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Abstract: Robust watermarking requires finding invariant features under
multiple attacks to ensure correct extraction. Deep learning has extremely
powerful in extracting features, and watermarking algorithms based on deep
learning have attracted widespread attention. Most existing methods use
3 × 3 small kernel convolution to extract image features and embed the
watermarking. However, the effective perception fields for small kernel con-
volution are extremely confined, so the pixels that each watermarking can
affect are restricted, thus limiting the performance of the watermarking. To
address these problems, we propose a watermarking network based on large
kernel convolution and adaptive weight assignment for loss functions. It uses
large-kernel depth-wise convolution to extract features for learning large-scale
image information and subsequently projects the watermarking into a high-
dimensional space by 1 × 1 convolution to achieve adaptability in the channel
dimension. Subsequently, the modification of the embedded watermarking
on the cover image is extended to more pixels. Because the magnitude and
convergence rates of each loss function are different, an adaptive loss weight
assignment strategy is proposed to make the weights participate in the network
training together and adjust the weight dynamically. Further, a high-frequency
wavelet loss is proposed, by which the watermarking is restricted to only
the low-frequency wavelet sub-bands, thereby enhancing the robustness of
watermarking against image compression. The experimental results show that
the peak signal-to-noise ratio (PSNR) of the encoded image reaches 40.12, the
structural similarity (SSIM) reaches 0.9721, and the watermarking has good
robustness against various types of noise.
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1 Introduction

The task of robust watermarking for digital images is to secretly embed watermarking into the
cover image and to extract it correctly after malicious or unintentional attacks. In recent years,
digital image watermarking technology has been widely studied in copyright protection, traceability,
anti-counterfeiting, and authentication of 2D images. Many researchers have proposed various
methodological strategies that balance the imperceptibility and robustness of watermarking well.

Deep learning [1] uses neural networks’ powerful feature extraction ability to extract image
features while adaptively embedding the watermarking to obtain better results. Zhu et al. [2] proposed
an auto-encoder-based neural network for watermarking, which embeds the watermarking into the
cover image through an encoder, and then a decoder to parse out the watermarking. Using a noise
layer to simulate the attacks on the encoded image and adding a Generative Adversarial Network
(GAN) to reinforce the imperceptibility, thus affecting the process of watermarking embedding and
extraction. Luo et al. [3] further proposed using the idea of adversarial training instead of a specific
noise layer to extend the distortion to an unknown range. Although they have achieved good results [4],
these methods all use small kernel convolutional networks, and the continuous accumulation of a mass
of small convolutional kernels will deepen the neural network and lead to the degradation problem
of deep neural networks, which makes the difficulty of optimization significantly increase. Although
ResNet [5] eases the optimization problem by skip connections to some extent, the number of layers in
the network is too large, resulting in substantial training parameters. Further studies [6–8] found that
deep neural networks stacked with multiple small convolutional kernels do not obtain larger effective
perception fields, and the last convolutional layer only can see an intensely limited range of the original
image, as a result of which deep convolutional neural networks (CNNs) [9,10] only learn features in
a small area. Global information on the image is extremely scarce. Applying this to watermarking
methods will result in fewer pixels associated with the extracted features, making watermarking more
modifiable for the cover image and fewer regions available for watermarking embedding. In contrast,
large kernel convolution [7] inherently has a large range of effective perception fields, even in the last
layer of the deep network, which allows the network to learn features to approximate the whole image.
This is especially crucial for watermarking. Because embedding the watermarking that is according to
the large kernel convolution changes the cover image, which will be reflected in more pixels. When the
encoded image is attacked, there will still be enough pixels that retain the watermarking information
for extraction.

In addition, considering imperceptibility and robustness, our method needs to accomplish two
tasks: (1) The encoded image should be as similar as possible to the cover image and indistinguishable
from the human eye. (2) The decoded watermarking should be as identical as possible to the input
watermarking. For this purpose, the watermarking network uses multiple losses to guide the network
training. However, the previous multitask approaches [2,3] usually use a naive weighted sum of losses,
with fixed loss weights set by manual mode. The performance of the model is heavily dependent on
the choice of weights. Determining an optimal weight by manual tuning is also extremely expensive.
Such a mode using fixed weights does not yield the best training results due to the varying speed of
convergence of each loss [11].

Image compression is a prevalent attack in the field of watermarking. How to improve the
robustness of watermarking against image compression is extremely important. Image compression
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usually removes the texture and edge parts of an image that are not sensitive to the human visual
system, to reduce the image volume. The texture and edge parts of the image are usually reflected as
high-frequency components in the frequency domain, such as the HH sub-band in the wavelet domain.
If the watermarking is embedded in the high-frequency component of the image, the watermarking
will be removed and difficult to extract once the image is compressed. Traditional discrete wavelet
transform (DWT) and discrete cosine transform (DCT) watermarking are only embedded in the low-
frequency components to avoid damage to the watermarking from image compression. In frequency
domain watermarking based on deep learning, there is a similar need to embed the watermarking in
the low-frequency components.

To solve the above challenge, this study proposes a wavelet domain watermarking network, named
LKAW, based on large kernel convolution and adaptive weight assignment for loss functions. The
large-kernel convolution is used to enhance the learning ability of our LKAW for a wide range of
information and adjust the scale of features learned by the large kernel. In addition, an adaptive
weight assignment strategy for loss functions is proposed in this paper. The weights are trained as
network parameters, and their size is dynamically adjusted in the training process. Further, a high-
frequency wavelet loss is proposed to keep the cover image and the encoded image to be as similar
as possible in the high-frequency wavelet sub-bands, by which the watermarking can be embedded
into the wavelet low-frequency sub-bands, thus improving the robustness of the watermarking against
image compression.

In summary, the main contributions of this paper are summarized as follows:

• We introduce a novel watermarking network based on large kernel convolution. By integrating
large-scale features with one 21 × 21 large kernel and two 1 × 1 small kernels, the features
involving more pixels can be obtained, which makes the extent of the watermarking mod-
ification smaller, and recover the correct watermarking information from more pixels when
attacked. Meanwhile, GAN is introduced to reduce the difference between the cover image and
the encoded image, thus strengthening the imperceptibility of the watermarking.

• An adaptive weight assignment strategy for loss functions is designed to dynamically adjust
each loss function’s weight to obtain a better training effect and solve the problem of gradient
disappearance. Furthermore, a high-frequency wavelet loss is proposed to ensure that our
LKAW can adaptively embed the watermarking into the low-frequency sub-bands of the cover
image after the wavelet transform, which prevents the watermarking from being corrupted by
image compression.

The rest of this paper is structured as follows. Section 2 presents the work related to the model
design. Section 3 shows the detailed architecture and loss functions of our proposed model. Section 4
gives the experimental results. Section 5 finally concludes the paper.

2 Related Work

This section dwells on the related work involved in our approach in terms of digital image
watermarking, large kernel convolution, multitask learning, and wavelet-based watermarking.

2.1 Digital Image Watermarking

Digital image watermarking can effectively solve the problems of copyright protection, content
authentication, and traceability. The basic idea is to use the embedding algorithm to embed the
watermarking into the cover image and extract the watermarking by the extraction algorithm to prove
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the copyright ownership. The traditional robust watermarking algorithm mainly adopts the manual
method to embed the watermarking into the spatial domain or transform domain of the cover image.
Still, it is often difficult to find the most suitable embedding areas, and the embedding capacity is
shallow. With the development of deep learning, more neural networks based on an auto-encoder
framework for watermarking have been proposed [12–15]. Zhong et al. [16] proposed a method to
encode the watermarking and then embed it into the feature map of the cover image. Finally, using a
neural network to preserve the watermarking and reject noise after converting the encoded image into
a high-dimensional transform space, they achieve the robustness of watermarking without a priori
knowledge of image distortion. Although a multi-branch small kernel convolution is used to extract
multiple features of the image in parallel, it does not consider extracting features with larger effective
perception fields to embed the watermarking. Liu et al. [17] proposed a two-stage watermarking
training method: noise-free encoder-decoder training and noise-decoder training. It circumvents the
requirement that the noise must be differentiable and enhances the robustness of watermarking against
undifferentiable noise. But the two-stage training is essentially a greedy algorithm, and the optimal
solution in each stage is not necessarily the optimal global solution, which limits the watermarking
performance. Previous studies have shown that neural networks have great potential for digital image
watermarking.

2.2 Large Kernel Convolution

Recently, CNNs is challenged by the vision transformers [18,19] in computer vision. In many
visual downstream tasks, such as semantic segmentation and object detection, the vision transformers
performs better [20,21]. Previously, it was often thought that the multi-head self-attention of the vision
transformers played a decisive role. It is less inductive bias, is more robust to distortions, and can model
long-range dependencies [7]. Still, the use of simple spatial pooling or Multilayer Perceptron (MLP)
instead of the self-attention also shows better performance, such as MetaFormer [22] and MLP-Mixer
[23], which demonstrates that it may not be irreplaceable. Recent studies have shown that expanding
of the effective perception fields due to the global relational modeling of the vision transformers may
be the winning formula. Liu et al. [8] proposed a novel network ConvNext that modeled the design
of Swin Transformer [17] architecture and introduced 7 × 7 large kernel convolutions. Only using
convolutions, it exceeds the Swin Transformer of the same scale. Watermarking also requires extracting
a wide range of image features to affect more image pixels, thus mitigating the magnitude of changes
to each pixel to enhance imperceptibility. Ding et al. [7] proposed a network named RepLKNet, which
uses 31 × 31 super large kernel convolution and performs similarly to Swin Transformer of the same
scale in image classification. However, due to the more substantial shape bias learned, it outperforms
CNNs in other tasks, such as object detection and semantic segmentation. Therefore, using features
extracted from large kernel convolution and the shape bias learned to embed the watermarking, the
watermarking can be extracted from more features between pixels and high-level semantic information
of the image. Guo et al. [6] proposed a network named VAN that uses large kernel attention that both
absorbs the advantages of convolution and self-attention to decompose the large kernel convolution
into depth-wise convolution, depth-wise dilation convolution, and point-wise convolution. It achieves
a large kernel convolution with lower computational cost while taking into account the importance of
the channel dimension. It beats vision transformers and CNNs on several vision tasks [24,25]. These
studies show that the perception fields improved by large kernel convolution can effectively enhance
the performance of CNNs, and it is suitable for the watermarking domain. Therefore, introducing
large kernel convolution into the watermarking domain can achieve better results.
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2.3 Multitask Learning

The purpose of multitask learning is to learn multiple targets in a shared representation to improve
learning efficiency and prediction accuracy [26]. Multitask learning is extremely active in computer
vision because of its convenience and efficiency in solving multiple problems at the same time, as
well as it benefits stronger generalization performance and better learning due to the information
sharing across models that cannot be possessed by a single task [27,28]. Watermarking requires both
imperceptibility and robustness. It is a typical multitasking system, but previous approaches [2,3,12–
17,29,30] use a weighted sum of losses to balance the importance of individual tasks, and the loss
weights are manual tuning. Liu et al. [31] proposed an end-to-end training model named MTAN
that learns task-specific features from the globally shared representation while allowing features to be
shared across tasks. It has a simple implementation and achieves better results. However, an additional
network structure needs to be added, and loss weights are directly related to the learned features, which
are not stable enough. Cipolla et al. [11] proposed that model performance is highly dependent on an
appropriate choice of weighting between each task’s loss and offers a principled way of combining
multiple loss functions to learn multiple objectives using homoscedastic uncertainty. It obtains better
performance compared to learning each task individually. The adaptive weight assignment for loss
functions can learn to balance these weightings optimally, resulting in better imperceptibility and
robustness.

2.4 Wavelet-Based Watermarking

The essence of the traditional frequency domain watermarking method to achieve better imper-
ceptibility and robustness is that the watermarking can be well diffused into the cover image. Because
the frequency domain coefficients are associated with almost every pixel of the cover image. Modifying
the frequency domain coefficients will also influence almost virtually any pixel, reducing the amount
of modification for each pixel to obtain a higher image quality. At the same time, the features of
more pixels can be integrated into the extraction process, which is more robust to noise attacks.
Traditional frequency domain watermarking algorithms mainly include DCT, DWT, and discrete
Fourier transform (DFT). The discrete wavelet transform can decompose the image into four sub-
bands: LL, LH, HL, and HH. The LL sub-band can continue to decompose to form a multi-scale
wavelet domain so that different scale wavelet domains can be selected for watermarking embedding
according to different needs, which can better adapt to the visual characteristics of the human eyes and
obtain higher imperceptibility and robustness. In addition, it can avoid the block effect of DCT-based
watermarking algorithms. Therefore, traditional frequency domain watermarking algorithms often
choose to embed watermarks in the DWT domain. Most deep-learning-based watermarking methods
[2,3,12–17,29] extract deep semantic features directly on the cover image by convolution and embed the
watermarking adaptively based on the features to achieve the effect like frequency domain embedding,
but the embedding effect depends on whether the learned features can be associated with almost all
pixels, which is almost unfeasible for the small kernel convolution they use. Some deep-learning-based
watermarking methods realize the advantage of embedding watermarks in the frequency domain.
For example, Ahmadi et al. [30] used a 1 × 1 convolution to transform the cover image into an
unknown frequency domain to learn one or more watermarking embedding methods and use circular
convolution to spread the watermarking across multiple image blocks, thus having good superiority
in imperceptibility, robustness, and speed. However, the experimental results show that the frequency
domain learned by 1 × 1 convolution is not better than traditional methods’ DCT or DWT domain.
In the DWT domain, where traditional frequency domain watermarking algorithms have proven to
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have excellent performance, it is more effective to embed watermarking using the powerful learning
ability of deep learning.

3 Proposed Method

In this section, we propose a watermarking neural network based on large kernel convolution and
adaptive weight assignment for loss functions that can extract image features in a larger range and find
better watermarking embedding regions to achieve adaptive embedding of the watermarking. Mean-
while, the weights are dynamically adjusted and the watermarking is embedded into the low-frequency
sub-bands in the DWT domain, which can further enhance the robustness of the watermarking against
the image compression.

3.1 Network Architecture

Fig. 1 shows the architecture of the LKAW. Large kernel convolution usually refers to the
convolution kernel with more than 3 × 3, and increasing the convolution kernel size can enlarge
the effective perception fields to favorably learn the semantic shape information of objects instead of
detailed texture information. Therefore, using the semantic segmentation network U-Net [32] based
on the large kernel convolution enables the combination of deep features and spatial information and
enhances the visual quality of the encoded images. The embedding loss, LPIPS perceptual loss [33]
calculated by AlexNet [34], and adversarial loss based on WGAN-GP [35] encourage the encoder
to embed watermarking imperceptibly. The decoder also uses the large kernel convolution to obtain
more vital watermarking extraction ability and updates the decoder parameters by extracting loss.
Meanwhile, to jointly guide the network to train for accomplishing both high imperceptibility and
strong robustness of the watermarking, we propose an adaptive weight assignment strategy for loss
functions to help converge better. Furthermore, traditional wavelet watermarking methods embed the
watermarking in the wavelet low-frequency sub-bands to avoid the destruction of the watermarking by
image compression. Therefore, high-frequency wavelet loss is proposed as a soft constraint to achieve
this purpose for the wavelet watermarking method based on deep learning.

Noise 
Layer N

Watermarking M

Cover
Image IC

Encoded
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Figure 1: LKAW architecture
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The watermarking processor uses transposed convolution and SENet [36] blocks to extract the
watermarking features, and increase the watermarking redundancy, which can support the image
encoding process. The noise layer adds a random type of noise to the cover image to form the
noised image in each mini-batch, simulating possible noise attacks to the watermarking in reality and
improving the extraction ability of the decoder.

3.2 Large Kernel Convolution Block

Fig. 2 shows the large kernel convolution block used, where DW-Conv represents depth-wise
convolution, Cmid is designed to be four times larger than Cin, and Skip Connection contains a
convolution of 1 × 1 × Cout. The existing studies [16,25] show that the large effective perception
fields brought by 21 × 21 large kernel convolution can find more reasonable embedding areas,
but the large kernel convolution is slower and more expensive than the small kernel convolution.
The depth-wise convolution optimized by implicit gemm algorithm [15] is used to overcome this
problem. It accelerates the convolution computation by transforming the convolution process into
implicit matrix multiplication and chunking the whole process to achieve parallelization. Moreover,
depth-wise convolution adopts a convolution kernel for each feature channel. It can be regarded as
multi-head self-attention in vision transformers, but the number of heads is the same as the number
of channels, thus extracting image features from multiple dimensions. In the deep neural network,
different channels often represent different features and objects, so it is overwhelmingly crucial to use
two 1 × 1 convolutions to strengthen the adaptability of the channel dimension, which is conducive
to learning the features with attack invariance. Among them, the first 1 × 1 convolution increases the
number of channels, which can effectively represent the semantic representations. At the same time, it
can also capture the relationship between the channel dimensions of the feature map. The second 1×1
convolution reduces the channel of features, which meets the requirements of the output dimension.

21×21×Cin

DW-Conv 

Block Input
H×W×Cin

Block Output
H×W×Cout

1×1×Cmid 1×1×Cout

Skip Connection

BN GELU ADD

Figure 2: Large kernel convolution block

The combination of large kernel convolution and 1 × 1 convolution decomposes the dense
convolution into a spatial representation extraction process and a channel representation extraction
process, which reduces the floating-point operations (FLOPs) of the network and improves the
efficiency of the model. It also reduces the parameters of the network, which plays a paramount role in
preventing over-fitting. In addition, the skip connection is adopted to ensure the reusability of features
and avoid the degeneration of the network. Because the number of input channels is inconsistent with
that of the output channel, a 1×1 convolution is added to ensure consistency in the number of channels
in the skip connection.

3.3 Adaptive Weight Loss Function

The adaptive weight loss function consists of a combination of five losses, but the size scale and
convergence speed of each loss varies, and it is arduous to balance by using fixed weights. Inspired by
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[17], an adaptive weight assignment strategy for loss functions is used, wherein five weights are input
to the network and trained together. The last term acts as a correction term to prevent the trained
weight parameters from being too large.

L = 1
2 log λRC

2 LRC + 1
log λRW

2 LRW + 1
2 log λPC

2 LPC + 1
2 log λCC

2 LCC + 1
2 log λHF

2 LHF

+ log (1 + λRC) (1 + λRW) (1 + λPC) (1 + λCC) (1 + λHF) (1)

where λRC, λRW, λPC, λCC, and λHF are the weights of different losses, which are adaptively adjusted
according to the image data and participate in network training, thus dynamically balancing the
imperceptibility and robustness of the watermarking. Here LRC, LRW , LPC, LCC, and LHF are 5 different
losses.

High-frequency wavelet loss: To avoid the watermarking being destroyed by image compression,
we propose a high-frequency wavelet loss LHF , which embeds the watermarking in the low-frequency
sub-bands of the cover image to enhance the robustness to image compression.

LHF (θE) = 1
N

N∑

n=1

‖DWT (IE)HH − DWT (IC)HH‖2
2 (2)

where θE is the parameters of the encoder, N represents the total number of training samples,
DWT (·)HH is the operation of extracting high-frequency sub-bands after DWT, and 2-norm is adopted
to represent the difference between IE and IC in the high-frequency sub-bands.

Embedding loss: The purpose of invisible watermarking embedding is to make the encoded image
IE indistinguishable from the cover image IC, and it is necessary to minimize the difference between
the corresponding pixels of them, so the embedding loss LRC is adopted as follows:

LRC (θE) = 1
N

N∑

n=1

‖IE − IC‖2
2 (3)

where θE is the parameters of the encoder, 2-norm is adopted to represent the difference between IE

and IC.

Extracting loss: In the process of watermarking extraction, the network should be able to extract
the watermarking from the noise image IN, and the difference between the decoded watermarking MR
and the input watermarking M needs to be reduced. Therefore, the extracting loss LRW is adopted as
follows:

LRW (θD) = 1
N

N∑

n=1

− [M log (MR) + (1 − M) log (1 − MR)] (4)

where θD is the parameters of the decoder. The decoder usually is exploited to predict the binary
watermarking, regarded as a binary classification problem, therefore, the binary cross entropy loss
is adopted to measure the difference between MR and M.

LPIPS perceptual loss and adversarial loss: To minimize the difference between the encoded image
and the cover image, LPIPS perceptual loss LPC [33] and adversarial loss LCC based on WGAN-GP
[35] are used.

3.4 Algorithm Implementation

Algorithm 1 shows the pseudo-code of our LKAW training. For each mini-batch: (1) the cover
image IC of shape H × W × 3 is decomposed into wavelet sub-bands IW of shape H/4 × W/4 × 12
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by DWT. (2) The watermarking processor MP receives the binary watermark M ∈ {0, 1}L with length
L, and outputs the watermarking feature map ILM ∈ RH/4×W/4×12. (3) ILM and IC are concatenated and
input into the encoder E with the parameters θE, and E products the encoded image IE after the inverse
discrete wavelet transform (IDWT). (4) Noise layer N receives IE of shape H × W × 3, and randomly
adds a type of noise to IE, thus generating the noised image IN of same shape. (5) The noised image IN is
also decomposed into wavelet sub-bands by DWT and then input to the decoder D with the parameters
θD, to extract the watermarking MR ∈ {0, 1}L. (6) Critic C accepts image IC and IE, calculates the
distance of data distribution between them with gradient penalty, and trains its parameters θC through
loss function LC; (7) AlexNet accepts IC and IE for calculating the LPIPS loss; (8) Update network
parameters θE and θD by adaptive weight loss function L.

Algorithm 1: Pseudocode of LKAW
Input: IC,M
Output: Trained networks E, D, C
Training Variables: θE, θD, θC

1: while epoch < max_epoch do
2: Compute IE = E (IC, M)

3: for i = 1 to num_iter do
4: Compute Critic (IE, IC)

5: Update θC = θC + lr × Optim (LC)

6: Compute IN = N (IE), MR = D (IN)

7: Update θE = θE + lr × Optim (L)

8: Update θD = θD + lr × Optim (L)

4 Experiments

To verify the performance of our proposed watermarking method, we compare it with state-of-
the-art watermarking models. Also, we do relevant ablation experiments to manifest the effectiveness
of the proposed method. In addition, some noise attack experiments are added to prove the robustness
of the watermarking method.

4.1 Experimental Setup

Dataset and setting: We selected 10,000 images from the COCO data set [37] as the cover images for
training, 1000 images from the COCO data set as the validation set, and 1000 high-resolution images
from the DIV2K data set [38] as the test set. The initial values of the weights λRC, λRW, λPC, λCC and
λHF of the loss function are all set to 1.0. The size of the mini-batch in training is 16, and the size of the
mini-batch in testing is 1. The initial learning rate is 1 × 10−4, and the total epoch of training is 400.
The warmup strategy is used for 40 epochs, and then the cosine annealing strategy is used to reduce
the learning rate to 0 gradually. The noise layer is set to randomly choose one kind of noise for each
mini-batch of the encoded image as a combined noise layer. The length of the watermarking is 30 bits.
Training is based on Pytorch 1.11.0 framework, and one NVIDIA RTX3080 is used for calculation.
In gradient calculation, Ranger21 [39] is adopted, which integrates AdamW and LookAhead [40] to
achieve better learning ability. Except for the last layer of the decoder, all activation functions adopt
GELU, which can be regarded as a combination of dropout and RELU. Introducing randomness into
the activation functions makes the model training more robust. The activation function of the last
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layer of the decoder adopts the Sigmoid function so that the range of the output is limited to (0,1) and
rounded off as the decoded watermarking.

Evaluation metrics: Four metrics are used to measure the quality of the encoded image: PSNR,
SSIM [41], root mean square error (RMSE), and mean absolute error (MAE). They can reflect the
similarity between the encoded image and the cover image, which are used to verify the imperceptibility
of watermarking. Meanwhile, two metrics are used to test the extraction ability of watermarking,
including bit error rate (BER) and normalized correlation (NC). BER calculates the percentage
of error bits in the decoded watermarking, and NC calculates the similarity between the decoded
watermarking and the input watermarking, all of which are used to verify the robustness of the
watermarking. There are all calculated as the average on the test set.

Noise attacks: We utilize combined noise to train all watermarking models, which can enhance the
robustness of the watermarking. Specifically, the combined noise includes Identity, Gaussian noise,
Salt-and-pepper noise, Gaussian blur, Quantization, Median filtering, Crop, Cropout, Dropout, and
JPEG compression. Dropout, Cropout, and Quantization are from HiDDeN [2]. JPEG compression
includes non-differentiable real JPEG and JPEG-MASK [2] which is a differentiable noise layer and
simulates the high-frequency information loss caused by real JPEG. Although in some batches the non-
differential real JPEG is applied for end-to-end training, we can use the momentum-based updating
optimization method to ensure the correctness of the whole updating direction [42]. During the testing,
a total of six kinds of noises are used to attack the encoded image, to detect the robustness of the
watermarking, including Gaussian noise (σ = 0.5), Salt-and-pepper noise (p = 0.5), Midden blur
(k = 3), real JPEG compression (q = 50%), Crop (p = 0.3) and Gaussian blur (σ = 0.7).

4.2 Comparison with the Previous Methods

To verify the effectiveness of the proposed watermarking methods, which have two versions: using
the 7 × 7 or 21 × 21 kernel in the large kernel convolution block, we compare it with HiDDeN and
MBRS [42].

Imperceptibility: Table 1 records the similarity between the encoded image and the cover image of
HiDDeN, MBRS, and our LKAW. As can be seen from Table 1, our LKAW significantly outperforms
HiDDeN in terms of all four metrics: PSNR increases by 8.13, SSIM increases by 0.0426, RMSE
decreases by 4.04, MAE decreases by 3.42. The visual quality of our LKAW is also better than MBRS.
Using the 21 × 21 kernel has higher visual quality than the 7 × 7 kernel, but they have similar metrics.
As shown in Fig. 3, it is difficult to distinguish the encoded image from the cover image visually, and
the difference between them (the modification of the cover image by embedding watermarking) is
more in the region with abundant edges and textures, but there is almost no change in the smooth
region, which proves that our LKAW can according to the content of the cover image to embed the
watermarking adaptively. Further, the changes to the cover image using the 21×21 kernel to embed the
watermarking are more widely distributed than the 7×7 kernel, which means more slight changes and
greater robustness. The larger kernel has better performance in the watermarking domain. In addition,
as can be seen from Fig. 3d, because the watermarking is embedded by using the 21 × 21 large kernel
in the wavelet domain, the watermarking can diffuse the whole image, which makes the watermarking
smaller on the cover image than 7 × 7 kernel.

Robustness: Tables 2 and 3 record BER and NC of the decoded watermarking under various
noise attacks, respectively. GN, S&P, MF, and GB refer to Gaussian Noise, Salt-and-pepper noise,
Median filtering, and Gaussian blur, respectively. As shown in Tables 2 and 3, our LKAW has better
watermarking extraction ability than HiDDeN and MBRS in almost all cases. Moreover, our model
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is superior to HiDDeN in resisting JPEG compression. Although, JPEG compression is realized
by quantizing and deleting the high-frequency components in the DCT domain, which may not be
completely consistent with the high-frequency sub-bands of DWT. The essence that high-frequency
components reflect the texture and edge information for the image is the same. Therefore, high-
frequency wavelet loss can indeed enhance the robustness of JPEG compression.

Table 1: Comparison with other method imperceptibility results

Methods Kernel PSNR↑ SSIM↑ RMSE↓ MAE↓
HiDDeN [2] 3 × 3 31.99 0.9295 6.59 5.32
MBRS [42] 3 × 3 31.68 0.8099 6.72 5.68
Ours 7 × 7 37.86 0.9632 3.36 2.33
Ours 21 × 21 40.12 0.9721 2.55 1.90

Figure 3: Examples of embedding watermarking to the cover image. (a) The cover image (b) The
encoded image by the 21 × 21 kernel of our LKAW (c) The difference that is multiplied by 20 between
the cover image and the encoded image of 7 × 7 kernel (d) The difference that is multiplied by 20
between the cover image and the encoded image of 21 × 21 kernel
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Table 2: Comparison of BER (%) results with other methods against noise attacks

Methods Kernel Identity GN
σ = 0.5

S&P
p = 0.5

MF
k = 3

JPEG
50%

Crop
p = 0.3

GB
σ = 0.7

HiDDeN [2] 3 × 3 19.02 44.68 47.37 22.48 47.61 20.76 21.32
MBRS [42] 3 × 3 0.00 10.61 18.76 0.00 2.03 0.00 0.00
Ours 7 × 7 0.00 0.00 0.00 5.35 35.63 22.83 0.00
Ours 21 × 21 0.00 0.00 0.00 0.00 2.01 3.08 0.00

Table 3: Comparison of NC results with other methods against noise attacks

Methods Kernel Identity GN
σ = 0.5

S&P
p = 0.5

MF
k = 3

JPEG
50%

Crop
p = 0.3

GB
σ = 0.7

HiDDeN [2] 3 × 3 0.80 0.56 0.62 0.76 0.54 0.78 0.77
MBRS [42] 3 × 3 0.99 0.90 0.82 0.99 0.95 0.99 0.99
Ours 7 × 7 0.99 0.99 0.99 0.94 0.64 0.76 0.99
Ours 21 × 21 0.99 0.99 0.99 0.99 0.95 0.96 0.99

4.3 Ablation Study

An ablation experiment is designed to demonstrate our method’s the effectiveness in terms of large
kernel convolution, adaptive loss weights, and high-frequency wavelet loss, an ablation experiment is
designed. Among them, the small kernel convolution block is a Conv3 × 3 − BN − RELU block, and
the fixed loss weights of λRC, λRW, λPC, λCC, and λHF are set to 1.5, 2.0, 1.5, 0.5, and 1.0.

Imperceptibility: Table 4 records the similarity between the encoded image and the cover image,
where LK denotes large kernel convolution, WH denotes high-frequency wavelet loss, and AW denotes
adaptive weight assignment for loss functions. Under only using the large kernel convolution, for
PSNR and SSIM, our LKAW increases by 1.10 dB and 0.0375, respectively; for RMSE and MAE,
our LKAW decreases by 0.69 and 0.05, respectively, compared to using small kernel convolution.
Furthermore, adding high-frequency wavelet loss results in a reduced visual quality, PSNR decreases
by 0.43 dB, and SSIM decreases by 0.0375. RMSE and MAE are also higher. Because the large kernel
can see an extensive range of feature maps, so it can use the shape basis to make the best embedding
region decision, and the features extracted by the large kernel convolution correspond to a larger range
of pixels. Note that, the changes to the cover image are diffused to more pixels, making the changes
to each pixel smaller, thus obtaining a higher similarity to the cover image. In addition, the integrated
larger range of neighboring features can further reduce the probability of artifacts affecting the image’s
visual quality. The adaptive weight assignment strategy dynamically adjusts the relationship between
each loss, which makes the network converge better and the visual quality stronger than that of fixed
weight training. The high-frequency wavelet loss modulates the watermarking embedding region, thus
obtaining worse imperceptibility.

Robustness: From Tables 5 and 6, the architecture using small kernel convolution shows a
higher BER overall. After using high-frequency wavelet loss to select the embedding region of the
watermarking in the frequency domain, both large kernel convolution and small kernel convolution
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have lower BER. Using all of them, BER is the lowest and NC is the highest in most cases. This
indicates that the large kernel convolution can sense a larger range of image changes, as a result, it
is more sensitive to watermarking modifications and can have a stronger watermarking extraction
ability. In addition, introducing the adaptive weight assignment strategy improves the training and
achieves stronger robustness. Adding high-frequency wavelet loss to avoid watermarking embedding
in image texture and contour regions can indeed effectively enhance the watermarking resistance for
JPEG compression.

Table 4: Results of imperceptibility in ablation study

LK WH AW PSNR↑ SSIM↑ RMSE↓ MAE↓
32.98 0.9105 5.76 3.95√ 34.08 0.9480 5.07 3.90√ √ 33.65 0.9105 5.33 3.55√ √ √ 40.12 0.9721 2.55 1.90

Table 5: BER (%) results against noise attacks in an ablation study

LK WL AW Identity GN
σ = 0.5

S&P
p = 0.5

MF
k = 3

JPEG
50%

Crop
p = 0.3

GB
σ = 0.7

0.00 0.00 0.16 0.00 50.30 35.24 4.16√ 0.00 0.00 0.00 0.41 37.61 14.51 2.63√ √ 0.00 0.00 0.00 0.00 21.47 26.35 0.00√ √ √ 0.00 0.00 0.00 0.00 2.01 3.08 0.00

Table 6: NC results against noise attacks in an ablation study

LK WL AW Identity GN
σ = 0.5

S&P
p = 0.5

MF
k = 3

JPEG
50%

Crop
p = 0.3

GB
σ = 0.7

0.99 0.99 0.76 0.99 0.49 0.67 0.99√ 0.99 0.99 0.99 0.99 0.54 0.84 0.97√ √ 0.99 0.99 0.99 0.99 0.71 0.71 0.99√ √ √ 0.99 0.99 0.99 0.99 0.97 0.96 0.99

4.4 Noise Attack Experiments

To examine the performance of our LKAW against many different attacks, we design noise attack
experiments: 6 common types of noise are added to the encoded image. The BER of the decoded
watermarking with the attack strength gradually increasing is recorded.

Figs. 4 and 5 show the BER between the decoded watermarking and the input watermarking
under 6 attacks, respectively. Our LKAW shows a high tolerance to these noise attacks, especially
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for Gaussian noise, Salt-and-pepper noise, and Gaussian blur. The decoded watermarking still has
a low error even under the stronger distortion. For example, as can be seen in Fig. 4, the decoded
watermarking has a low average BER of 0.6%, 7.1%, and 3.0% under severe distortions including
Gaussian noise (σ = 3.0), Salt-and-pepper noise (p = 0.9), and Crop (p = 0.3). This indicates that the
training with combination noise can have better robustness to prevalent image distortion, and the large
kernel convolution can indeed learn robust features of the cover image that help embed and extract
the watermarking.

Figure 4: Examples of the noise image added a strong noise. (a) The noised image added no noise
(b) Adding Gaussian noise (σ = 3.0) (c) Adding Crop (p = 0.3) (d) Adding Salt-and-pepper noise
(p = 0.9)

Figure 5: (Continued)
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Figure 5: The average BER for watermarking extraction under four different intensities of noise attacks

5 Conclusion

In this paper, we propose a robust watermarking method based on large kernel convolution and
adaptive weight assignment for loss functions, which captures the robust features invariant to image
attacks, so that the optimal embedding method for watermarking can be learned. Meanwhile, due
to the different convergence speeds and magnitude of the five losses, we use an adaptive weight
assignment for loss functions to dynamically adjust the weight and add a regular term to prevent
the weight from being too large. Moreover, to avoid the watermarking being removed from the image
compression, we propose a high-frequency wavelet loss to force the watermarking to be embedded
in the low-frequency sub-bands in the wavelet domain. The experimental results demonstrate that
the method better maintains the balance of robustness and imperceptibility of watermarking. We
will further improve our work in the following aspects in the future: (1) Exploring better methods
to expand the effective perception fields, such as the global modeling capability brought by the self-
attention mechanism of the vision transformer [18,19]. (2) Exploring the robustness of watermarking
for unknown distortion, thus improving the generalizability of watermarking, such as using adversarial
training to simulate unknown distortion [3,16].
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