The
confusion matrix on the validation dataset is presented in Table 3.

Table 3: Confusion matrix on validation dataset

Actual

Predicted Nodule Non-Nodule
Nodule 206 606
Non-Nodule 94 37769

In order to test the network, we split the data 80:20 where 80% of the data is used for training
the model and 20% of the data was used for testing. There was a major problem of data imbalance
because the non-nodule class had over 50k images and the nodule class had 1351 images. We used 1-
fold cross-validation due to a lack of data in the nodule class. We also oversampled the nodule images
at the ratio of 1:440. Prior to the training we randomly separated 200 images from the nodule class
out of the 1351 images of the nodule class, and 300 images from the non-nodule class out of the 50k
images of the non-nodule to test the system. Training time per epoch was approximately 30–45 min on
Nvidia 980 m while testing time for 300 images was approximately 5 min given the potential nodule
patches were already extracted. The model achieved an accuracy result of 95 percent on the test data.
The confusion matrix on the unseen test data is presented in Table 4.

Table 4: Confusion matrix on testing dataset

Actual

Predicted Nodule Non-Nodule
Nodule 206 3
Non-Nodule 94 297

Multi-group patch-based deep learning networks [27] also exhibited a tradeoff between sensitivity
and false positive rate. As the sensitivity increased so did the number of false positives per scan. This
pattern is also witnessed in our proposed method as well. As we adjusted the hyper-parameters to
reduce the false positive rate the overall sensitivity dropped as well. The 3D convolution neural network
presented by Huang et al. [28] achieved 90 percent sensitivity at the cost of 5 false positives per scan.
In order to identify the capability of the proposed model to distinguish nodules from non-nodules, we
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tested it as a standalone model instead of using it as a backbone of an image segmentation model. The
proposed method produced 98.4 percent specificity and the false positive rate was barely 1.5 percent.
Out of 300 nodules, 68 percent were correctly classified and 38 percent were misclassified. This is a
tradeoff between sensitivity and false positives we noted, which is also reported by [27]. As we adjusted
the hyper-parameters to commend lower false positives the sensitivity also dropped. We sacrificed a
little bit of sensitivity to achieve our goal of low false positives.

In Table 5, we compared the results of the proposed E2E network with [27,28]. We calculated the
average specificity of [27] from level 1 to level 4 over group 1. They used LIDC/IDRI dataset for their
study; the LIDC/IDRI dataset divides the nodules into 4 categories based on their malignancy level,
which is represented as levels in this study. Jiang et al. [27] also divided the images into two groups, the
first group labeled group 1 contained original images, and the second group labeled group 2 contained
a binarized form of group 1 images. They had the highest specificity of 94.1% on level 3 and the lowest
specificity of 81.8% on level 2. Huang et al. [28] On the other hand used 3D convolutional neural
networks to solve the same problem they achieved a high sensitivity of 90% but they did not mention
the specificity of their neural network. Unlike [27,28], our proposed neural network does not require
a complicated machine-learning pipeline to produce results. It follows a simple end-to-end approach
and produces results with high specificity. It makes our proposed model highly flexible and easy to
implement in a solution. Our proposed model produced a specificity of 98.4%, which exceeds the
specificity of [27] by a considerable margin.

Table 5: Performance score on test data

Method Performance metrics score

3D convolutional neural network
Huang et al. [28]

Sensitivity 90%

Specificity NA
Multi-Group Patch-Based deep
learning network Jiang et al. [27]

Sensitivity 94%

Specificity 88.1%
Proposed End-to-End 2D CNN Sensitivity 68.66%

Specificity 98.4%
Accuracy 83%
F-Measure 0.80

High specificity means a very low rate of false positives, which can be essential in lung cancer
diagnosis as it will eliminate non-nodule candidates. The elimination of these non-nodules will improve
the performance of malignancy classifiers and it will allow the radiologists to identify malignant
nodules more accurately. Our proposed model can prove to be quite useful if a solution requires a
minimum false positive rate in lung nodule classification as it is easy to implement and computationally
efficient. Our proposed model can be integrated with a complex machine-learning pipeline seamlessly.
It can also be used as a backbone in a lung nodule image segmentation model. By fine-tuning, its
hyper-parameters we can also improve its sensitivity but at the cost of specificity which makes the
model flexible to change.
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7 Conclusion

The aim of this study is to develop an end-to-end convolutional neural network that is capable
of identifying lung nodules in two-dimensional images and reducing the number of false positives to
a bare minimum. We have also discussed the problem of severe data imbalance in publicly available
medical image datasets. The proposed neural network consists of five convolutional layers, one dropout
layer and two fully connected layers. This neural network can be used as a backbone in image
segmentation models. Our proposed model achieved a specificity of 98.4 percent and the false positives
were reduced to a mere 1.5 percent but the sensitivity was also reduced to 68 percent. We trained and
tested this model on the largescale LUNA16 dataset. The results exhibit the consistency and high
specificity of the mode. We utilized data oversampling to cope with the problem of data imbalance.
We separated, transformed and augmented the images from the nodule class. The need for an effective
computer-aided lung cancer detection system is evident from the high mortality rate of lung cancer.
Most lung cancer-related deaths are a result of late and ineffective diagnoses. We will continue our work
on this model to improve the sensitivity by optimizing the hyper-parameters using recent optimization
algorithms [37–45] and design a similar end-to-end model to classify malignant and benign nodules in
the near future.

The proposed method is only applicable to 2D potential nodule images and it does not take into
consideration the 3D aspect of CT scans. The non-nodule class is the dominant class with over 50k
images while the nodule class only had 1351 images. Due to the lack of nodule data and extremely
unbalanced classes, the training and testing ability of the model is restricted and limited.
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