
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited.

echT PressScienceComputers, Materials & Continua
DOI: 10.32604/cmc.2023.035177

Article

Connected Vehicles Computation Task Offloading Based on Opportunism
in Cooperative Edge Computing

Duan Xue1,2, Yan Guo1,*, Ning Li1 and Xiaoxiang Song1

1College of Communications Engineering, Army Engineering University of PLA, Nanjing, 210007, China
2College of Computer Science, Liupanshui Normal University, Liupanshui, 553000, China

*Corresponding Author: Yan Guo. Email: guoyan_1029@sina.com
Received: 10 August 2022; Accepted: 12 November 2022

Abstract: The traditional multi-access edge computing (MEC) capacity is
overwhelmed by the increasing demand for vehicles, leading to acute degra-
dation in task offloading performance. There is a tremendous number of
resource-rich and idle mobile connected vehicles (CVs) in the traffic network,
and vehicles are created as opportunistic ad-hoc edge clouds to alleviate
the resource limitation of MEC by providing opportunistic computing ser-
vices. On this basis, a novel scalable system framework is proposed in this
paper for computation task offloading in opportunistic CV-assisted MEC.
In this framework, opportunistic ad-hoc edge cloud and fixed edge cloud
cooperate to form a novel hybrid cloud. Meanwhile, offloading decision and
resource allocation of the user CVs must be ascertained. Furthermore, the
joint offloading decision and resource allocation problem is described as
a Mixed Integer Nonlinear Programming (MINLP) problem, which opti-
mizes the task response latency of user CVs under various constraints. The
original problem is decomposed into two subproblems. First, the Lagrange
dual method is used to acquire the best resource allocation with the fixed
offloading decision. Then, the satisfaction-driven method based on trial and
error (TE) learning is adopted to optimize the offloading decision. Finally, a
comprehensive series of experiments are conducted to demonstrate that our
suggested scheme is more effective than other comparison schemes.

Keywords: Multi-access edge computing; opportunistic ad-hoc edge cloud;
offloading decision; resource allocation; TE learning

1 Introduction

Multi-access edge computing (MEC) has attracted more attention than ever before because it
can handle the computation tasks of connected vehicles (CVs) with limited resources by computing
offloading [1]. However, CVs encountered computation-intensive and delay-critical computation
tasks. In this case, only relying on the fixed edge servers (FESs) deployed near the roadside units
(RSUs) may cause the computation congestion of some FESs and the load imbalance of computation

https://www.techscience.com/
https://www.techscience.com/journal/cmc
http://dx.doi.org/10.32604/cmc.2023.035177
https://www.techscience.com/doi/10.32604/cmc.2023.035177
mailto:guoyan_1029@sina.com

610 CMC, 2023, vol.75, no.1

resources between them. In urban congested areas or areas with inadequate infrastructures, the density
and computation resource capacity of FESs will affect the offloading performance.

Recently, the MEC architectures of task offloading have undergone extensive design work to
augment the task-processing capabilities of edge servers (ESs). Some research works [2–4] suggested
MEC/Fog computing (FC)-based architectures for task offloading in vehicular networks. These
architectures deploy ESs/fog servers (FSs) at fixed wireless infrastructures, enabling the exchange of
information between vehicles and ESs/FSs through vehicle-to-infrastructure (V2I) communication
with low latency. However, it is unable to handle all the computation-intensive tasks in urban areas’ hot
spots because each ES/FS only has a limited-service area and finite computing power. Some existing
approaches [5–7] attempted to adaptively offload excessive computation-intensive tasks to the ESs/FSs
and alleviate and balance the load of the ESs/FSs by optimizing the computation offloading strategy.
However, unanticipated latency and task failure may occur because of vehicular mobility, dynamic
vehicular density distribution, and time-varying computation resources of ESs/FSs. To sum up, the
task offloading problem in vehicular networks has not been completely addressed.

Ad-hoc edge clouds, which can use mobile vehicles with high-performance computation capacities
and idle scattered in the traffic network as opportunistic CVs, have emerged as an effective approach
to tackle these complications [8]. These clouds can form an ad-hoc local resource pool and offer
opportunistic computing services. Ad-hoc edge cloud can be created anytime and anywhere according
to the availability of opportunistic CVs and cooperate with the fixed edge cloud to form a novel hybrid
cloud, allowing resources and computation sharing. Furthermore, this hybrid cloud can convert the
idle resources due to congestion into valuable and useful computation capacities and further alleviate
the resource limitation of MEC. Although vehicle or unmanned aerial vehicle (UAV) assisted MEC
provides chances for computation offloading to vehicles with restricted local processing capabilities
[9,10], they did not effectively schedule resources, assign tasks in MEC, and establish load balance
between opportunistic CVs and FESs.

On the basis of the foregoing backdrop, the task offloading and resource allocation problem in
a novel hybrid cloud are examined in this paper. There are still some crucial challenges in realizing
the opportunistic ad-hoc edge cloud to balance the efficient joint offloading decision and resource
allocation of the fixed edge cloud: (1) how to select the appropriate edge computing node; (2) how to
reasonably allocate resources. However, offloading decisions are extremely dynamic ascribed to the
mobility of CVs. More sophisticated edge computing node selection schemes and resource allocation
strategies should be created to improve the task offloading effectiveness of CVs in distributed systems.
Particularly, our proposed scheme considers the mobility of CVs when deciding the offloading to the
edge computing nodes and handles the potential trade-offs between communication and computation
latency. The contributions of this study are outlined as follows,

(1) A scalable opportunistic CV-assisted MEC framework, which offloads tasks through oppor-
tunistic CVs cooperating with FESs, is proposed. Furthermore, the joint offloading decision
and resource allocation problem for opportunistic ad-hoc edge cloud-assisted MEC is for-
mulated as a Mixed Integer Nonlinear Programming (MINLP) problem with minimum task
response latency.

(2) The formulated MINLP problem is decomposed into two subproblems: 1) a distributed
method based on duality theory is proposed to optimize the resource allocation subproblem
with the fixed task offloading strategy; 2) a satisfaction-driven method is proposed to solve the
subproblem of edge computing node selection based on the resource allocation strategy.

CMC, 2023, vol.75, no.1 611

(3) A comprehensive series of experiments based on real city maps are conducted to verify that our
suggested scheme improves the conventional approaches in load balancing, average response
latency, task completion rate, and offloading rate.

The structure of the paper is organized as follows. Section 2 overviews the related literature.
In Section 3, the system framework and the optimization model are described. Section 4 details
the specific solution algorithm. Section 5 presents the simulation results of our scheme. Finally,
conclusions are drawn in Section 6.

2 Related Works

Many researchers have studied the offloading strategies, task scheduling strategies, and resource
allocation schemes in the MEC environment. Afsar et al. [11] maximized the computation resources of
a cluster of nearby MEC through the cooperative game approach to reduce the task response latency.
In a FiWi-enhanced vehicular edge computing (VEC) network, Zhang et al. [12] suggested a software-
defined network load-balancing task offloading technique. To assure a better task offloading scheme,
users must bargain with one another, which necessitates constant information exchange between them.
Zhang et al. [13] placed small cloud server infrastructure with limited resources, such as a cloudlet
near the network’s edge, and provided context-aware services based on network information. This
method requires centralized frequent communication among controllers, cloudlet, and mobile devices.
Al-Khafajiy et al. [14] presented a task offloading scheme with load balancing, where FSs of the Fog
layer form a service group to provide services for the outside world. An FS with a heavier load can also
redistribute its tasks to the lightly loaded FSs to achieve load balancing. Using a finite power budget,
server computational capability, and wireless network coverage, Song et al. [15] proposed a method
for offloading tasks to ESs to maximize the reward for each server. Tang et al. [16] constructed the
VEC model in the form of a frame and designed a dynamic framing offloading algorithm based on
Double Depth Q-Network (DFO-DDQN) to minimize the total delay and waiting time of tasks from
mobile vehicles. Dai et al. [17] established a fog-based architecture to facilitate low-latency information
interchange between vehicular users and FSs via V2I communication. Since each FS is limited to a
specific service area, it cannot meet the demand for vehicles outside of that area. Additionally, the
FS only serves a small number of users and has finite computational capacities, making it impossible
for them to complete all the computation-intensive tasks in urban areas’ hotspots. The computing
architectures for supporting CVs considered in the works above are computation-aided architectures,
in which CVs only produce computation tasks and offload their tasks to ESs deployed on a static
infrastructure. However, the uncertainty driven by the mobility of CVs makes the decision-making
of task offloading more complicated [18], causing insufficient computation resources of ESs and a
decrease in task offloading performance with the increase in task requests.

The architectures studied for supporting CVs in certain works are computation-enabled architec-
tures, in which CVs can perform computation and generate computation tasks. In other words, the
tasks of CVs will be completed independently, in conjunction with other adjacent vehicle clusters, or
with the assistance of edge clouds. Wang et al. [19] summarized the existing computing architecture
design in MEC/FC for CVs in detail and analyzed the service demands and design considerations
of MEC architecture from both academic and commercial viewpoints, providing a novel perspective
for mobile vehicles as fog nodes. Nonetheless, this is just an idea. Tang et al. [20] proposed a
task scheduling strategy based on the greedy heuristic algorithm in the architecture based on FC.
Specifically, vehicles form vehicle ad-hoc networks (VANETs) and contribute their computation
resources to supplement vehicular fog computing (VFC), so as to effectively handle tasks offloaded

612 CMC, 2023, vol.75, no.1

from mobile device. Besides, RSU acts as a cloud center and is responsible for scheduling vehicles
within its communication range. Lin et al. [21] proposed a contextual clustering of bandits based
online vehicular task offloading solution, where the target vehicular user equipment learns the
unknown environment during offloading, to minimize the overall offloading energy while meeting
offloading delay of each task under an unknown environment. Zhang et al. [22] offloaded partial
computation tasks to other devices and enhanced service quality by optimizing resource allocation,
lowering latency, and using less energy. Fatemidokht et al. [23] suggested a novel secure and cost-
effective method based on an AI algorithm with UAV-assisted for urban VANET (VRU) protocol.
This method significantly reduced the packet delivery ratio and delay time. In vehicle-to-vehicle (V2V)
communication, Dai et al. [24] fully utilized the computation capacity of numerous surrounding
vehicles and processed tasks for close-by vehicles. However, the computation resources of ESs are time
varying owing to the dynamic joining and departing of vehicles, resulting in an unforeseen delay or task
failure. Ma et al. [25] designed a unique task scheduling mode for resource allocation management and
computing edge server choice in addition to proposing an edge computing solution based on outside
parked vehicles. However, this idea is only aimed at static vehicular cloud, neglecting the dynamic
environment. The path of task offloading is long, accompanied by optimization variables such as
selection decisions and resource allocation. Considering that these optimization variables require task
offloading to meet task processing delay and resource constraints, it is comparatively challenging.

3 System Model and Problem Analysis
3.1 Scenario Description

In this study, a scalable opportunistic CVs assisted-MEC (SOMEC) scenario is proposed, as
illustrated in Fig. 1. The system framework consists of three layers: (1) CV layer; (2) scalable edge
computing layer with fixed edge cloud and opportunistic ad-hoc edge cloud, where the fixed edge cloud
is deployed on the RSUs. Opportunistic ad-hoc edge cloud is temporarily created by mobile vehicles
with high-performance computational capacities scattered in the traffic road network but not fully
utilized as opportunistic CVs; (3) application layer. User CVs and opportunistic CVs are identified
as N = {1, 2, · · · , N} and M = {1, 2, · · · , M }, respectively. The set of RSU is R = {1, 2, · · · , R };
the set of all computing nodes is represented as L = {0, 1, 2, . . . , M, M + 1, M + 2, . . . , M + R}, a
computing node k ∈ L, where k = 0 denotes user CV locally, 1 ≤ k ≤ M indicates opportunistic ES
(OES), and k > M represents FES. Y = {yik|i ∈ N , k ∈ L} implies edge computing node selection file
profile, where yik = 1 indicates that the task is placed on the edge computing node k ∈ L for execution,
otherwise yik = 0. The notation TAi = {ϑi, γi, ξi, oi} can be used to represent the task of the user CV
i, which comprises the task input-data size ϑi and computation intensity γi. Specifically, maximum
latency tolerance is ξi, and the output/input ratio oi is related to the properties of the task. Afterward,
the time is discretized into the form of non-overlapping time slots of equal length with time intervals
of t̃ to determine the computation offloading process of the dynamics of vehicles. The amount of time
slots is mostly determined by the maximum latency tolerance, i.e., G = max

{⌊
ξi/t̃

⌋}
i∈N .

CMC, 2023, vol.75, no.1 613

Figure 1: Framework of scalable opportunistic CV-assisted MEC

3.2 System Model
3.2.1 Vehicular Mobility Model

In most cases, the vehicular velocity follows a Gaussian distribution. A reduced version of this
distribution can be used [26] to make the research more applicable to the real scenes. The truncated
Gaussian probability density function (PDF) is additionally written as:

f̃v (v) = fv (v)∫ Vmax

Vmin
fv (s) ds

= 2fv (v)

erf
(

Vmax − μ

σ
√

2

)
− erf

(
Vmin − μ

σ
√

2

) , (1)

where fv (v) = 1

σ
√

2π
exp

(
−(v − μ)

2

2σ 2

)
indicates the Gaussian PDF, μ denotes the average velocity, σ

represents the standard deviation of the velocity, and erf (·) is an error function. The velocity of each
vehicle is defined as v ∈ [Vmin, Vmax], where Vmax = μ + 3σ and Vmin = μ − 3σ are the maximal and
minimal vehicular velocity, respectively.

As a result, Eq. (1) provides the following equation for an equivalent velocity:

uv = 1∫ Vmax

Vmin

f̃v (v)
v

dv

=
erf

(
Vmax − μ

σ
√

2

)
− erf

(
Vmin − μ

σ
√

2

)

2

σ
√

2π

∫ Vmax

Vmin

exp
(
− (v−μ)2

2σ2

)
v

dv

. (2)

614 CMC, 2023, vol.75, no.1

For the angle α ∈ {0, π}, both user CVs and opportunistic CVs maintain uniform linear motion
during computation offloading. Suppose that the initial position of user CV i and opportunistic CV
s are pi = (xi, yi) and ps = (xs, ys), respectively, their positions in the g−th time slot can be written as
pg

i = (
xg

i , yg
i

)
and pg

s = (
xg

s , yg
s

)
, where xg

i = xi +vigt̃ cos α and yg
i = yi +vigt̃ sin α, xg

s and yg
s are calculated

the same. The deployment location of the FES j is generally fixed and designated as pj = (
xj, yj

)
.

3.2.2 Communication Model

The orthogonal frequency-division multiple access (OFDMA) system is used in our situation [27].
Based on the Shannon-Haley theorem, the communication link’s transmission rate is expressed in the
g−th time slot as:

Rg,m
i,k = Wik

�k

log2

(
1 + Pm

t hg
i,kk0

∣∣∣∣pg
i − pg

k

∣∣∣∣−θ

Iik + σ 2

)
, (3)

where m = up and m = down for uplink and downlink, respectively. Wik represents the channel
bandwidth, σ 2 denotes the noise spectral density, Pm

t signifies the transmission power, Iik indicates the
interference caused by more CVs following the same channel, θ stands for the path loss exponent, k0

refers to a proportional constant coefficient that depends on (λ/4π)
2, hg

i,k reflects the small-scale fading
channel power gain between computing node k and user CV i in the g−th time slot. The number of
tasks running on computing node k at the same time is expressed as �k:

�k =
∑
i∈N

yik. (4)

3.2.3 Task Offloading Model

For each user CV to finish its task, there are three offloading decisions: running locally in the
vehicle (k = 0), offloading to the OES (1 ≤ k ≤ M), and offloading to the FES (k > M).

1) Local computing on the vehicle: In this scenario, the computation capability determines the
task’s response latency, estimated as:

ti,0 = γi/f local
i , (5)

where f local
i denotes the computation capacity of user CV i. If ti,0 ≤ ξi, task TAi of user CV i is executed

locally; otherwise, the task is offloaded to the scalable edge computing layer.

2) Offloading to the FES: In this scenario, the task’s response latency is composed of the execution
time, the time it takes for input data to be transmitted and the time it takes for output data to
be transmitted. These three times can be estimated as:

ti,j = texe
ij + tup

ij + tdown
ij . (6)

The execution time of the task is expressed as:

texe
i,j = γi

f es
j

, (7)

where f es
j expresses the computation capacity of the FES j.

CMC, 2023, vol.75, no.1 615

In the g−th time slot, the wireless transmission latency of the uplink for the task of the user CV i is:

tg,up
i,j = ϑi

Rg,up
i,j

, (8)

where Rg,up
i,j denotes the transmission rate of uplink for user CV i and FES j in the g−th time slot.

Since the task has the maximum latency tolerance, the variable ϑ
g,down
i,j is introduced to represent

the size of the downlink output data from FES j to the user CV i in the g−th time slot. The wireless
transmission latency of the downlink for the user CV i is:

tg,down
i,j = ϑ

g,down
i,j

Rg,down
i,j

+ hmu

dRSU

V
+ ϑ

g,down
i,j

B
, (9)

where, in the wireless backhauls, hmu represents the number of hops that need to transmit output
data between RSUs to reach the vehicle, dRSU indicates the average distance between two neighboring
RSUs, V denotes the data delivery speed, B refers to the equivalent bandwidth between two neighbor-
ing RSUs.

In heterogeneous networks, the equivalent bandwidth is determined by the bandwidth on each of
the selected communication links, expressed as:

B = 1
1/B1 + 1/B2 + · · · + 1/Bhmu

= B1 × B2 × · · · × Bhmu

B1 + B2 + · · · + Bhmu

. (10)

3) Offloading to the OES: In this scenario, the task’s response latency is composed of the
execution time, the time it takes for input data to be transmitted, waiting time, and the time it
takes for output data to be transmitted:

ti,s = texe
is + tup

is + twait
is + tdown

is , (11)

where texe
is and tup

is can be calculated concerning Eqs. (7) and (8).

Tasks assigned to the OES s before task TAi should be known to compute twait
is . Let wqs

i denote
all tasks assigned to the OES s before task TAi. Then, the waiting response latency of TAi is the total
execution response latency of tasks in wqs

i , expressed as:

twait
is =

∑
TAi′ ∈wqs

i

γi′

f ov
s

, (12)

where TAi′ denotes the task assigned to the OES s before TAi, γi′ represents the computation amount
of task TAi′ , and f ov

s indicates the computation capacity of OES s.

If the user CV i is still in the coverage range of the OES s after TAi is completed, the output results
can be directly transmitted to the user CV i through V2V communication through wireless backhaul.
In this case, the response latency of the output data of task TAi in the g−th time slot is:

tg,down
i,s = ϑ

g,down
i,s

Rg,down
i,s

. (13)

If the user CV i is not within the coverage of the OES s after TAi is completed, the output data
should be transmitted to the user CV i through the wireless backhaul and vehicle-to-RSU (V2R) and
V2V communications. In this case, the response latency of the output data of task TAi in the g−th
time slot is:

616 CMC, 2023, vol.75, no.1

tg,down
i,s = ϑ

g,down
i,s

Rg,down
i,s

+ ϑ
g,down
i,s

Rg,down
i,l

+ h
′
mu

dRSU

V
+ ϑ

g,down
i,s

B
′ , (14)

where h′
mu represents the number of hops required for the nearest RSU of the OES s to reach the nearest

RSU of user CV i after the task TAi is completed, B
′
signifies the equivalent bandwidth between the

origin RSU and the destination RSU on the wireless backhaul link.

3.3 Problem Formulation

Multiple vehicular tasks will simultaneously compete for edge computation resources. Unrea-
sonable resource allocation may provoke network link congestion, low task completion rate, and low
edge computation resource utilization. The file profiles of edge computing node selection and resource
allocation are defined as Y = {yik|i ∈ N , k ∈ L} and X = {xik|i ∈ N , k ∈ L}, respectively. Further, our
optimization problem can be expressed as:

P1: arg
xik ,yik

min Ttotal = ∑
i∈N

∑
k∈L

yiktik

s.t.

C1: yik ∈ {0, 1}
C2:

∑
k∈L

yik = 1, ∀i ∈ N

C3:
∑
i∈N

yik ≤ 1, ∀k ∈ L

C4:
∑
i∈N

yiktik ≤ ξi, ∀k ∈ L

C5:
∑

i∈Nk

xik ≤ f max
k , ∀k ∈ L.

(15)

C1 denotes a binary vector. C2 ensures that each task can only be executed by one computing node.
C3 implies that a task is only executed once. C3 and C4 assure the maximum tolerance latency for each
task. C5 guarantees that the overall computation resources of the edge computing node assigned to its
tasks do not exceed its maximum capacity f max

k , where Nk = {i ∈ N |yik = 1} represents the set of tasks
assigned to the edge computing node.

4 Design and Analysis of Resource Scheduling Algorithm

An algorithm with exponential computational complexity is usually required to find the best
edge computing node and resource allocation strategy for problem P1. This problem is a MINLP
problem since the edge computing node selection profile Y is binary and the resource allocation
profile X is a continuous vector. This problem is obviously an NP-hard problem [28]. Therefore,
problem P1 is decomposed into two subproblems: 1) the resource allocation, which achieves the
optimal computation resource allocation with the fixed offloading decision via the Lagrange dual
method; 2) the offloading decision (i.e., computing node selection), which optimizes the offloading
decision adopted the satisfaction-driven method based on TE learning.

CMC, 2023, vol.75, no.1 617

4.1 Based on Duality Theory for Resource Allocation

Assume that the edge computing node has been given, namely, Y = Y 0. Then, P1 is a convex
problem concerning X . P1 can be rewritten as:

P2: arg
xik

min Ttotal = ∑
i∈Nk

∑
k∈L

γi

xik

s.t.
C5

. (16)

Theorem 1. Given Y = Y 0, problem P2 is a convex problem with respect to X .

Proof: See Appendix A.

The Lagrange multiplier v = {vk, k ∈ L} is employed to address problem P2. Then, the problem
can be converted into a Lagrange function:

L (x, v) =
∑
i∈Nk

∑
k∈L

γi

xik

+
∑
k∈L

vk

⎛
⎝∑

i∈Nk

xik − f max
k

⎞
⎠ . (17)

The optimization problem is converted into a dual problem:

D (v) = min L (x, v) = min
xik

∑
k∈L

⎛
⎝∑

i∈Nk

γi

xik

+ vk

⎛
⎝∑

i∈Nk

xik − f max
k

⎞
⎠
⎞
⎠ . (18)

The aforementioned problem demonstrates that this is a convex optimization problem and is
connected to vk. The optimization problem should satisfy the dual property:

x∗
ik = arg

xik

min

⎧⎨
⎩
∑
i∈Nk

γi

xik

+ vk

⎛
⎝∑

i∈Nk

xik − f max
k

⎞
⎠
⎫⎬
⎭ . (19)

Each iteration is updated in the following way:

vk (n + 1) =
⎡
⎣vk (n) + ε

⎛
⎝∑

i∈Nk

xik − f max
k

⎞
⎠
⎤
⎦

+

, (20)

where n represents the iteration index, and ε denotes the update operation step.

Since the high-speed movement of vehicles will cause dynamic changes in computation resources
on the ES, an adequate constant step size must be chosen to guarantee the convergence of the
optimization problem and speed up the convergence rate. The algorithm is described in Algorithm
1. The initial value of v is set to v (0) to obtain the ideal value of xik. The value of xik can be calculated
according to Eq. (19). Then, the initial value of vk can be obtained and updated in conjunction
with Eq. (20). The above steps are iterated until the value of xik is fixed or the value of vk is 0. The
convergence analysis of the algorithm is detailed as follows.

Theorem 2. Assume that ||ε||2 is small enough, v ≥ 0. Then, the suggested algorithm can converge
to the optimal solution.

Proof: See Appendix B.

618 CMC, 2023, vol.75, no.1

Algorithm 1: Optimal Resource Allocation
Input: user CVs, opportunistic CVs, fixed ESs
Output: The optimal resource allocation strategy: xik

1: Initialization
2: Assign value to v
3: Assign task set Nk to edge computing node k
4: for i ∈ Nk do
5: Calculate the task completion response latency according to Eqs. (5), (6), and (11)
6: end for
7: repeat
8: Calculate the Lagrange multiplier vk

9: Update the value of vk according to Eq. (20)
10: Calculate the optimal resource allocation strategy xik

11: Update the value of xik according to Eq. (19)
12: until: the value of xik is fixed or the value of vk is 0
13: Obtain the optimal resource allocation strategy xik

14: Repeat steps 3–13 until the response latency of the vehicle is minimized
15: end of the algorithm

4.2 Satisfaction-Driven Method for Offloading Strategy

The best edge computing node for the task is chosen once the best resource allocation has
been determined by lessening the overall response latency constraint of all offload tasks. After the
determination of the optimal resource allocation X ∗, the following step is to choose the optimal edge
computing node by curtailing the response latency. The problem is rephrased per Section 4.1 as:

P3: arg
yik

min Ttotal = ∑
i∈N

∑
k∈L

yiktik,

s.t.
C1, C2, C3, C4

(21)

where tik can be written as:

tik =
⎧⎨
⎩

ti,0, if k = 0
ti,s, if1 ≤ k ≤ M
ti,j, if k > M

. (22)

Owing to the dynamic mobility of vehicles, the selection of edge computing nodes for the user CV
i can be regarded as an exploration and exploitation process. Under the inspiration of TE learning,
a satisfaction-driven method is proposed for edge computing node selection. Moreover, it has been
verified that this method can make the distributed system stay at the optimal Nash equilibrium point
with high probability [29]. Edge computing nodes with higher probability can be better explored when
the task response latency of the user CV i is large or tends to increase. The user CV i can maintain
the currently selected edge computing node with a high probability and explore other edge computing
nodes with a low probability when the task response latency of the user CV i is small or tends to
decrease. Consequently, the task response latency of the vehicle changes to a decreasing trend. The
state of each vehicle consists of three parts: emotion value, benchmark edge computing node, and
benchmark response latency. For the user CV i, its state in the time slot g is expressed as:

CMC, 2023, vol.75, no.1 619

ξi (g) =
{

m(g)

i , e(g)

i , t
(g)

i

}
, (23)

where m(g)

i denotes the satisfaction value, e(g)

i indicates the benchmark edge computing node, and t
(g)

i

represents the benchmark response latency.

Similar to TE-learning, satisfaction value is defined as content (c), discontent (d), watchful (c−),
and hopeful (c+). Among them, c indicates that user CV is satisfied with the current task response
latency, d implies that user CV is dissatisfied with the current task response latency, c− suggests that
the current task response delay may increase, and c+ reflects that the current task response latency
may decrease.

Each time slot is divided into three mini-slots, and the selection and status of edge computing
nodes of a vehicle are updated once during each time slot. The first of them is used for executing
actions, while edge computing nodes are selected. The second of them is utilized for offloading tasks
and exploring response latency, and the third is used for status updates. The second mini-slot lasts
substantially longer than the first and third mini-slots.

The user CV i first determines its available set of edge computing nodes at the start of the time slot
g. If the response latency of the edge computing node k to complete the task is less than the latency
tolerance of the task, the edge computing node k is an available computing node for the user CV i. In
the first mini-slot, the edge computing node k is selected for the user CV i according to the current
emotion value degree. The edge computing node selected by the user CV i in the time slot g is recorded
as e(g)

i . The method of selecting edge computing nodes for vehicles in the first mini-slot is described as
follows, and the specific process is illuminated in Algorithm 2.

(1) If m(g)

i = c, the user CV i will select the benchmark edge computing node, i.e., e(g)

i = e(g)

i , with
probability Φ. Meanwhile, the user CV i will explore other available edge computing nodes
with probability 1 − Φ.

(2) If m(g)

i = d, the current response latency is not acceptable to the user CV i, then other edge
computing nodes with probability 1 will be explored.

(3) If m(g)

i = c−, it shows that the response latency of the user CV i will tend to increase, but further
confirmation is required. Thus, the user CV i will select the benchmark edge computing node,
i.e., e(g)

i = e(g)

i with probability 1.
(4) If m(g)

i = c+, it shows that the response latency of the user CV i will tend to decrease, but further
confirmation is required. Thus, the user CV i will select the benchmark edge computing node,
i.e., e(g)

i = e(g)

i with probability 1.

Algorithm 2: Method of selecting edge computing nodes in the first mini-slot

1: if m(g)

i = c do
2: Explore the other available edge computing nodes with probability 1 − Φ. after selecting the
benchmark edge computing node with probability Φ.
3: else if m(g)

i = d do
4: Explore other edge computing nodes with probability 1.
5: else if m(g)

i = c− or m(g)

i = c+ do
6: Select the benchmark edge computing node with probability 1.
7: end if

620 CMC, 2023, vol.75, no.1

The user CV i offloads the task and explores the edge computing node in the second mini-slot,
and the response latency is recorded as t(g)

i .

After selecting the edge computing node, the user CV i updates the state in the third mini-slot
following the current state and the detected response latency. The specific method is detailed as follows,
and the specific process is illustrated in Algorithm 3.

(1) If m(g)

i = c and the user CV i has selected the benchmark edge computing node, i.e., e(g)

i = e(g)

i ,
then the status of the user CV i is updated as:

ςi (g + 1) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

{
c+, e(g)

i , t
(g)

i

}
, t(g)

i − t
(g)

i < tth{
c−, e(g)

i , t
(g)

i

}
, t(g)

i − t
(g)

i > tth{
c, e(g)

i , t
(g)

i

}
,

∣∣∣t(g)

i − t
(g)

i

∣∣∣ ≤ tth

, (24)

where tth is the response latency tolerance threshold. If t(g)

i − t
(g)

i < tth, the task completion response
latency of the user CV i may decrease, and the satisfaction value is c+. Similarly, if t(g)

i − t
(g)

i > tth,
the task completion response latency of the user CV i may increase, and the satisfaction value is c−.

Additionally,
∣∣∣t(g)

i − t
(g)

i

∣∣∣ ≤ tth indicates that the task completion response latency of the vehicle is within

its tolerable range, and its satisfaction value remains unchanged.

(2) If m(g)

i = c and the user CV i has explored other edge computing nodes, its state update can be
divided into the following two situations:
If t(g)

i − t
(g)

i > tth, then,

ςi (g + 1) =
{

c, e(g)

i , t
(g)

i

}
. (25)

In other words, the user CV’s state is unaltered.
If t(g)

i − t
(g)

i < tth, then,

ςi (g + 1) =
{{

c, e(g)

i , t(g)

i

}
, w.p. P (�t){

c, e(g)

i , t
(g)

i

}
, w.p. 1 − P (�t)

, (26)

where w.p. indicates “with probability”, P (�t) denotes the increasing function of �t, where �t =
t
(g)

i − t(g)

i .

(3) If m(g)

i = d and the user CV i has explored other edge computing nodes with probability 1, the
status of the user CV i is updated as follows:

ςi (g + 1) =
{{

c, e(g)

i , t(g)

i

}
, w.p. P′ (t(g)

i

){
c, e(g)

i , t
(g)

i

}
, w.p. 1 − P′ (t(g)

i

) , (27)

where P′ (t(g)

i

)
represents a decreasing function of response latency t(g)

i . Eq. (27) suggests that the larger
the response latency t(g)

i of exploration, the smaller the probability that the user CV i selects the edge
computing node e(g)

i of exploration.

CMC, 2023, vol.75, no.1 621

(4) If m(g)

i = c− and the user CV i has selected the benchmark edge computing node with probability
1, then the status of the user CV i is updated as:

ςi (g + 1) =

⎧⎪⎨
⎪⎩
{

c, e(g)

i , t
(g)

i

}
, t

(g)

i − t(g)

i > tth{
d, e(g)

i , t
(g)

i

}
, t

(g)

i − t(g)

i < tth

, (28)

where t
(g)

i − t(g)

i > tth implies that the task response latency of the user CV i has no clear tendency
of increasing, and thus its satisfaction value becomes c again; t

(g)

i − t(g)

i < tth demonstrates that the
task response latency of the user CV i has a tendency of increasing, and thus its satisfaction value
becomes d.

(5) If m(g)

i = c+ and the user CV i has selected the benchmark edge computing node with probability
1, then the status of the user CV i is updated as:

ςi (g + 1) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

{
c, e(g)

i , t(g)

i

}
, t

(g)

i − t(g)

i > tth{
c−, e(g)

i , t
(g)

i

}
, t(g)

i − t
(g)

i > tth{
c, e(g)

i , t
(g)

i

}
,

∣∣∣t(g)

i − t
(g)

i

∣∣∣ ≤ tth

, (29)

where t
(g)

i − t(g)

i > tth indicates that the task response latency of the user CV i may decrease, causing its
benchmark response latency and satisfaction value to be updated to t(g)

i and c, respectively; t(g)

i −t
(g)

i > tth

suggests that the task response latency of the user CV i may have a tendency of increasing, and hence

its satisfaction value is updated to c−;
∣∣∣t(g)

i − t
(g)

i

∣∣∣ ≤ tth reflects that the task response latency of the user

CV i is within its tolerable range, and its satisfaction value is updated to c.

Algorithm 3: Update the state method in the third mini-slot

1: if m(g)

i = c do
2: if user CV i has selected the benchmark edge computing node does
3: updating state by Eq. (24)
4: else if the user CV i has explored other edge computing nodes do
5: if t(g)

i − t
(g)

i > tth do
6: The state of the user CV i remains unchanged
7: else if t(g)

i − t
(g)

i < tth do
8: updating state by Eq. (26)
9: end if
10: end if
11: else if m(g)

i = d do
12: updating state by Eq. (27)
13: else if m(g)

i = c− do
14: updating state by Eq. (28)
15: else if m(g)

i = c+ do
16: updating state by Eq. (29)
17: end if

622 CMC, 2023, vol.75, no.1

4.3 Algorithm Complexity Analysis

The computational complexity of the joint optimization algorithm is primarily caused by
two factors: computing node selection and resource allocation. Since CVs need to perform N
calculations locally first, the complexity is O (N). Concerning Algorithm 1, the complexity of Step
5 is O (MN), the complexity of updating the Lagrange multiplier in step 9 is O (M) + O (N),
and O

(
1/ε2

)
iterations are required to converge. Therefore, the complexity of Algorithm 1 is

(O (N) + O (M) + O (N) + O (MN)) · O
(
1/ε2

) = O
(
MN/ε2

)
. Each mini-slot in the edge computing

node selection scheme has a computational complexity of O (MN). Therefore, the total complexity of
the joint optimization Algorithm is 3 × O (MN) + O

(
MN/ε2

) = O
(
MN/ε2

)
.

5 Experimental Simulation
5.1 Experiment Setup

MATLAB and simulation of urban mobility (SUMO) were utilized as two main platforms. MAT-
LAB software is employed as an interface with TraCI. Some reduced urban areas of Lishui District,
Nanjing in China and Jing’an District, Shanghai in China were downloaded from OpenStreetMap.
The GPS locations of these two urban areas are shown in Table 1. Both areas of these regions
are approximately 25 km2. Besides, SUMO was adopted with OpenStreetMap to generate realistic
vehicular mobility. In MATLAB, the suggested algorithm and the following comparison algorithms
were implemented, and their performances were analyzed.

(1) Local computing on the vehicle (LC): The tasks are executed locally by the user CVs.
(2) Fixed edge server only scheme (FESO): The task is offloaded to the FESs to satisfy the

maximum tolerance latency of the task when the LC latency exceeds the task’s latency tolerance.
The proposed task allocation approach is employed to select edge computing nodes and
allocate resources.

(3) Random offloading of local, FESs and OESs (RO_LFO): Computing nodes include user CVs
local, FESs, and OESs, and each task is randomly assigned with equal probability to one
computing node.

(4) Genetic algorithm (GA): GA is a meta-heuristic algorithm, which mainly grapples with
the NP-hard global optimization problems. X and Y are encoded into chromosomes, and
the population is expressed as the size or number of chromosomes. The fitness function
is consistent with the objective function. In the selection part, the stochastic tournament
method is adopted to select parents, and it stops when GA reaches the maximum number of
iterations set.

(5) Block successful upper-bound minimization (BSUM) algorithm [30]: BSUM is a distributed
selection strategy optimization algorithm. Each coordinate computing node is selected using
the cyclic rule as a task is transmitted to the vehicle first. Moreover, the task will be offloaded
to the server only when the vehicle cannot meet the maximum delay of the task or achieve a
lower system benefit.

In the simulation scenario, 8 RSUs are deployed, and it is assumed that the communication
coverage of each RSU and opportunistic CV is 500 and 200 m, respectively. Vehicles enter the traffic
network following the Poisson distribution process, with an average velocity ranging from 10 to 20 m/s.
Each vehicle is provided with a pair of origin and destination that are randomly assigned to each vehicle
based on the normal distribution. The default number of the user CVs and opportunistic CVs is 500
and 50, respectively. The bandwidth is divided into a total of 20 equal sub-bands, each of which is
equal to 20 MHz. Table 2 provides the other relevant parameters involved in the simulation.

CMC, 2023, vol.75, no.1 623

Table 1: Selected GPS locations of these two urban areas

Lishui district Jing’an district

ID Locations ID Locations

1 31.6857, 119.0089 1 31.3173, 121.4262
2 31.6857, 119.0551 2 31.3173, 121.4724
3 31.6382, 119.0089 3 31.2695, 121.4262
4 31.6382, 119.0551 4 31.2695, 121.4724

Table 2: Detailed parameters of the experiment

Simulation parameter Value Simulation parameter Value

Pt 0.2 W ϑi 2.5 MB
W 20 MHz oi 0.5
V 3 ∗ 108 m/s ξi [4, 6] s
B 1 Gpbs γi 1500 cycles/bit
σ 2 −100 dBm f local

i 0.4 GHz
θ 4 f es

j 8 GHz
Iik −70 dBm f ov

s {1.5, 2.0, 2.5} GHz

5.2 Performance Analysis

The experiments mainly evaluate the performance of the algorithm from five metrics:

(1) Average response latency: Average task response latency for all user CVs.
(2) Task completion rate: The valid return data of ES divided by the total amount of demand

output data of the vehicular tasks, i.e., CR = ∑N

i=1

∑G

g=1 ϑ
g,down
i /

∑N

i=1ϑi · oi, where the variable
ϑ

g,down
i represents the actual received downlink output data of the user CV i in the g−th time slot.

(3) Offloading rate of edge computing nodes: The ratio of the number of offloaded user CVs to
the number of all user CVs.

(4) Load balancing of the algorithm: The variance s2 of the average resource utilization efficiency,

expressed as ρk = 1
Lk

∑Lk
i=1

γi

fik

, is utilized to better evaluate load balancing. fik indicates the

computation resource allocated by the edge computing node k to user CV i. Therefore, s2 is

expressed as s2 = 1
k

∑
k∈L (ρk − ρk).

(5) Running time of the algorithm: The running time is used to verify the performance of
computational complexity.

5.2.1 Analysis of the Impact of Two Different Regional Topologies

The results of the average response latency of tasks were compared under two different regional
topologies by setting the experimental parameters such as the size of the task input data, the
computation load, and the density of OESs. Fig. 2 illustrates that our proposed scheme can obtain

624 CMC, 2023, vol.75, no.1

similar results in different regional topologies. It is inferred that our proposed scheme may be suitable
for vehicular task offloading in most real scenes.

Figure 2: The results of the average response latency under two different regional topologies. The
charts corresponding to the default experimental parameters are N = 500, ϑi = 2.5 MB, and
γi = 1500 cycles/bit, for (a) size of the task input data, (b) computation load, and (c) density of
OESs

5.2.2 Analysis of the Impact of the Size of the Task Input Data

Fig. 3 compares the performance of all the schemes by changing the size of the task input data.
Fig. 3a suggests that the average response latency is constant and largest for LC execution of the user
CV when the task input data increases owing to the limited computation capacities of the user CVs
and no computation offloading. The average response latency of the other schemes will increase with
the increase in the task input data. This can be explained as follows. The data transmission latency will
increase because when each edge computing node executes the task, and the computation resources
of each edge computing node used to execute the task will also decrease with the increase in the task
input data. However, the average response latency of our proposed scheme is better than other schemes
since OESs with abundant computation resources are used to balance the computing load of FESs in
our proposed scheme. From another perspective, OESs also make the optimal offloading strategy
according to the size of the task input data, so as to effectively select the edge computing nodes.

Figure 3: Comparisons of the impact of the size of the task input data. The charts corresponding to
N = 500, M = 50, γi = 1500 cycles/bit, and ϑi changes from 1 to 10 MB, for (a) average response
latency, (b) offloading rate, and (c) task completion rate

CMC, 2023, vol.75, no.1 625

5.2.3 Analysis of the Impact of the Computation Load

Then, the performance of our suggested scheme and other schemes are discussed while changing
the computation load of each task. In Fig. 4a, the average response latency for all the schemes increases
with the increase in the computation load for each task. Compared with the LC execution of user CVs,
other schemes have a smaller slope. The average response latency of our proposed scheme is about half
of the LC since OESs can effectively balance the computation load of FESs. In Fig. 4b, the offloading
rate first rises and subsequently decreases with the increase in the computation load of each task. The
tasks that can be executed locally on the user CVs are set within the maximum tolerable latency. Thus,
the computation load of the initial tasks is relatively small, and most tasks can be executed locally.
However, the required computation resources increase as the computation load of tasks increases,
and it must be offloaded to the nearby edge computing nodes for execution. The offloading rate
decreases as the computation load of each task increases to a certain extent. Additionally, our proposed
scheme successfully balances the computation load of OESs and FESs, and the offloading rate is higher
than other schemes. In Fig. 4c, the task completion rates of all schemes significantly decrease as the
computation load for each task increases. This is in that an increasing number of tasks cannot be
finished within the maximum tolerable latency of tasks using the allocated computation resources of
edge computing nodes. Nonetheless, our proposed scheme reaches a higher task completion rate than
that of other schemes.

Figure 4: Comparisons of the impact of the computation load. The charts corresponding to N = 500,
M = 50, ϑi = 2.5 MB, and γi changes from 1500 to 5000 cycles/bit, for (a) average response latency,
(b) offloading rate, and (c) task completion rate

5.2.4 Analysis of the Impact of the Density of OESs

Fig. 5 displays the results of our performance evaluation of all the schemes using different densities
of OESs. Notably, the performance of the schemes is impacted by the density of OESs rather than the
number of OESs. Fig. 5a suggests that the average response latency for all the schemes decreases with
the increasing density of OESs as OESs are also computation resources to reduce the average response
latency. The higher the density, the more OESs for user CVs to select the best edge computing node for
task offloading. As the density of OESs increases, our proposed scheme has enough opportunity for
user CVs to offload tasks to edge computing nodes, or to transmit data through a relay mechanism
with fewer hops, leading to a higher offloading rate and task completion rate.

626 CMC, 2023, vol.75, no.1

Figure 5: Comparisons of the impact of the density of opportunistic CVs. The charts corresponding
to N = 500, ϑi = 2.5 MB, γi = 1500 cycles/bit, and the density of opportunistic CVs changes from 1
to 10 veh/km, for (a) average response latency, (b) offloading rate, and (c) task completion rate

5.2.5 Analysis of Load Balancing Among the FESs

Our proposed scheme integrates load balancing into the task offloading problem for effectively
balancing the server load. The performance comparison results of our proposed scheme and other
schemes in load balancing are illustrated in Fig. 6 for the utilization efficiency of computation
resources of FESs. Each component contains the load status of FESs. As revealed in Fig. 6, s2 of
FESO, RO_LFO, GA, BSUM, and our proposed scheme are 0.3992, 0.5486, 0.3108, 0.1474, and
0.0548, respectively. Our proposed scheme performs the fairest load, enabling the variance to be the
smallest and decrease by 34.44%, 49.38%, 25.6%, and 9.26% compared with the comparison schemes,
respectively. Due to this occurrence, certain FESs will have computational congestion, while others
will remain idle. If there is no suitable vehicle relay, only nearby servers are selected, though BSUM
and GA also optimize the selection of computing nodes and resource allocation, and both of them
perform unbalanced load allocation. As a result, the load balancing of server computation resources
must be considered in the process of selecting the appropriate computing nodes.

Figure 6: Comparison of load balancing among the FESs under five schemes. The charts corresponding
to N = 500, M = 50, ϑi = 2.5 MB, and γi = 1500 cycles/bit

CMC, 2023, vol.75, no.1 627

5.2.6 Analysis of Running Time

Fig. 7 exhibits the average running time of each iteration of all the schemes under different user
CVs. Due to the global search, GA runs longer than other schemes since it converges to the local
optimal value of the fitness function more quickly. Then, it becomes stuck close to this local optimal
value, indicating that GA is not appropriate for online scheduling in the context of vehicular edge
computing. Although the running time of LC, FESO, and RO_LFO is relatively short, their system
performance is relatively poor because our proposed scheme can generate better offloading decision
than these three schemes. Besides, our proposed scheme provides the best selection of computing nodes
in most vehicular edge computing scenarios. It not only can achieve an approximate optimal solution
but also has higher computing efficiency than BSUM.

Figure 7: Running time comparison of all schemes under different user CVs. The charts corresponding
to M = 50, ϑi = 2.5 MB, γi = 1500 cycles/bit, and user CVs change from 100 to 500

5.2.7 Analysis of Multi-Hop Transmission

User CVs may not have the same edge computing nodes when offloading tasks and waiting for
downloading output results. Thus, it is necessary to perform multi-hop transmission of data results
through RSUs or relays between vehicles. Fig. 8 renders the number of hops required to send the
task output back to the user CVs for our proposed scheme. It is observed that about 66.3% of user
CVs are still in the RSU of offloading tasks or the direct communication coverage of OESs after
completing computation tasks. However, about 22.8% of user CVs temporarily change their traveling
routes ascribed to the influence of real-time traffic flow, while they can only connect with other vehicles
or RSU through the one-hop relay to receive the output results. However, some user CVs will pass
through remote suburbs in the actual traffic scene. In this case, the number of deployed RSUs or
OESs is relatively small, the user CVs are disconnected from the network of these edge computing
nodes, and other vehicles or RSUs in the network can be used as relay nodes. Therefore, a multi-hop
relay mechanism is required to transmit data through these relay nodes.

628 CMC, 2023, vol.75, no.1

Figure 8: Multi-hop transmission of our proposed scheme. The charts corresponding to N = 500,
M = 50, ϑi = 2.5 MB, and γi = 1500 cycles/bit

6 Conclusions and Future Work

In this paper, a novel scalable system framework was proposed for computation task offloading
in opportunistic CV-assisted MEC. A tremendous number of resource-rich and underutilized CVs in
the traffic road network were generated as opportunistic ad-hoc edge cloud to alleviate the resource
constraints of MEC by providing opportunistic computing services. The problem of joint offloading
decision and resource allocation was described as a MINLP problem to achieve load balancing
between FESs and OESs. The original problem was decomposed into two sub-problems (offloading
decision and resource allocation) to realize load balancing between FESs and OESs and continuously
curtail task response latency of user CVs under various constraints. Finally, a comprehensive series of
experiments were conducted to verify that our proposed scheme reduced load balancing by 34.44%,
49.38%, 25.6%, and 9.26% compared with other comparative schemes, and effectively lessened the task
delay response, increased the completion rate of vehicular tasks, and demonstrated high reliability.

In future work, the impact of lower communication concerns, such as communication resources
and channel allocation, will be included to make the system model more realistic and robust.
Additionally, a small-scale test bench will be considered to investigate how well the suggested model
performs in real-world traffic situations.

Funding Statement: This research was supported by the National Natural Science Foundation of China
(61871400), Natural Science Foundation of Jiangsu Province (BK20211227) and Scientific Research
Project of Liupanshui Normal University (LPSSYYBZK202207).

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] S. R. Pokhrel and J. Choi, “Improving tcp performance over Wi-Fi for internet of vehicles: A federated

learning approach,” IEEE Transactions on Vehicular Technology, vol. 69, no. 6, pp. 6798–6802, 2020.
[2] Z. Ning, J. Huang and X. Wang, “Vehicular fog computing: Enabling real-time traffic management for

smart cities,” IEEE Wireless Communications, vol. 26, no. 1, pp. 87–93, 2019.
[3] T. K. Rodrigues, J. Liu and N. Kato, “Offloading decision for mobile multi-access edge computing in a

multi-tiered 6G network,” IEEE Transactions on Emerging Topics in Computing, vol. 10, no. 3, pp. 1414–
1427, 2022.

[4] Q. Wu, Y. Zeng and R. Zhang, “Joint trajectory and communication design for multi-UAV enabled wireless
networks,” IEEE Transactions on Wireless Communications, vol. 17, no. 3, pp. 2109–2121, 2018.

[5] H. Wu, L. Chen, C. Shen, W. Wen and J. Xu, “Online geographical load balancing for energy-harvesting
mobile edge computing,” in 2018 IEEE Int. Conf. on Communications (ICC), Kansas City, MO, USA, pp.
1–6, 2018.

CMC, 2023, vol.75, no.1 629

[6] G. Qu, H. Wu, R. Li and P. Jiao, “DMRO: A deep meta reinforcement learning-based task offloading
framework for edge-cloud computing,” IEEE Transactions on Network and Service Management, vol. 18,
no. 3, pp. 3448–3459, 2021.

[7] H. Wu, K. Wolter, P. Jiao, Y. Deng, Y. Zhao et al., “EEDTO: An energy-efficient dynamic task offloading
algorithm for blockchain-enabled IoT-edge-cloud orchestrated computing,” IEEE Internet of Things
Journal, vol. 8, no. 4, pp. 2163–2176, 2021.

[8] T. Dbouk, A. Mourad, H. Otrok, H. Tout and C. Talhi, “A novel ad-hoc mobile edge cloud offering
security services through intelligent resource-aware offloading,” IEEE Transactions on Network and Service
Management, vol. 16, no. 4, pp. 1665–1680, 2019.

[9] N. Cha, C. Wu, T. Yoshinaga, Y. Ji and K. -L. A. Yau, “Virtual edge: Exploring computation offloading
in collaborative vehicular edge computing,” IEEE Access, vol. 9, pp. 37739–37751, 2021.

[10] X. Huang, X. Yang, Q. Chen and J. Zhang, “Task offloading optimization for UAV assisted fog-enabled
internet of things networks,” IEEE Internet of Things Journal, vol. 9, no. 2, pp. 1082–1094, 2022.

[11] M. M. Afsar, R. T. Crump and B. H. Far, “Energy-efficient coalition formation in sensor networks: A game-
theoretic approach,” in 2019 IEEE Canadian Conf. of Electrical and Computer Engineering (CCECE),
Edmonton, AB, Canada, pp. 1–6, 2019.

[12] X. Zhang, J. Zhang, Z. Liu, Q. Cui, X. Tao et al., “MDP-based task offloading for vehicular edge comput-
ing under certain and uncertain transition probabilities,” IEEE Transactions on Vehicular Technology, vol.
69, no. 3, pp. 3296–3309, 2020.

[13] F. Zhang and M. M. Wang, “Stochastic congestion game for load balancing in mobile-edge computing,”
IEEE Internet of Things Journal, vol. 8, no. 2, pp. 778–790, 2021.

[14] M. Al-Khafajiy, T. Baker, M. Asim, Z. Guo, R. Ranjan et al., “Comitment: A fog computing trust
management approach,” Journal of Parallel and Distributed Computing, vol. 137, pp. 1–16, 2020.

[15] M. Song, Y. Lee and K. Kim, “Reward-oriented task offloading under limited edge server power for multi-
access edge computing,” IEEE Internet of Things Journal, vol. 8, no. 17, pp. 13425–13438, 2021.

[16] H. Tang, H. Wu, G. Qu and R. Li, “Double deep Q-network based dynamic framing offloading in vehicular
edge computing,” IEEE Transactions on Network Science and Engineering, 2022. https://doi.org/10.1109/
TNSE.2022.3172794.

[17] P. Dai, K. Hu, X. Wu, H. Xing, F. Teng et al., “A probabilistic approach for cooperative computation
offloading in MEC-assisted vehicular networks,” IEEE Transactions on Intelligent Transportation Systems,
vol. 23, no. 2, pp. 899–911, 2022.

[18] Y. Mao, C. You, J. Zhang, K. Huang and K. B. Letaief, “A survey on mobile edge computing: The
communication perspective,” IEEE Communications Surveys & Tutorials, vol. 19, no. 4, pp. 2322–2358,
2017.

[19] H. Wang, T. Liu, X. Du, B. Kim, C. Lin et al., “Architectural design alternatives based on cloud/edge/fog
computing for connected vehicles,” IEEE Communications Surveys & Tutorials, vol. 22, no. 4, pp. 2349–
2377, 2020.

[20] C. Tang, X. Wei, C. Zhu, Y. Wang and W. Jia, “Mobile vehicles as fog nodes for latency optimization in
smart cities,” IEEE Transactions on Vehicular Technology, vol. 69, no. 9, pp. 9364–9375, 2020.

[21] Y. Lin, Y. Zhang, J. Li, F. Shu and C. Li, “Popularity-aware online task offloading for heterogeneous
vehicular edge computing using contextual clustering of bandits,” IEEE Internet of Things Journal, vol.
9, no. 7, pp. 5422–5433, 2022.

[22] L. Zhang, Z. Zhao, Q. Wu, H. Zhao, H. Xu et al., “Energy-aware dynamic resource allocation in UAV
assisted mobile edge computing over social internet of vehicles,” IEEE Access, vol. 6, pp. 56700–56715,
2018.

[23] H. Fatemidokht, M. K. Rafsanjani, B. B. Gupta and C. -H. Hsu, “Efficient and secure routing protocol
based on artificial intelligence algorithms with UAV-assisted for vehicular ad hoc networks in intelligent
transportation systems,” IEEE Transactions on Intelligent Transportation Systems, vol. 22, no. 7, pp. 4757–
4769, 2021.

https://doi.org/10.1109/TNSE.2022.3172794
https://doi.org/10.1109/TNSE.2022.3172794

630 CMC, 2023, vol.75, no.1

[24] P. Dai, Z. H. Huang, K. Liu, X. Wu, H. L. Xing et al., “Multi-armed bandit learning for computation-
intensive services in MEC-empowered vehicular networks,” IEEE Transactions on Vehicular Technology,
vol. 69, no. 7, pp. 7821–7834, 2020.

[25] C. Ma, J. Zhu, M. Liu, H. Zhao, N. Liu et al., “Parking edge computing: Parked-vehicle-assisted task
offloading for urban VANETs,” IEEE Internet of Things Journal, vol. 8, no. 11, pp. 9344–9358, 2021.

[26] S. Yousefi, E. Altman, R. El-Azouzi and M. Fathy, “Analytical model for connectivity in vehicular ad hoc
networks,” IEEE Transactions on Vehicular Technology, vol. 57, no. 6, pp. 3341–3356, 2008.

[27] Y. Mao, J. Zhang, S. H. Song and K. B. Letaief, “Stochastic joint radio and computational resource man-
agement for multi-user mobile edge computing systems,” IEEE Transactions on Wireless Communications,
vol. 16, no. 9, pp. 5994–6009, 2017.

[28] U. Saleem, Y. Liu, S. Jangsher Y. Li and T. Jiang, “Mobility-aware joint task scheduling and resource
allocation for cooperative mobile edge computing,” IEEE Transactions on Wireless Communications, vol.
20, no. 1, pp. 360–374, 2020.

[29] B. S. R. Pradelski and H. P. Young, “Learning efficient nash equilibria in distributed systems,” Games and
Economic Behavior, vol. 75, no. 2, pp. 882–897, 2012.

[30] Y. K. Tun, Y. M. Park, N. H. Tran, W. Saad, S. R. Pandey et al., “Energy-efficient resource management
in UAV-assisted mobile edge computing,” IEEE Communications Letters, vol. 25, no. 1, pp. 249–253, 2021.

Appendix

Appendix A

Given Y = Y 0, the objective function in P1 becomes a function about X . If the objective function
in problem P2 is defined as Ψ (X), then the second-order Hessian matrix is ∇2Ψ (X). Thus,

∂2Ψ (X)

∂x2
ik

= 2γi

x3
ik

, ∀i ∈ Nk, k ∈ L, (30)

∂2Ψ (X)

∂xik∂xpq

= 0, ∀ (i, k)
= (p, q) . (31)

Since the Hessian matrix is a positive semi-definite matrix and it is simple to determine that
∇2Ψ (X) ≥ 0, so the problem P2 is a convex optimization problem.

Appendix B

The following equation can be obtained using the update operation of v in conjunction with the
assumption that Φ = {v∗} represents the dual problem’s solution and the introduction of adjustment
parameter a so that aε′ = ε.

Q (n + 1) =
∑
k∈L

vk (n + 1) − v∗
k

ε′ ≤
∑
k∈L

[
vk (n) + ε

(∑
i∈Nk

xik (n) − f max
k

)
− v∗

k

]2

ε′

=
∑
k∈L

(
vk (n) − v∗

k

) + 2a
∑
k∈L

(
vk (n) − v∗

k

)⎛⎝∑
i∈Nk

xik (n) − f max
k

⎞
⎠

+ a2
∑
k∈L

ε′

⎛
⎝∑

i∈Nk

xik (n) − f max
k

⎞
⎠

2

. (32)

CMC, 2023, vol.75, no.1 631

The following dual problem can be reformulated when the Lagrange multiplier is optimal:

D (v∗) = min
xik

∑
k∈L

⎛
⎝∑

i∈Nk

γi

xik

+ vk

⎛
⎝∑

i∈Nk

xik − f max
k

⎞
⎠
⎞
⎠ ≤

∑
k∈L

⎛
⎝∑

i∈Nk

γi

xik

+ v∗
k

⎛
⎝∑

i∈Nk

xik − f max
k

⎞
⎠
⎞
⎠ . (33)

The following dual problem is obtained when the Lagrange function changes with the update
operation:

D (v (n)) =
∑
k∈L

⎛
⎝∑

i∈Nk

γi

xik

+ vk (n)

⎛
⎝∑

i∈Nk

xik − f max
k

⎞
⎠
⎞
⎠ . (34)

Therefore,

D (v (n)) − D (v∗) ≥
∑
k∈L

(
vk (n) − v∗

k

)⎛⎝∑
i∈Nk

xik − f max
k

⎞
⎠ . (35)

Then,

Q (n + 1) ≤ Q (n) + 2a (D (v(n)) − D (v∗)) + a2
∑
k∈L

ε′

⎛
⎝∑

i∈Nk

xik (n) − f max
k

⎞
⎠

2

. (36)

The following inequality is true as long as xik(n) and f max
k are bounded, where Z is a constant,

∑
k∈L

ε′

⎛
⎝∑

i∈Nk

xik (n) − f max
k

⎞
⎠

2

≤ Z. (37)

As a result,

Q (n + 1) ≤ Q (n) + 2a (D (v(n)) − D (v∗)) + a2Z. (38)

Then, Φϕ is defined as the following form, where ϕ > 0,

Ψ ϕ = {v|D(v) ≤ D(v∗) ≤ D(v) + ϕ} . (39)

Set the parameter a to a ≤ ϕ/
√

Φ. Thus, Q (n + 1) ≤ Q (n) + ϕ2. Let Q (v) = ∑
k∈L

(
vk − v∗

k

)
/ε′

is bounded and �(ϕ, Φ) represents the upper bound. Hence, Q (n) ≤ � (ϕ, Φ) + ϕ2. Q (n) becomes
closer to 0 as ϕ approaches 0, and then v approaches the optimal value.

	Connected Vehicles Computation Task Offloading Based on Opportunism in Cooperative Edge Computing
	1 Introduction
	2 Related Works
	3 System Model and Problem Analysis
	4 Design and Analysis of Resource Scheduling Algorithm
	5 Experimental Simulation
	6 Conclusions and Future Work
	Appendix

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [300 300]
 /PageSize [612.000 792.000]
>> setpagedevice

