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Abstract: Task offloading is a key strategy in Fog Computing (FC). The
definition of resource-constrained devices no longer applies to sensors and
Internet of Things (IoT) embedded system devices alone. Smart and mobile
units can also be viewed as resource-constrained devices if the power, cloud
applications, and data cloud are included in the set of required resources. In
a cloud-fog-based architecture, a task instance running on an end device may
need to be offloaded to a fog node to complete its execution. However, in
a busy network, a second offloading decision is required when the fog node
becomes overloaded. The possibility of offloading a task, for the second time,
to a fog or a cloud node depends to a great extent on task importance, latency
constraints, and required resources. This paper presents a dynamic service that
determines which tasks can endure a second offloading. The task type, latency
constraints, and amount of required resources are used to select the offloading
destination node. This study proposes three heuristic offloading algorithms.
Each algorithm targets a specific task type. An overloaded fog node can only
issue one offloading request to execute one of these algorithms according
to the task offloading priority. Offloading requests are sent to a Software
Defined Networking (SDN) controller. The fog node and controller determine
the number of offloaded tasks. Simulation results show that the average time
required to select offloading nodes was improved by 33% when compared to
the dynamic fog-to-fog offloading algorithm. The distribution of workload
converges to a uniform distribution when offloading latency-sensitive non-
urgent tasks. The lowest offloading priority is assigned to latency-sensitive
tasks with hard deadlines. At least 70% of these tasks are offloaded to fog
nodes that are one to three hops away from the overloaded node.
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1 Introduction

Traffic generated by smart and Internet of Things (IoT) devices is rapidly dominating the Internet.
In 2021, hundreds of Zettabytes were processed by cloud data centers [1–3], and it is expected that
this number will double in the coming years. However, approximately 10% of these data are critical
[2,3]. Processing latency-sensitive tasks on remote cloud servers without violating their deadlines is
a major challenge because all requests, regardless of their type, compete for Internet infrastructure.
Furthermore, the vast increase in the number of requests due to unforeseen social, accidental, or
environmental causes imposes a greater burden on network resources from a general perspective and
on cloud data centers from a focused perspective. Introducing the paradigm of Fog Computing FC in
2012 [4] was an attempt to ensure that data are processed in the most efficient location by local fog
servers to minimize latency, provide efficient Quality of Service QoS management, allow scalability,
accept heterogeneity, and promote wireless access. These benefits have inspired the integration of
FC with other network architectures, such as sensor networks [5–7], IoT [8–11], Internet of Vehicles
(IoV) [12–15], blockchain [16–21], and big data analysis [22–25]. Further integration with Software
Defined Networking (SDN) [26] enhances performance. SDN applies flow rules to control traffic
forwarding according to its features and type. Several studies have addressed the integration of SDN-
based networks with FC [27–31]. The results showed that the SDN architecture allowed fog networks
to achieve efficient network management and promoted scalability while maintaining cost efficiency
[32,33]. These benefits originate from the characteristics imposed by the architecture of SDN networks,
which are based on centralized orchestration and traffic programmability. These properties eventually
lead to agility and flexibility in network services performance.

Tasks that cannot be fully executed at end devices are offloaded to the fog nodes. Occasionally, fog
nodes may become overloaded with a large number of requests. Traffic update requests sent to local
fog nodes during traffic congestions or video streaming requests sent during key events are examples
of fog node overload scenarios. Furthermore, the continuous growth in the number of users of cloud
applications and rapid expansion in the deployment of IoT technologies may overwhelm the resources
of fog nodes. Adding more fog nodes to reduce the workload is a static solution that cannot adapt to
rapid and unexpected changes in the rate of generated requests. This may also be unjustified, especially
if overloading is not the dominant state in all fog nodes. A second offloading was introduced as a
dynamic solution that allowed fog nodes to exit the overloading state by redirecting a portion of the
workload to other fog nodes. To propose an efficient offloading service, four main questions should be
answered: How is the offloading node chosen [34–47], how is the number of offloading nodes decided
[37], what tasks are eligible for offloading [35] and how is the number of offloaded tasks determined
[38]. The proposed dynamic offloading service attempts to address these questions. The service is
implemented in an SDN-based FC network. In a distributed architecture (e.g., non-SDN-based), the
overloaded node is usually responsible for sending offloading requests to other fog nodes, collecting
replies, and executing the offloading algorithm to decide which node should be selected to offload
tasks to. This policy overburdens the overloaded fog node and incurs large communication overhead.
Hence, the system throughput and average response time may degrade significantly. In an SDN-based
network, the controller is responsible for selecting an offloading node. It benefits from the global
network view built based on the collected information sent by fog nodes and network infrastructure
components.

In this paper, both fog nodes and SDN controllers participate in determining the offloading
nodes and selecting the offloaded task set. To the best of our knowledge, no previous research in
the field of offloading algorithms has considered the problem of dynamically determining the type
and amount of offloaded tasks in an overloaded fog node and employed this information to select a
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number of offloading nodes using an SDN-based logically centralized architecture such that resource
requirements and latency constraints of tasks are not violated and the time required to select offloading
nodes is minimized. The major contributions of this study are as follows.

• A dynamic latency-aware second offloading service exploits the SDN approach to determine
offloading destinations and offloaded tasks by executing one of the following heuristic
algorithms:

o A greedy fog-to-cloud offloading algorithm selects task instances based on the value of
the resources required. Tasks without latency constraints or latency-tolerant tasks are
candidates for this type of offloading.

o A greedy fog-to-fog offloading algorithm for latency-sensitive non-urgent tasks. It aims
to offload tasks to fog nodes with the lowest resource utilization without violating latency
constraints. The algorithm is executed if fog-to-cloud offloading cannot be applied.

o The third proposed algorithm offloads latency-sensitive hard deadline tasks. A service is
activated if this task type is the only one that exists. The algorithm selects the offloading
fog nodes that achieve the lowest network latencies.

• A policy for determining the size of the task set to be offloaded is also presented.
• A performance evaluation study was conducted to assess the effectiveness of the proposed

algorithm in reducing the time required to select offloading nodes, achieve a fair distribution
of workload and guarantee the execution of hard deadline tasks.

The rest of the paper is organized as follows. Section 2 presents the motivation behind the proposed
service. Section 3 presents a review of the related literature. Section 4 proposes a novel dynamic second
offloading service based on the task type at the overloaded fog node. The performance evaluation is
discussed in Section 5. Section 6 concludes the paper and presents future work.

2 Motivations

Innovations in smart city solutions, such as intelligent utilities, buildings, and healthcare manage-
ment systems, are evolving rapidly. As the complexity of intelligent management systems increases,
tasks executed by those systems vary in their types and importance and have different latency
constraints. One example is the intelligent transportation system. The system provides several services,
such as enhancing public safety, managing traffic flows, enabling vehicle-to-everything communi-
cation, controlling bus pick up times, collecting tolls electronically, performing fleet control, and
managing emissions. Owing to the perceived benefits of SDN and FC, instead of sending all tasks
to cloud nodes, integrating the SDN-based FC paradigm with cloud architecture can improve
throughput, reduce delays and enhance the user Quality of Experience (QoE). However, owing to
the diversity of tasks, a task queue in a fog node may have tasks belonging to several services.
Therefore, these tasks have different resource requirements and latency constraints. When applying
the proposed dynamic offloading service to the previous example. If a fog node becomes overloaded,
latency-tolerant tasks, such as emission monitoring tasks, will be offloaded before latency-sensitive
tasks, such as pedestrian detection tasks. Similarly, the proposed service can be applied to Cloud-
edge-based Automated Driving Platforms (ADP) and Advanced Driver Assistance Systems (ADAS).
Furthermore, in some systems, the same application may create task instances with different latency
constraints depending on the end device that created the task. In cloud-based Virtual Reality (VR),
users of this type of VR services engage in a simulated environment rendered by the cloud and then
stream to the user’s headset. In [48], the authors discussed the effects of adding variable delays to
certain responses to user actions in a VR environment. The experiment showed that small delays added
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to display updates in response to head movements resulted in more discomfort than relatively large
delays added to display updates in response to joystick movements. Although both events activated
the display update task, the delay that each task could endure differed. This wide variation in task
requirements creates the need for offloading services that can efficiently select the most appropriate
tasks for offloading and minimize the time required to select offloading nodes.

3 Related Work

The task offloading technique transfers task execution from one node to another. Offloading
algorithms can be categorized as first or second offloading algorithms. The lack of required resources
at end devices is the main reason that thrusts the first offloading. The first offloading algorithm
transfers a task from the node at which it is created to another node, where the execution of the task
resumes as in [34–37], [49,50]. However, a task may be offloaded once more using a second offloading
algorithm for several reasons, such as adapting to node mobility [37], achieving load balancing [34,38],
avoiding node overloading [44], and achieving QoS optimization [34,35]. Offloading may occur from
the end device to the cloud server. However, device-to-cloud offloading increases latency and may
result in missed deadlines, which may have serious consequences for hard-deadline, real-time tasks.
The FC paradigm improves task response times by offloading them to local fog servers. As the number
of offloaded tasks increases, fog nodes may become overloaded, and the overall performance may
degrade sharply. Fog-to-fog offloading allows overloaded fog nodes to migrate tasks to other fog nodes
that satisfy the requirements. Recently, there has been an evident increase in the volume of research
that proposed task-offloading algorithms in FC.

In [34], IoT devices sent task offloading requests to fog nodes. The fog layer consists of a master
fog node that collects offloading requests and performance data from the remaining fog nodes.
The master fog node schedules offloaded tasks to fog nodes based on the collected information.
The offloading algorithm was developed using an Ant Colony Optimization (ACO) probabilistic
technique. The network architecture permits device-to-fog and fog-to-cloud offloading. Ordinary fog
nodes do not enter an overloading state because the scheduling service is performed by the master
node. Hence, fog-to-fog offloading is not required. Performance evaluation showed that ACO has
a better response time than Round Robin (RR) algorithm and Particle Swarm Optimization (PSO)
algorithm [34]. However, this model lacked scalability. As each task created in the IoT layer issues an
offloading request, the master fog node, which is a single point of failure, may become a bottleneck
as the number of requests increases.

In [35], the authors proposed a QoS optimization approach that triggers task computation
offloading from end devices to fog nodes if better QoS can be achieved. The objective is to determine
the optimal allocation of energy for real-time applications without missing task deadlines. The end
device consists of sensors, a MultiProcessor System-on-Chip (MPSoC), and a low-power transceiver.
MPSoC executes real-time applications and performs a local scheduling service that arranges the
execution of applications while maintaining optimal energy allocation in two stages. In the first stage,
the available energy of the end device is optimally allocated to the real-time task instances. The solution
obtained in the first stage is the input for the second stage. In the second stage, the energy allocated
to each task is optimally partitioned among the end-device components: the sensors, MPSoC, and
transceiver. The output of this stage was sent as the input for the adaptive computation offloading
algorithm executed at the fog node. For each locally running real-time task, if computation offloading
achieves a better QoS when executed at the fog server, the task is offloaded. Otherwise, it is executed in
the end device. If computational offloading occurs, the energy allocation algorithms of the device and
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components are recalled to be executed at the end device to reallocate the available energy. However,
no offloading service was introduced, assuming that the end device and fog server entered an overload
state. Furthermore, the proposed solution does not consider how global optimal energy allocation can
be achieved in a network architecture with multiple end devices and several fog servers.

The idea presented in [36] considered a network scenario that includes IoT devices connected
through multi-hop connections to fog nodes. The network scenario also incorporated an SDN
controller that relies on southbound Application Programming Interfaces (APIs) to control the
dynamic task offloading from IoT devices to fog nodes. Moreover, the authors of [36] proposed a
bi-objective mathematical model for optimizing the delay and energy while satisfying the energy, flow
conservation, bandwidth, and capacity requirements of the access points. The proposed optimization
model is non-linear and has been transformed into an equivalent Integer Linear Program (ILP). The
proposed solution, called Detour, represents an approximate greedy algorithm that decides for each
IoT task whether to offload it or to process it locally according to where improvement in delay and
energy consumption is determined. Detour assumes that each device has one task to execute and that
all required data units and applications are available locally. However, this may not always be the
case in FC. In several scenarios, device-to-fog offloading is required because IoT devices do not have
the required data, processing power, or applications. Furthermore, the SDN controller is required to
execute Detour for each newly created task. As the number of tasks increases, this may overload the
SDN. In addition, determining how the offloading service is performed for concurrent tasks has not
been considered.

In [37], the distributed control plan consists of multiple SDN controllers that communicate with
each other using the east-west API. Each SDN controlled a set of fog nodes. The Mobile Node (MN)
executes a delay-sensitive service to locally compute the feasibility of satisfying a task within the time
limit. This was achieved by executing the local scheduling part of the hybrid scheduling algorithm
proposed in [37]. If the service cannot be fully executed locally, the MN sends an offloading request
along with its QoE requirement to the corresponding fog node. The fog node relays a request to its
corresponding SDN controller. The controller begins the execution of the fog-scheduling part of the
hybrid algorithm. The network status information was collected, and the mobile trajectory of the MN
was predicted. The algorithm then uses Yen’s k shortest path algorithm to determine the shortest path
between the source and destination fog nodes. The data file related to the application was partitioned
into file blocks. The SDN controller tests the feasibility of stratifying requests by assigning file blocks
to fog nodes along that path. If the deadline cannot be met, the iteration continues until the optimal
path that satisfies the request is determined. However, partitioning files into blocks that maintain the
control flow of the program is a significant issue, and its cost should be considered.

The model introduced in [38] assumes that a fog node can offload a task to a neighboring fog
node based on the decision of the SDN controller, which may allow a certain number of tasks to
be offloaded while balancing the load between the deployed fog nodes. The solution adopted in [38]
relies on Markov Decision Process (MDP) to consider the dynamic behavior of fog nodes as well
as the uncertainties in terms of task demands. More specifically, the algorithm presented in [38] is a
Quality (Q)-learning algorithm, which has been proposed for solving MDPs that consider dynamically
changing task demands. The idea of the proposed algorithm is based on an agent that observes the
environment, makes a decision, observes the new state, and then calculates the reward, which is a
function of the utility, delay, and overload probability. However, a time complexity analysis of the
algorithm was not provided. Although Q-learning algorithms achieve convergence in polynomial time,
if the proposed algorithm cannot guarantee convergence time, it cannot be used to offload latency-
sensitive tasks.
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The authors in [39] proposed a framework for an IoT network that employs FC by adding a layer
of fog nodes controlled and managed by a logically decentralized SDN network. Network architecture
adopts a three-tier fog SDN-based architecture. However, it is integrated with blockchain technology
to incorporate its benefits. The algorithm starts by authenticating an IoT node using a cloud server.
The cloud server then starts the address detection process. In this process, ISP refers to an SDN
controller that determines the location of the device. The SDN controller builds a routing table with all
possible routes between the device and the IoT cloud. Once the best route is determined, data migration
between the IoT cloud and the assigned fog node commences. The fog node is also responsible for
synchronizing data with the cloud server. The SDN controller, based on a certain set of parameters
[39], decides whether to allow offloaded data from fog nodes to be processed at OpenFlow (OF)-
switches that have certain computation resources or to be offloaded to a cloud server. However, the
allocation policy from fog to OF-switches was not motioned. Furthermore, fog-to-fog offloading was
not considered.

In [40], the authors proposed an offloading algorithm for Energy IoT (EIoT) devices in smart
grids. The algorithm aims to achieve energy efficiency without violating the delay constraints. EIoT
devices offload tasks to fog nodes if they cannot be executed locally because of limited computation
or energy resources. Both EIoT devices and fog nodes create preference lists. The EIoT preference
list ranks fog nodes, which can be associated with, in descending order, according to the weighted
difference between energy efficiency and delay. Similarly, each fog node applies the same procedure
to EIoT devices. Fog nodes accept association requests from EIoT devices if the total number of
concurrently executed tasks at the fog node does not exceed the maximum limit. Otherwise, the fog
nodes use their preference lists to select the more preferable devices without exceeding the maximum
number of concurrent tasks. The remaining devices that failed to associate with fog nodes started a
new iteration. The process continues until each device is associated with a fog node or until there
are no more fog nodes to which to assign devices. In the latter case, fog-to-fog offloading may solve
the problem of unassigned requests and balance the network load. However, fog-to-fog offloading
was not considered in the proposed service. Moreover, the algorithm only considers transmission and
processing delays when computing the delay model.

The authors in [41] introduced an offloading algorithm based on Evolutionary Genetic Algorithm
(EGA), which aims to minimize energy consumption in vehicular networks. Fog nodes execute the
offloading algorithm to decide whether to offload requests received from vehicular applications to
cloud servers or to execute them locally at fog nodes. The algorithm starts by generating several
offloading solutions. In each solution, requests were randomly allocated to fog or cloud nodes.
Solutions are then evaluated to exclude infeasible solutions according to a fitness function that results
in accepting a solution if it does not violate latency constraints and leads to a total energy consumption
that is close to the optimal value [41]. Subsequently, a crossover operation is performed to generate
offspring solutions that converge to the optimal solution. After crossover, a mutation is performed to
avoid converging to local optima. The algorithm terminates when the maximum number of generations
is produced or when the target fitness score is attained. However, the distributed execution of the
algorithm at each fog server may not lead to a globally optimal solution because fog-to-fog offloading
was not considered. Moreover, the triggering event at which the offloading algorithm started to execute
was not mentioned.

In [42], the authors proposed fog-assisted data services for n a heterogeneous vehicular commu-
nication environment. Four communication types are permitted between network nodes: device-to-
cloud, device-to-fog, fog-to-fog, and device-to-device. The bitwise XOR coding technique was used to
encode and decode the data packets. The aim is to encode data items that satisfy the maximum number
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of requests with a minimum delay. To achieve this, the authors proposed a greedy heuristic scheduling
algorithm to identify the highest priority clique. The proposed scheduling algorithm has three main
phases: initializing the clique, updating the clique, and identifying the clique with maximum priority.
The first phase starts with an empty clique, searches the graph to identify the vertex with the maximum
priority, and then appends it to the clique. In the second phase, the remaining vertices are traversed to
add a maximum degree vertex to the clique. The search is completed when there are no more vertices to
be found. After identifying all the cliques in the graph, the maximum priority clique was selected. The
SDN controller notifies the cloud node, which in turn responds by encoding the corresponding data
items, and then broadcasts the encoded packet. Since device-to-cloud communication is unavoidable,
executing latency-sensitive tasks may not be feasible in such architectures. In addition, selecting the
highest priority clique may lead to starvation. However, no anti-starvation policy has been mentioned.

An SDN-based offloading policy was presented in [43]. This policy exploited underutilized mobile
units and parked vehicles as fog nodes. A variant of the conventional three-tier network architecture
was presented. The architecture has three layers: a conventional fog-node layer, an SDN layer, and
Offload Destination (OLD) layer. The SDN layer consists of an SDN controller and a set of OF-
switches. The OLD layer includes the cloud and mobile fog nodes. To overcome the single point of
failure deficiency that originates from using one SDN controller, a local SDN agent is installed at
the fog nodes and executes two main control functions. The first control function calculates the time
required to fully execute the task, and the second determines the feasibility of the request [43]. An SDN-
offloading policy was proposed to select the optimal OLD that can satisfy the request. However, the
cost of maintaining a dynamic network topology that includes mobile fog nodes was not addressed.
Moreover, using vehicles and mobile devices as fog nodes raises several concerns, such as network and
endpoint security, energy consumption, protecting user privacy, and remote management.

In [44], the authors proposed a new dynamic fog-to-fog offloading service. They selected logically
centralized, physically distributed SDN-based network architecture. In the network, the SDN con-
troller is responsible for monitoring and collecting the status of network infrastructure elements such
as SDN switches and fog nodes, while the fog orchestrator controls the operation of fog nodes. Upon
receiving an offloading request from an overloaded fog node, the fog orchestrator starts an offloading
service that performs two main tasks. First, a list of node IDs that satisfies the request is created. These
nodes are then ranked according to their computation and network capabilities. Finally, the best fog
node was assigned as the target offloading node. In the worst-case scenario, nearly all the remaining
fog nodes may be on the candidate list. For m fog nodes and n candidate nodes, the time complexity
for selecting the optimal offloading node is O(n + m). The authors introduced a threshold value to
limit the number of candidate fog nodes, particularly in large networks. However, the authors did not
provide criteria for selecting a threshold value. Moreover, no conditions were mentioned regarding the
tasks selected for offloading from an overloaded node.

In the fog-based architecture proposed in [45], the fog layer is an ad hoc network. If the queuing
waiting time at any fog node exceeds an offloading threshold value, the fog node sends an offloading
request to the best neighboring fog node with the minimum value for the summation of queuing and
propagation delays. The threshold is dynamically updated based on the node workload and availability
of the remaining neighbors. If all neighboring fog nodes are overloaded, the request is sent to the cloud
server. The proposed offloading service was applied to urgent and non-urgent tasks. However, priority
assigning policies and deadline handling of urgent tasks were not mentioned. In addition, it was not
specified if offloading was performed between one or k-hop neighbors. Offloading between one-hop
neighbors prevents a balanced workload distribution among all the fog nodes. However, offloading
tasks between k-hop distant neighbors involve routing costs.
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Fuzzy decision-based task offloading management was proposed in [46]. An orchestrator layer is
responsible for executing the fuzzy logic rules to determine the target offloading node, which can be a
local edge node, neighboring edge node, or cloud node. The offloading decision was made for each new
task created by a user device. The task orchestrator management node is also responsible for sending
the task to the selected offloading node, collecting the results after execution, and sending the results
back to the local edge node. Hence, the orchestrator node is a bottleneck and may become congested as
the number of tasks created increases. Authors in [47] proposed an optimization algorithm for resource
allocation and load balancing. In the proposed system architecture, the organizer module decides
which tasks are offloaded to which fog nodes. The aim is to achieve load balancing and reduce delays.
However, the system lacks scalability because all requests have to be managed through a centralized
decision-maker module, which represents a performance bottleneck at high network loads. A summary
of the reviewed task offloading algorithms is presented in Table 1.

Table 1: Summary of reviewed task offloading algorithms

Ref. Offloading
decision

Offloading
service is
triggered

Offloading
is
performed
from

Number of
offloaded
tasks per
request

SDN-
based

Application Main
contribution

Main issue
which was not
considered

Complexity
analysis
derived

Performance
evaluation tool

[34] Centralized For each new
task

-Device-to-
fog
-Fog-to-
cloud

One No General Load
balancing

Scalability No Simulation using
MATLAB

[35] Centralized For each new
task

Device-to-
fog

One No IIoT QoS
optimization

Overloading No Experimental
using MPSoC

[36] Centralized For each new
task

Device-to-
fog

One Yes General QoS
optimization

Concurrent tasks Yes Simulation using
Mininet & POX

[37] Distributed For each task
cannot be fully
executed
locally

Device-to-
fog

One Yes Vehicular Partitioning
the Execution
of a single task
on multiple
fog-nodes

Cost and
feasibility of
partitioning data
file into the
required number
of blocks

No Simulation using
Mininet

[38] Centralized Policy not
mentioned

-Device-to-
fog

One Yes General Load
balancing

Execution of
latency-sensitive
tasks

No Simulation tool
not mentioned

According to
states of fog
nodes

-Fog-to-Fog Varies

[39] Logically
distributed

For each new
task

Device-to-
fog/cloud

One Yes IoT Reduce data
latency

Fog-to-fog
offloading

No Experimental
using testbed &
simulation using
iFogSim

For each task
cannot be fully
executed

fog-to-
Openflow
switches/-
cloud

[40] Distributed For each new
task

Device-to-
fog

One No EIoT QoS
optimization

Overloading Yes Simulation using
MATLAB

[41] Distributed -For each new
task

-Device-to-
fog

One No Vehicular Minimize
energy
consumption

Fog-to-fog
offloading

No Simulation using
MATLAB

-For a set of
tasks

-Fog-to-
cloud

(Continued)
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Table 1: Continued
Ref. Offloading

decision
Offloading
service is
triggered

Offloading
is
performed
from

Number of
offloaded
tasks per
request

SDN-
based

Application Main
contribution

Main issue
which was not
considered

Complexity
analysis
derived

Performance
evaluation tool

[42] Centralized For each new
task

Device-to-
Cloud/fog/
device

Varies Yes Vehicular Minimize total
service delay

Delay sensitive
constraints were
not accounted
for in computing
the priority

No Simulation using
MATLAB

Fog-to-
fog/cloud

[43] Centralized For each new
task

-Device-to-
Fog
-Device-to-
Cloud

One Yes Vehicular Minimize total
service delay

network and
endpoint
security, energy
consumption,
protecting user
privacy and
remote
management

No Simulation using
MATLAB

[44] Logically
Centralized

Overloaded
node, task
unspecified

-Device-to-
fog
-Fog-to-fog

Unspecified Yes General Select optimal
offloading fog
node

What tasks are
selected for
offloading

Yes Mininet

[45] Centralized If queuing
waiting time at
any fog node
exceeds an
offloading
threshold value

-Device-to-
fog
-Fog-to-fog

One No Vehicular Dynamically
Controlling
Offloading
Thresholds

Priority
assigning policy
and deadline
handling of
urgent tasks

Yes Simulation using
iFogSim

[46] Centralized For each new
task

-Device-to-
edge
-Device-to-
Cloud
-Edge-to-
Edge

One No General Select optimal
offloading
node based on
fuzzy logic
rules

Scalability since,
orchestrator
node is a
bottleneck

No Simulation using
EdgeCloudSim

[47] Centralized For each new
task

Device-to-
fog

One No Healthcare Select optimal
fog node based
on
load-balancing
algorithm

Scalability
because all tasks
are offloaded to
fog nodes
through single
organizer
module

No Simulation using
iFogSim

Proposed
service

Logically
Centralized

Overloaded
node, task
offloaded
according to
type

-Device-to-
fog
-Fog-to-fog
-Fog-to-
Cloud

-One
-Task set
-Task set

Yes General Set task
offloading
priority,
determine the
size of
offloaded
tasks, and
minimize the
time required
to select
offloading
nodes

mobility-aware
task offloading

Yes Custom
simulation tool

4 Proposed Service

This section presents the proposed dynamic offloading service. Section 4.1 describes the system
model. The proposed offloading algorithms are presented in Section 4.2. Section 4.3 discusses the
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effect of offloading on task latency and deadline calculations. Section 4.4 discusses complexity
analysis.

4.1 System Model

The first layer of the proposed network architecture includes smart and IoT devices. In this layer,
nodes are connected via wireless or wired links to the fog nodes. The second layer consists of a set
of m identical fog nodes at both the hardware and software levels. These nodes can be deployed in
public areas, such as road networks, industrial zones, and airports, and in private areas, such as smart
factories and hospitals. The fog nodes are connected to a set of core SDN switches. The third layer
consists of similar SDN controllers that run the same set of applications and provide identical services.
Network events received by a controller are flooded to the remaining controllers using the east-west
interface. Hence, a global network view is created at each SDN node [26,51], and redundancy and
scalability are maintained. The SDN architecture is connected to the cloud via backbone routers. In
the SDN-based fog architecture shown in Fig. 1, SDN nodes form a fully connected network to share
information and distribute workloads. Each controller manages and monitors a set of SDN switches
and fog nodes. However, this assignment can change according to network status. The out-of-band
control mode is selected to send monitoring and management information, install flow rules in SDN
switches, and send offloading decisions to fog nodes via the southbound interface. Open Network
Operating System (ONOS) [51] is deployed to support SDN-based fog architecture.

Cloud servers

Internet

End Devices

Cluster of Fully

connected SDN Nodes

evices

Core SDN

Switches

Fog layer

Control channel Data channel Monitor channel

Figure 1: SDN-based fog architecture

Offloading can occur once or twice. The first offloading occurs from device-to-fog. Essentially,
tasks are offloaded if they cannot be fully executed at the node that is currently running the task.
This occurs when tasks require specific services that cannot be locally satisfied using available
resources. However, the device must first send an association request to the nearest fog node. When
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the association process completes, the end device may offload the task to the fog node. The second
offloading occurs from fog-to-fog or fog-to-cloud. The offloading destinations are determined by the
SDN controller. If a fog node is overloaded, it sends an offloading request to the SDN controller.
Based on the global network view, the controller selects the offloading nodes which can execute the
tasks without violating latency constraints. Then, the IDs of the offloading nodes and information
about selected routes are sent to the overloaded fog node, which initiates the offloading process.

Two issues must be addressed before presenting the formulation of the problem. The first issue is
to determine when a fog node is considered overloaded. The second is to determine the type and
number of offloaded tasks. An overloaded server experiences noticeable throughput degradation.
Therefore, servers often have threshold monitoring tools that identify performance issues by applying
threshold rules that define acceptable system performance. These rules are usually set during system
configuration, and the node is considered overloaded if a threshold value is reached. In this study, it is
assumed that a fog node is overloaded if any of its resources has reached the threshold value. That is
because; a resource is considered performance-critical if it is over-utilized. In addition, the maximum
resource utilization ratio represents the fog node utilization. For example, if the Central Processing
Unit (CPU), physical memory, and disk utilization are 20%, 45%, and 10%, respectively. Then, the
utilization of the fog node is 45%, which is the maximum resource utilization value calculated at that
node. Hence, if node utilization is u, then it is guaranteed that any resource in that node has utilization
≤ u.

4.2 The Dynamic Offloading Service

In the proposed service, determining which tasks qualify for offloading depends on the offloading
source and destination nodes. For device-to-fog offloading, each task that could not be fully executed
at the end device was offloaded to the nearest fog node. Hence, in this case, the number of offloaded
tasks per request is one, and offloading is performed for any task type, as shown in Algorithm 1. For
fog-to-fog and fog-to-cloud offloading requests, an overloaded fog node i is responsible for selecting
the type of tasks to be offloaded and sending the list of candidate tasks for offloading Tc

i to the
SDN controller. The set of all the tasks running on fog node i is Ti where 1 ≤ n( Tc

i ) < n(Ti). The list
is sent to the SDN controller, which invokes a dynamic offloading service that selects the offloaded
tasks, and assigns them to fog or cloud nodes without violating the latency constraints of those tasks.
Additionally, it installs the flow rules in SDN switches based on the optimized route selected according
to network status.

Algorithm 1: Pseudocode for Device-to-Fog Offloading.
1: for a task t at end device e
2: L← getTaskMaxLatency(t);
3: Rr← getRequiredResource(t);
4: Ar← getAvailableResource(e);
5: if (Rr cannot be satisfied by Ar)
6: sendOffloadingRequest(t, e, i, Rr, L);
7: end if
8: end for

The SDN controller has a number of utilization vectors n. Each utilization vector UVj has a
certain threshold Uj, where j = 0, 1, 2, . . . , n − 1. The utilization step Us between any two consecutive
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thresholds is fixed, and the value of Uj is determined as follows.

Uj = Us + Uj−1, (1)

where U−1 = 0. The number of utilization vectors n depends on the maximum utilization Umax and the
value of Us as follows.

n = Umax

Us

(2)

As mentioned in Section 4.1, threshold rules determine system acceptable performance. If the
utilization of a fog node exceeds the value of Umax, the node is considered overloaded. During network
configuration, the default Us value is determined based on normal network load conditions. Fog node
i sends its resource utilization value ui to the SDN controller. The controller records ui in the fog
utilization array UF . The ID of fog node i is recorded in the corresponding utilization vector UVj,
according to the following condition:

IDi ∈ UVj ↔ UVj−1 < ui ≤ UVj (3)

The controller uses the size of the utilization vectors to monitor the status of the fog nodes and
determine the next Usvalue. Because the value of Us determines the size of offloaded tasks, it should be
adjusted to avoid network congestion. At a high load, many fog nodes can become overloaded. Hence,
the default Us value may lead to network congestion owing to offloading large amounts of traffic sent
from overloaded nodes. In contrast, at low load conditions where few fog nodes are overloaded, raising
the value of Us reduces the number of offloading requests. The length of the last utilization vector
L(UVn−1) and a predetermined factor f control the value of the next Us as shown in Eq. (4), where m
is the number of fog nodes, and nd is the number of utilization vectors based on Us default value:

Us(next) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Us(current)

f
, L (UVn−1) ≥ m/nd

Us(current), 0 < L (UVn−1) <
m
nd

Us(current) × f , L (UVn−1) = 0

(4)

Any fog node that fulfills the condition ui > Umax is considered overloaded, and it starts to execute
the task selection algorithm to determine the number and type of tasks to be offloaded. Assume that
application al is running on node i where l = 1, 2, . . . , Ai, and Ai is the total number of applications
running on fog node i. Application al has a number of instances I i

al
. Hence, the task instance utilization

Ui
al, , r is given in Eq. (5), and the total utilization Ui

al
of each application al is given in Eq. (6):

Ui
al, , r = max

(
Ui

R1 , Ui
R2, . . . , Ui

Rz

)
r

where r = 1, 2, . . . , I i
al

, (5)

Ui
al

= max
(∑Ii

al

r=1

(
Ui

R1

)
r
,

∑Ii
al

r=1

(
Ui

R2

)
r
, . . . ,

∑Ii
al

r=1

(
Ui

Rz

)
r

)
, (6)

where z is the number of resources at fog node i and the value of Ui
R1 is normalized using min-max

normalization. Table 2 lists the main notations used in this section.



CMC, 2023, vol.75, no.1 1513

Table 2: Main notations

Symbol Description

M Number of fog-nodes in the network
Ai Number of applications running on fog node i
ai

l Application al running on fog node i
tai

l
Task instance of ai

l

I i
al

Number of instances of application ai running on fog node i
Ti Set of all tasks at fog node i
Tc

i set of candidate tasks for offloading running on fog node i
ui Utilization of fog node i
N Number of utilization vectors
Uj Utilization threshold, where j = 0, 1, .., n−1
Us Utilization step between any two consecutive utilization thresholds
Umax Maximum utilization for any fog node
UVj Utilization vector of Uj

Ui
al, , r Task instance utilization at fog node i

Ui
al

Total utilization of application al

Z Number of resources at fog node i
Ui

Rz Total utilization of resource Rz at fog node i
UF Fog utilization array
L (UVn−1) Length of the last utilization vector
OLTSi Offloaded task set for fog node i
OLFSi Offloading fog set for fog node i
Ltai

l
Maximum allowed latency of tai

l

Lc Latency of route c from best route matrix
BRMi Best-route matrix for fog node i

Each fog node has three task vectors that are continuously maintained. The first task vector V1 has
the task ID and Ui

al
of latency-tolerant tasks such as file storage, file management, and environmental

monitoring tasks. In this vector, tasks are ranked according to the value of Ui
al

. Tasks in the second
and third vectors are ranked according to the value of latency. The second vector V2 has the task ID,
value of Ui

al, , r, and latency of delay-sensitive non-urgent tasks such as video streaming and online
gaming tasks. The third vector V3 has the task ID, value of Ui

al, , r, and latency of delay-sensitive hard
deadline tasks such as autonomous driving tasks. All vectors are ranked in descending order, as shown
in Algorithm 2.
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Algorithm 2: Pseudocode to Classify Tasks.
1: for each task at i do
2: Type← determineTaskType(t);
3: if (Type = LatencyTolerant)
4: V1← addTask(t);
5: else if (Type = LatencySensitive_NotCritical)
6: V2← addTask(t);
7: else
8: V3← addTask(t);
9: end if

10: end for
11: for set of task instances in V1 do
12: V1←descendingSort(Ui

al
);

13: end for
14: for each task at V2 do
15: V2←descendingSort(Ltai

l
);

16: end for
17: for each task at V3do
18: V3←descendingSort(Ltai

l
);

21: end for

Once a fog node enters an overloaded state (ui > Umax), it sends an offloading request to the SDN
controller. There are three types of offloading requests. The first type is fog-to-cloud offloading. It is
the only allowed type of offloading in an overloaded fog node if the length of V1 �= 0. In this case, the
SDN controller optimizes a route between the fog node and the backbone router then the offloading
process commences, as shown in Algorithm 3 (Fog-to-Cloud Offloading FCO). Then, V1 is updated. If
ui > Umax and V1 is empty, the second type of offloading (i.e., Utilization-based Fog-to-Fog Offloading
UFFO) is activated. The request holds an ordered list according to the latency of all candidates in V2.
Similarly, if the lengths of V1 and V2 are equal to zero, all tasks in the overloaded node are critical and
latency-sensitive tasks. Hence, the third type of offloading (i.e., Latency-based Fog-to-Fog Offloading
LFFO) is activated.

Algorithm 3: Pseudocode for FCO algorithm.
1: At fog node i
2: If (length(V1) > 0 And ui > Umax )
3: sendFogToCloudOffloadingRequest(i, SDN);
4: end if
5: At SDN
6: for each set of task instances in V1 do
7: If (Utotal < Us)
8: Utotal + = Ui

al
;

9: OLTSi←addOffloadedTask(tai
l
);

10: else
11: Routet←determineBestRoute (i, gatewayRouter);

(Continued)
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Algorithm 3: Continued
12: S←getOFSwitches(Routet);
13: sendOffloadingReply(SDN, i, OLTSi, Routet);
14: for each element in S do
15: applyFlowRules();
16: end for
17: end for

In the proposed network architecture, the SDN controller determines the best route, according to
the target metric, from each fog node as the source node to every other node as a possible destination
in the network. For each fog node, the SDN controller creates a Best-Route Matrix (BRM), as shown
in Algorithm 4, which stores information about routes as follows.

• For a fog node i, each row in the matrix has four elements:
o The ID of the destination fog node.
o The total transmission and propagation delays along the selected route Lc.
o The hop count

• Elements of the matrix are arranged in ascending order according to the value of latency.
• In the case of a tie, the hop count is used to break the tie. If it still holds, the lowest node ID

breaks the tie.

Once the SDN controller receives a fog-to-fog offloading request and V2 is not empty, it executes a
greedy heuristic offloading algorithm that allocates the offloaded tasks to the best utilization fog nodes
that do not violate latency constraints, as shown in Algorithm 5 (UFFO algorithm). The proposed
algorithm returns two values. The first is the offloaded task set OLTSi, and the second is the offloading
node set OLFSi. At the start of execution, OLTSi and OLFSi are empty. As long as the latency
condition in line 4 holds true, the best utilization node is selected as per lines 5–8. If the utilization
condition in line 15 holds, then the corresponding entities from lines 16 to 18 are updated. The process
terminates if the condition in line 22 holds or if the end of the task list is reached.

Algorithm 4: Pseudocode for Creating Best-Route Matrix (BRMi) and Utilization Array (UF)
1: At SDN
2: if real-time network status change
3: for each i do
4: for each k ∈ m do
5: If (i �= k)
6: Lc← determineBestRoute(i,k);
7: BRMi←updateRow(Lc, hop-count, ID, refd);
8: end if
9: end for

10: end for
11: for each BRMido
12: BRMi← ascendingSort(Lc, hop − count, ID);
13: end for
14: end if

(Continued)
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Algorithm 4: Continued
15: if ( ui of node i changes)
16: UF←updateRow(i, ui);
17: end if

Algorithm 5: Pseudocode for UFFO algorithm
1: If controller receives fog-to-fog offloading request from i
2: for each element ti

al
in V2 do

3: for each element x in BRMi do
4: If (Lti

al
> BRMi [x] [0])

5: If(ref d �= null)
6: If (bestU < ui)
7: bestU = ui;
8: OL = x;
9: end if

10: else break;
11: end if
12: else break;
13: end if
14: end for
15: If (best U + Utotal + Ui

al , r < Un−1)
16: OLFSi←addOffloadingFogNode(BRMi [OL] [2]);
17: OLTSi←addOffloadedTask(tai

l
);

18: Utotal+ = Ui
al, , r ;

19: break;
20: end if
21: bestU = 0;
22: If (Utotal ≥ Us) break; end if
23: end for
24: end if
25: Utotal = 0;
26: return OLFSi, OLTSi

Algorithm 6 (LFFO algorithm) starts by initializing the offloaded task set OLTSi and the
offloading node set OLFSi. To add task instances in OLTSi, the algorithm identifies which tasks from
the set of candidates can be offloaded without violating latency constraints. The algorithm compares
the maximum allowed latency of the task with the latency recorded in BRMi. If Ltai

l
> Lc, then the

task may be offloaded. If the utilization condition in line 6 holds, then OLFSi is updated with the ID
of the offloading fog node and task instances are added to OLTSi. Otherwise, the next Lc is checked.
Because the first row BRMi has the lowest latency, and the first task instance in the offloading request
has the highest maximum latency, if the latency condition as per line 4 in LFFO fails, no tasks can
be offloaded from that fog node and the comparison stops because all subsequent route latencies are
higher than Ltai

l
. If the utilization condition in line 6 does not hold, the latency condition is checked

for the next entry in BRMi.
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For both algorithms UFFO and LFFO, if
∑

Ui
al, , r < Us the next task candidate is checked and

OLTSi and OLFSi are updated until
∑

Ui
al, , r ≥ Us or the end of the offloading candidate list is

reached. The values of OLTSi and OLFSi and the information about optimized routes are sent to the
overloaded node to start the offloading process.

Algorithm 6: Pseudocode for LFFO algorithm
1: If controller receives fog-to-fog offloading request from i
2: for each element ti

al
in V3 do

3: for each element x in BRMi do
4: If (Lti

al
> BRMi [x] [0])

5: If(refd �= null)
6: If(ui + Utotal + Ui

al, , r < Un−1)
7: OLFSi←addOffloadingFogNode(BRMi [x] [2]);
8: OLTSi←addOffloadedTask(tai

l
);

9: Utotal+ = Ui
al, , r ;

10: break;
11: end if
12: else break;
13: end if
14: else break;
15: end if
16: end for
17: If (Utotal ≥ Us) break; end if
18: end for
19: end if
20: Utotal = 0;
21: return OLFSi, OLTSi ;

4.3 Computing Task Latency and Deadline

The service discipline is performed using the preemptive Earliest Deadline First (EDF) algorithm,
which assigns dynamic priorities to tasks according to their deadlines. The queuing model at the fog
node is an M/G/1/./EDF queue which was presented in [52]. Hence, when a task that has the
nearest deadline arrives at the ready queue, it is assigned the highest priority and preempts the
currently executing task. It has been proven that under normal operating conditions (i.e., when a fog
node is not overloaded), EDF is an optimal scheduling algorithm for real-time independent tasks
[52,53]. However, offloading a task from one node to another requires recalculations of deadlines.
That compensates for the time consumed in the transmission and propagation delays. Consider the
following example in Fig. 2, a task with a total of 10 ms of computation time has arrived at the ready
queue of an end device at 100 ms. It was executed for 2 ms at the end device and then offloaded to an
overloaded fog node and waited in the queue for 1 ms.

Subsequently, it was offloaded again to Node B to complete the remaining 8 ms of its execution
time. However, transmission and propagation delays were not considered. Assume that Node B
finished task execution after 190 ms (i.e., before the deadline). However, the result still needs 35 ms
to return to the end device. It would arrive at 225 ms; hence, the task misses the deadline. To rectify
this, the deadlines must be recalculated before the task is offloaded. In the same example, the deadline
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at Node A should be no more than 193 ms and at Node B no more than 162 ms. Accordingly, during
the first offloading, the end device recalculates the deadline before offloading the task. For the second
offloading, the SDN controller recalculates the deadline by subtracting the latency from Node A to B,
which consists of transmission and propagation latencies in addition to the time consumed in executing
the offloading algorithm. As mentioned in Section 4.1, the network architecture has identical fog
nodes; hence, the processing delay is the same for all the nodes.

Com. Arr. DL

8ms 138ms 162ms

Com. Arr. DL

10ms 100ms 200ms

Overloaded fog node A Offloading fog node BSmart/IoT device

Com.= 2ms Com.=0ms L=30mss CL=5ms

d d f d AA Offlff dA

Figure 2: Deadline recalculation example

4.4 Complexity Analysis

The SDN controller executes Algorithm 4 when the network status changes. That may occur
because of changes in the device or network configuration: a network link is down, device failure,
or network congestion. The worst time complexity of the algorithm is O

(
m2 (1 + log m)

)
. The worst

time complexity of the FCO algorithm is O (Ai), where Ai is the number of running applications in fog
node i. Assume that the best utilization node is the last node in BRMi. Accordingly, the worst time
complexity of the UFFO algorithm is O

(
n(Tc

i ) ∗ m
)
, where n( Tc

i ) is the number of candidate tasks
for offloading. The worst-case scenario of the LFFO algorithm assumes that the first half of the fog
nodes in BRMi are overloaded and that all elements in BRMi do not violate the latency condition.
Hence, the worst time complexity is O

(
n(Tc

i ) ∗ m
)
.

5 Performance Evaluations

The performance evaluations were performed using Apache NetBeans [54]. The offloading
algorithms were written in Java. The custom simulator built in [55] was updated to include the fog
and SDN layers. The fog layer has three sizes: 16, 32, and 64 nodes. For the three fog layer sizes, three
network dimensions were selected (200 m × 200 m, 400 m × 400 m, and 800 m × 800 m). The numbers
of end devices associated with 16, 32, and 64 fog nodes are 400, 800, and 1600 devices, respectively. The
mobility mode for end devices was disabled, and transmission ranges were: 40, 60, 80, and 100 m. The
SDN network was simulated as a binary tree network in which 16, 32, and 64 fog nodes are connected
to sets of 15, 31, or 63 OF-switches, respectively. The root switch was connected to the SDN controller.
The tasks were created using a traffic generator. Then, they are randomly assigned to end devices,
which offload those tasks to fog nodes. The physical server that ran the simulation had four cores and
eight virtual threads with 16 GB of RAM.

5.1 Simulation Setup

The task type and required resources (i.e., CPU, memory, disk, and bandwidth) were randomly
assigned for each task. However, when evaluating the impact of offloading on a certain performance
metric, task type distribution can be biased. The proposed algorithms were compared with the
Dynamic Fog-to-Fog (DF2F) offloading algorithm presented in [44]. The average simulation results
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were based on 20 executions for each algorithm for each network size. Because DF2F did not specify
the selection methodology of offloaded tasks, all compared algorithms used one task instance per
application. The values of simulation parameters are listed in Table 3.

Table 3: Values of simulation parameters

Parameter Value

Number of fog-nodes in the network 16, 32 and 64 nodes
Number of SDN switches 15, 31 and 63 switches
CPU utilization range 0.25–0.8
Memory utilization range 0.25–0.8
Bandwidth range 15–50 Mbps
Server to switch latency 2 ms
Switch to switch latency 1 ms
End device to fog server latency 1 ms
Latency of V1 tasks No limits assigned
Latency of V2 tasks 50–300 ms
Latency of V3 tasks 50–100 ms
Task arrival rate according to the number of
fog nodes

(200, 400, 800) task/s for
(16, 32, 64) fog nodes

Us(Default) 0.2
F 2
Umax 0.8

Because no delay is assigned to latency-tolerant tasks, all the required resources for these tasks can
be selected randomly. The ranges used in the simulation were 1%–10% of the CPU time, 10–300 MB
of memory, and 15–50 Mbps of required bandwidth. The corresponding values for latency-sensitive
non-urgent tasks were as follows: from 0.1% to 2% of CPU time and from 1 to 100 MB of memory
size. For latency-sensitive urgent tasks, the values range from 0.1% to 0.5% of the CPU time and from
1 to 50 MB of memory. The required bandwidth for latency-sensitive tasks was computed according to
the assigned latency. If the value exceeded the bandwidth range (i.e., from 15 to 50 Mbps), task CPU
time and memory size were reselected.

5.2 Results and Discussion

The comparison with DF2F was performed for fog-to-fog requests because fog-to-cloud offload-
ing was not addressed in [44]. For the proposed algorithms, Ui

al , r for each task was computed based
on the required resources. The value of ui is calculated based on the resource consumption of all tasks
at fog node i. The average time required to select an offloading node was improved by 33.34% when
compared to DF2F, as shown in Fig. 3a. For the three proposed algorithms, increasing the number of
nodes increased the selection interval, as shown in Fig. 3b.

The proposed algorithms outperformed the offloading node selection time achieved by DF2F
for two main reasons. First, for every offloading request, the DF2F algorithm executes two main
functions. The first function finds all available nodes that can satisfy the offloading request. The output
of the first function is the input for the second function, which selects the node with the highest final
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resource score [44]. As mentioned in Section 3, the time complexity for offloading a task using DF2F
is O (n + m). However, the time complexity of UFFO or LFFO is O (m) when one task is offloaded
per request, as in DF2F. Second, to compute the final resource score in DF2F, the second function
calculates the individual score for each resource in each fog node in the list of available nodes. Thus,
the optimal offloading node is determined. Each offloading request requires the computation of the
final resource score before selecting the node with the highest score. Hence, the algorithm adopts a
sequential execution. However, in the proposed service, it is assumed that all fog nodes are identical.
Hence, the resource requirements of a task at any fog node are the same. The service selects optimal
tasks for offloading according to their type and latency constraints. The selection of offloading node
is determined based on the offloading service type. In the UFFO algorithm, the optimal offloading
node is the node with the lowest utilization value that does not violate the latency constraints of the
task. In the LFFO algorithm, the optimal offloading node is the one that has the lowest route latency,
which does not violate utilization constraints. In both algorithms, no calculations are performed on
individual resources. Both algorithms used the available data in the UF and BRMi matrices. Because
of the SDN centralized architecture that supports the global network view, these matrices are updated
continuously regardless of the presence of offloading requests.

Figure 3: Average time required to select an offloading node

Figs. 4a and 4c show utilization snapshots of two 32-fog node networks before offloading starts.
The main requirement is to evaluate the impact of offloading on the fairness of utilization distribution
for fog nodes. Fig. 4b shows the utilization after performing fog-to-fog offloading for latency-sensitive
non-urgent tasks. Nodes with high utilization but not yet overloaded are grey-colored, as shown
in Figs. 4a and 4b. These were not selected to be offloading destinations. Except for these nodes,
the utilization of nodes converges to be a uniform distribution. Fig. 4d shows the utilization of fog
nodes for latency-sensitive urgent tasks after executing the LFFO algorithm. The utilization of Node
1 changed from 29% to 74% because it offered the best latency to Nodes 4 and 5. However, offloading
tasks from Node 5 to Node 6 was avoided because the best latency route may not be the one with the
shortest hop count.
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Figure 4: Utilization snapshot comparison (a) utilization of fog nodes before offloading, (b) utilization
of fog nodes after executing UFFO, (c) utilization of fog nodes before offloading, (d) utilization of
fog nodes after executing LFFO

The distribution of the average hop distance between overloaded and offloading nodes is shown
in Fig. 5. A comparison of the average hop distance between LFFO and DF2F algorithms is shown in
Fig. 5a. In both algorithms, most offloading nodes are selected from the set of neighbors three hops
away from the overloaded node. As depicted in Fig. 5b, the average hop distance distribution has a



1522 CMC, 2023, vol.75, no.1

descending pattern regardless of the network size. Fog nodes three hops away from the overloaded
nodes have the highest ratio of assigned offloading requests. The average hop distance ratio decreases
as the hop count increases because the LFFO algorithm selects offloading nodes with the lowest
latency. A fog node is selected if all fog nodes at smaller hop distances cannot satisfy the request.
However, the distribution of hop distance has an opposite pattern for nodes with one and three
hop counts. That is greatly affected by the binary tree architecture because the number of possible
offloading nodes doubles as the test for these nodes moves up one level in the tree. That doubles the
probability of choosing an offloading node at the current level if no offloading nodes are selected
in the previous level. For example, in a 16-fog node network, assume that Node 7 is overloaded. If
Node 8 is not selected as an offloading node, the probability that one of the Nodes 5 or 6 is selected
doubles. However, this probability is reduced to half of its value each time the network size doubles.
That explains the gradual increase in the ratio of offloading nodes selected from the set of nearest
neighbors.

Figure 5: The distribution of average hop distance between overloaded and offloading nodes; (a) The
distribution of average hop distance comparison between DF2F and LFFO; (b) The distribution of
average hop distance comparison of LFFO algorithm for 16, 32, and 64 fog nodes

As previously mentioned in Section 1, the four main questions that govern the design of offloading
algorithms shall be addressed during the design of the offloading service. The proposed dynamic
offloading service answered these questions as follows.

• Tasks selected for offloading are determined based on their types. The selection of tasks and
offloading type is determined according to data stored in V1, V2 and V3.

• The number of offloaded tasks depends on the value of Us, which is determined using Eq. (4),
and the value of Ui

al
, for the FCO algorithm, or the value of Ui

al, , r, for Algorithms UFFO
and LFFO.

• The selection of offloading fog nodes was based on the type of offloading service provided by
FCO, UFFO, or LFFO algorithms. FCO offloads tasks to cloud nodes, whereas algorithms
UFFO and LFFO select offloading fog nodes, as mentioned earlier.

• The number of offloading nodes varied according to the offloading algorithm. FCO does not
determine the number of offloading nodes because it is beyond the scope of this study because
all offloaded tasks are assigned to cloud servers according to allocation decisions determined
by the cloud resource allocation scheduler. In algorithms UFFO and LFFO, the number of
offloading nodes is determined according to the utilization of fog nodes and the value of Us.
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6 Conclusion and Future Work

This paper proposes three offloading algorithms, each of which targets a specific type of task.
FCO algorithm offloads latency-tolerant tasks from an overloaded fog node to the cloud server. The
UFFO algorithm selects offloading nodes for non-urgent latency-sensitive tasks. The LFFO algorithm
determines offloading nodes for latency-sensitive urgent tasks. Candidate tasks for offloading are
selected by the overloaded node; subsequently, the offloading request is sent to the SDN controller.
The main motivation behind this approach is to increase the interval in which a fog node remains
in the non-overloaded state. This is achieved by determining the maximum number of tasks that can
be offloaded without causing network congestion. The highest offloading priority is given to latency-
tolerant tasks, while latency-sensitive urgent tasks get the lowest offloading priority. The participation
of fog nodes and SDN controllers in choosing offloaded tasks reduces the time required to select
offloading nodes by 33%. However, the effect of mobility on the proposed service was not considered.
It is assumed that end devices remain associated with the same fog node during the entire interval
of task execution. Hence, in the future, we will consider developing a mobility-aware task offloading
algorithm in a clustered SDN-based FC network. In addition, developing an energy consumption
optimization approach that allocates energy based on the task type, level of importance, and latency
constraints, will also be considered.
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