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Abstract: This paper constructs a non-cooperative/cooperative stochastic
differential game model to prove that the optimal strategies trajectory of
agents in a system with a topological configuration of a Multi-Local-World
graph would converge into a certain attractor if the system’s configuration is
fixed. Due to the economics and management property, almost all systems are
divided into several independent Local-Worlds, and the interaction between
agents in the system is more complex. The interaction between agents in
the same Local-World is defined as a stochastic differential cooperative
game; conversely, the interaction between agents in different Local-Worlds
is defined as a stochastic differential non-cooperative game. We construct a
non-cooperative/cooperative stochastic differential game model to describe
the interaction between agents. The solutions of the cooperative and non-
cooperative games are obtained by invoking corresponding theories, and then
a nonlinear operator is constructed to couple these two solutions together.
At last, the optimal strategies trajectory of agents in the system is proven to
converge into a certain attractor, which means that strategies trajectory are
certainty as time tends to infinity or a large positive integer. It is concluded that
the optimal strategy trajectory with a nonlinear operator of cooperative/non-
cooperative stochastic differential game between agents can make agents
in a certain Local-World coordinate and make the Local-World payment
maximize, and can make the all Local-Worlds equilibrated; furthermore, the
optimal strategy of the coupled game can converge into a particular attractor
that decides the optimal property.
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1 Introduction

In the last 20 years, the theoretic study of complex adaptive systems has become a significant field.
A broad range of complex adaptive systems has been studied, from abstract ones, such as the evolution
of the economic system and the criticality of the complex adaptive system, to physical systems, such
as city traffic designing and management decisions. These all have in common the property one
cannot hope to explain their detailed structures, properties, and functions exactly from a mathematical
viewpoint. By the 2010s, there were rich theories of stochastic differential games describing agent’s
behavior of interacting coupled with the optimal strategies in a transitory deterministic structure, and
there have been many random complex networks models describe the evolutionary law under specific
logical rules in various fields, which makes complex adaptive system studying colorfully. These two
problems are essential due to this management complex adaptive system.

On the one hand, Hachijo et al. [1] studied the agent’s interaction with others according to a
Boolean game in random complex networks. Lera et al. [2] and Li et al. [3], on the other hand, reported
that the agent interact with others according to certain games, such as a stochastic differential game,
which has been studied by Javarone [4], Mcavoy et al. [5], Gächter et al. [6]. However, few scientific
research results indicate that if these two problems are combined, the existing research cannot support
the making-decision process in reality.

Suppose that the system configuration is a fixed graph; the interaction between agents happens
in a certain Multi-Local-World graph. Invoke Hypothesis 1–2 specified in the following Section,
the interaction between agents can be thought of as two categories: a cooperative game between
homogenous agents in the same Local-World and a non-cooperative game between in-homogenous
agents in different Local-Worlds. According to the theory of emergence, an exclusive phenomenon of
the complex adaptive system of the non-cooperative game between agents in different Local-Worlds
can be coarsened in size to the non-cooperative game �(s, x, u) coupled with the corresponding payoff
V(s, x, u) between Super-Agents, which has been studied by Calvert et al. [7] and Gächter et al. [6].
However, the behaviors between agents in the same Local-World can be described as the cooperative
stochastic differential game �c(s, x, u), which can be separated into two sequential problems: the first
one is to simplify it as a corresponding optimal problem � , and the second one is to distribute the
maximum payoff rationally among all agents in the system; furthermore, the corresponding optimal
payoff for this Super-agent is denoted to �i(s, xi, u), which has been studied by Friesz et al. [8],
Querini et al. [9], then, a payoff distribution procedure could be designed to distribute payoff rationally
between Agents.

The most important thing to this problem should be not only the existence of a solution to
the optimal strategy but also the property of the optimal strategy and the stability of the solution.
However, several questions perplex us: all agents in this system are always partially intelligent, partially
autonomous, and partial society. They interact with others according to the interactive rules of both
cooperative and non-cooperative games. So, getting the corresponding optimal strategies is the most
important and difficult thing due to these two mixed interactions. According to theories of operational
research and game theory, for an arbitrary Super-Agent, the payoff coupled with a non-cooperative
game with other Super-Agents always is not identical to the payoff coupled with the optimal problem
that is the first process of the cooperative game to other Agents, even if the same strategy is considered.
So, how to make up for this difference must be our purpose. As well known, whether the imputation
mechanism designed is rational or not decides whether the solution is stable or not. To resolve this
problem, an adjusted dynamical Shapley is constructed; whether the adjusted dynamical Shapley
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vector can make the solution stable or not is what we focus on if non-cooperative/cooperative games
are considered together.

As far as this complex adaptive system coupled with those gaps introduced above is considered, a
non-cooperative/cooperative stochastic differential game model for the agent’s dynamical, intelligent
and social properties has been constructed. The corresponding solutions respective to these two models
are obtained by invoking classic analytic methods and processes. At last, a nonlinear operator is
constructed to pair the Nash strategies with Pareto strategies together so that each agent in the
system can select its optimal strategies under certain conditions. Because of optimal dynamic optimal
strategies, this complex adaptive system synchronizes locally but not globally, making this system
more stable to operate and more innovative to fit for change. To ensure that the optimal strategies are
stable and can converge into a certain attractor, an adjusted Shapley vector is introduced in the payoff
distribution procedure to make all agents more rational and dynamically stable over a long period.
The details of the model are specified in the next section. This paper considers a coexisting game of
the stochastic differential cooperative game and stochastic differential non-cooperative game, which is
more close to reality; furthermore, we design a rational payment distribution mechanism driven by an
adjusted dynamical Shapley value, which is proven to be much more stable under certain conditions.
These two innovations make this paper more interesting.

2 The Model

Following a complex adaptive system for Agent behavior and local topological configuration co-
evolving, let’s consider.

Definition 1. S =
(
G,A, π) ≡ (�,F ,P,

(
X β

t

)
t∈T0

)
is called the stochastic differential game model

with a random Multi-Local-Worlds graph. If

(1) Topological space G describes the interactive configuration of the system, which is the set of
graphs C = (C1, C2, . . . , Cp), Ci = (Ci1, Ci2, . . . , Ciri(t))· 1 ≤ i ≤ p is called Super-Agent, Ci is the
first order segmentation of the system, and Cij, 1 ≤ j ≤ ri(t), which is called agent, is the second
order segmentation of the system. A is strategies space, which describes all possible behaviors
of agents in this system and π is the payoff.

(2) X β = (
X β

t

)
t∈T0

is a family of �-valued random variables indexed by discrete time parameters t
and a noise parameter β. F is a σ algebra, and P a probability measure.

(3) A realization {X β

t = G} defines an action α in the graph C.
(4) The interaction law of agents can be proposed based on following hypotheses:

Hypothesis 1. Several different Local-Worlds are large enough such that there are sufficient agents
interact with the others within this Local-World, and who are small enough such that there exist sufficient
Local-Worlds interact with others in this system.

Hypothesis 2. In a short time scale, each agent interacts with the others who are in the same Local
World can be defined as a cooperative game, i.e., all agents pursue the maximized profit of the Local-World
first, then distribute the system profit rationally. Each Local World interacts with the others according to
the rule of a non-cooperative game such that the system is equilibrated. On a long time scale, the behaviors
and configuration of the system can be converted into a certain attractor.

Due to this paper’s limited space and the process’s complexity, just 2-levels of the system are
analyzed as an example. If the system’s levels are larger than or equal to 3, the results can be linearly
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extended directly. According to the property defined in Hypothesis 1 and 2, the system configuration
can be described as Fig. 1.
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Figure 1: Interaction between agents in the dynamic topology of the complex adaptive system

Fig. 1 describes the dynamic property of the complex adaptive system with co-evolving behavior
and local configuration. Where C represents “Cooperation games” happen in agents and N represents
“Non-cooperation games”happen in agents. There are two local-worlds in this system. Suppose that an
arbitrary agent should not pursue maximizing the current payoff. However, the payoff is maximized
in a specific time scale, which means that an agent can give up the transitory benefit but the total
payoff in the corresponding time scale—they think the payment is decided by a certain integral of
the transitory objectivity function at a continuous time. Furthermore, the agent’s behavior is limited
by the corresponding resource that is described as a stochastic dynamics equation such that agents’
objectivity will be changed synchronized, which should be described by a certain discount function φ(t)
at the time. This paper uses three discount functions, homogenous exponential distribution describing
the agent’s uniform and stable behavior on every time scale. Inhomogeneous exponential distribution

� =
∫ T

t0

m∑
h=1

exp
[
−
∫ s

t0

rh (y) dy
]

ds describing the agent’s non-uniform behavior on small sequential

time scales, and Lévy distribution � =
∫ T

t0

− p

2
√

πr3
exp

[
−p2

4r

]
ds, which describes the agent who can

imitate others’ behavior and interact directly, are introduced to describe the diversity of behaviors.
In the interaction process, agents make decisions relying on themselves, neighbors’ states, and the
properties of the environment. Agents in the system are intelligent and social as Eqs. (1)–(8), making
this system a complex adaptive system.

Firstly, some symbols and variables appeared in this paper should be listed in Table 1.

Table 1: Corresponding symbols and variables

Symbol Variable Symbol Variable

r(t) Discount function W Payoff coming from cooperative game
π Payoff σi Noise of behavior of agent i
xi Resource of agent i � Covariance matrix of state
ui Strategy of agent i S̃h Adjusted shapley vector
gj Objectivity of agent j L Lyapunov function
wh Weight of hth time-scale v(t0)

ji Payoff distributed of agent ji

q Initial payoff Bji(τ ) Transitory compensatory of agent ji

ψ Strategy
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Suppose that there are m Local-Worlds in the system, denoted by Super-Agent i, and the jth player
of Super-Agent i is denoted by an agent ji. Then the system configuration mentioned above can be
described as the corresponding adjacency matrix G = (G1, G2, . . . , Gm). Except for the system topology,
interaction property should also be mastered if one needs to identify this system. Furthermore, the
complex interactive mix between cooperative and non-cooperative games makes the system more
complex. This paper aims to obtain the optimal strategies trajectory for this complex interaction.

As well known, the property of a complex adaptive system of economy and management is
random time-varying. In this paper, according to the economic and management system’s property,
three different systems with the statistical property of agents’ behaviors, homogeneous exponent
distribution, inhomogeneous exponent distribution, and Lévy distribution, are studied respectively,
which should be shown as follow.

To analyze this problem effectively, we consider the Super-Agent’s behavior. For arbitrary Super-
Agent, its state dynamics are characterized by the set of vector-valued differential equations

dxi(s) = f i[s, xi(s), xj(s), ui(s)]ds + σi[s, xi(s)]dzi(s), xi(t0) = x0
i , j �= i ∈ N (1)

And the corresponding objectivities are

Et0

{∫ T

t0

gj[s, xj(s), uj(s)] exp
[
−
∫ s

t0

r(y)dy
]

ds + exp
[
−
∫ T

t0

r(y)dy
]

qj(xj(T))

}
(2)

Et0

{∫ T

t0

gj
[
s, xj(s), uj(s)

] m∑
h=1

{
wh exp

[
−
∫ s

t0

rh(y)dy
]}

ds

+
m∑

h=1

[
wh exp

[
−
∫ T

t0

rh(y)dy
]

qj
(
xj (T)

)]} (3)

where, j ∈ M = {1, 2, . . . , m}, and

Et0

{∫ T

t0

gj
[
s, xj(s), uj(s)

] [∫ s

t0

− p

2
√

πr3
exp

[
−p2

4r

]
dp
]

ds

+
[∫ s

t0

− p

2
√

πr3
exp

[
−p2

4r

]
dp
]

qj
(
xj (T)

)} (4)

describe three behaviors driven by the discount functions with homogeneous exponential distribution,
inhomogeneous exponent distribution, and Lévy distribution, respectively.

Similarly, as for an arbitrary agent ji whose behavior statistical character satisfies homogeneous
exponent distribution, the state dynamics is characterized by the set of vector-valued differential
equation

Et0

{∫ T

t0

g ji [s, xji(s), uji(s)] exp
[
−
∫ s

t0

r(y)dy
]

ds + exp
[
−
∫ T

t0

r(y)dy
]

qji(xji(T))

}
where, xi(s) ∈ Xi ⊂ Rmi denotes the system statute of the agent i, uji ∈ Ui ⊂ compRi is the control

vector of the agent i, exp
[
− ∫ s

t0
r(y)dy

]
is the discount factor, qi(xi(T)) is the terminal payoff. In

particular, gi[s, xi(s), ui(s)] and qi(x) are all positively related to xi. σi[s, xi(s)] is a mji × �i and zi(s)
is a �-dimensional Wiener process with an initial state x0

i . Let �i[s, xi(s)] = σi[s, xi]σi[s, xi]T denote the
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covariance matrix of h rows and ζ columns. For i �= j, xi ∩ xj = φ, zi(s) and zj are independent Wiener
processes.

The set of vector-valued differential equations characterizes the state dynamics of Agent ji.

dxji(s) = f ji [s, xji(s), uji(s)]ds + σji dz, xji(t0) = x0
ji
, for ji ∈ {1, 2, . . . , iri} ≡ Ni (5)

Similarly, the state dynamics for inhomogeneous exponent distribution and Lévy distribution of
agent ji is the same as Eq. (5), and their objectivity can be expressed to

Et0

{∫ T

t0

g ji
[
s, xji(s), uji(s)

] m∑
h=1

{
wh exp

[
−
∫ s

t0

rh(y)dy
]}

ds

+ exp
[
−
∫ T

t0

r(y)dy
]

qji(xji(T))

}
, j ∈ M = {1, 2, . . . , m}

Et0

{∫ T

t0

g ji
[
s, xji(s), uji(s)

] [∫ s

t0

− p

2
√

πr3
exp

[
−p2

4r

]
dp
]

ds

+
[∫ s

t0

− p

2
√

πr3
exp

[
−p2

4r

]
dp
]

qji
(
xji (T)

)}
respectively. To simplify this problem, we consider the cooperative game between arbitrary Agents ji in
an arbitrary Super-Agent i, then study the different non-cooperative games between the Super-Agent
for the cooperative game. The most important for cooperation between these agents is the objectivity
of the Super-Agent’s payoff, so,

Et0

⎧⎨⎩
∫ T

t0

∑
ji∈Ki

g ji
[
s, xji(s), uji(s)

]
exp

[
−
∫ s

t0

r (y) dy
]

ds

+
∑
ji∈Ki

exp
[
−
∫ T

t0

r (y) dy
]

qji
(
xji (T)

)⎫⎬⎭ , ji ∈ Ki = {1, 2, . . . , ki} ⊆ Ni

(6)

Et0

⎧⎨⎩
∫ T

t0

∑
ji∈Ki

g ji
[
s, xji(s), uji(s)

] m∑
h=1

{
wh exp

[
−
∫ s

t0

rh(y)dy
]}

ds

+
∑
ji∈Ki

m∑
h=1

{
wh exp

[
−
∫ T

t0

rh( y)dy
]}

qji
(
xji (T)

)⎫⎬⎭ , ji ∈ Ki = {1, 2, . . . , ki} ⊆ Ni

(7)

Et0

⎧⎨⎩
∫ T

t0

∑
ji∈Ki

g ji
[
s, xji(s), uji(s)

] [∫ s

t0

− p

2
√

πr3
exp

[
−p2

4r

]
dp
]

ds

+
∑
ji∈Ki

[∫ T

t0

− p

2
√

πr3
exp

[
−p2

4r

]
dp
]

qji
(
xji (T)

)⎫⎬⎭ , ji ∈ Ki = {1, 2, . . . , ki} ⊆ Ni

(8)

Historical strategies and local topological configuration determine agents’ payoffs. When an agent
ji interacts with others and the environment, other agents’ behaviors should be deterministic such
that the behaviors in the Local-World are coordinated if the system is in equilibrium. However, this
kind of coordination will be shifted when the system’s topological configuration changes from one
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deterministic one to another. So, the interaction between the agents is full of dynamic, random,
nonlinear, and diverse.

Invoke the models mentioned above, and it is easy to know: it is not only the payoff maximized
should be considered, but also the optimal payoff should be maintained stably in a much longer time
scale, which means that agents must give up the short-period objectivity to pursue to the long-period
objectivity once these two different objects conflict. Furthermore, the optimal strategy would change
as the environment changing, which the random dynamics and objectivity can reflect. It is easy to
know that each agent would adapt to his current and historical state, the stats of other agents that
interact with him, and the environment by using different strategies; when an agent makes a decision,
he does consider not only the current state of the system but also the historic states coupling with
the evolutionary property, which is important. An arbitrary agent in this complex adaptive system is
intelligent because an arbitrary agent in this complex system can make a decision and update strategy
relying on its historical states and other agents’ strategies that interact directly. When an agent decides,
it must forecast the future state to keep the strategies from making mistakes. The future state can be
obtained from the corresponding trend term of the state equation constrained. However, because of
the floating term in the behavior dynamics equation, the future state cannot be forecasted precisely.
So, the strategies of an arbitrary agent should be set to an adaptable interval to make up the wrong or
incorrect decision, which makes the agent autonomous.

3 Main Results
3.1 Agent’s Payoff

According to (1) and (2), an arbitrary super-agent interacts with others, which is a non-cooperative
game. Similar, arbitrary agents interact with others in the same Local-World according to (4) and
(5). The interaction is defined as a cooperative game. Considering the complexity, following analytic
method should be invoked, as specified in Table 2.

There are two theorems would be given. When the system achieves equilibrium, the transitory
payoff for an arbitrary agent in this complex adaptive system can be described as:

Theorem 1. For all xt∗
Ni

∈ X t∗
Ni

,

(1) The payoff of agent ji for systems (1), (2), (5) and (6) is

v(t0)ji

(
t, xt∗

Ni

)
=

∑
Ki∈Ni |N ji

(ki − 1)! (ni − ki)!
ni!

×
[
exp[r(s − t0)]W (t0)Ki(t, xt∗

Ki
)q − exp[r(s − t0)]W (t0)Ki�ji(t, xt∗

Ki�ji
)q
]

(2) The payoff of agent ji for systems (1), (3), (6) and (7) is

v(t0)ji

(
t, xt∗

Ni

)
=

∑
Ki∈Ni |N ji

(ki − 1)! (ni − ki)!
ni!

×
[

�∑
h=1

{wh exp [rh (s − t0)]} W (t0)Ki

(
t, xt∗

Ki

)q

−
�∑

h=1

{wh exp [rh (s − t0)]} W (t0)Ki�ji

(
t, xt∗

Ki�ji

)q
]



2086 CMC, 2023, vol.75, no.1

Table 2: Analytic process and method

Problem Process Method

Cooperative game between
agents in same Local-world

Transform it to corresponding
differential stochastic
differential optimization
problem under stochastic
constraint

Pontryagain’s stochastic
optimization theorem and
fleming theorem

Construct a payoff distribution
mechanism to make agents
fairness

Shapley value

Non-cooperative game between
agents in different Local-worlds

Transform it to corresponding
differential stochastic
differential optimization
problem under stochastic
constraint

Bellman dynamic
programming theorem,
Pontryagain’s stochastic
optimization theorem, and
fleming theorem

Optimal strategy trajectory Set a nonlinear operator to
couple the Paroto optimal
strategy driven by cooperative
game and the nash optimal
strategy driven by
non-cooperative game

Theorem 2.5.1 of Yeung
(2006)

Stability of optimal trajectory Construct adjusted shapley
vector

General shapley

Introduce a corresponding
Lyapunov function

Lyapunov stability theorem

(3) The payoff of agent ji for systems (1), (4), (6) and (8) is

v(t0)ji

(
t, xt∗

Ni

)
=

∑
Ki∈Ni |N ji

(ki − 1)! (ni − ki)!
ni!

[
1√
πr

exp
[

1
4r

(
τ 2 − t2

0

)]
W (t0)Ki

(
t, xt∗

Ki

)q

× 1√
πr

exp
[

1
4r

(
τ 2 − t2

0

)]
W (t0)Ki�ji

(
t, xt∗

Ki�ji

)q
]

where, W denotes the optimal of the coalition Ki, q =
∣∣∣∣∣∣∣∣(∂g

∂x
∂x
∂t

)/(
∂f
∂x

∂x
∂t

)∣∣∣∣∣∣∣∣ is a constant smaller than

or equal to 1.

However, it is clear from Theorem 1 that the optimal payoff of the agent ji depends on the
transitory time t, not the arbitrary time τ ∈ [t0, T ]. Furthermore, the arbitrary agent ji cannot obtain
the global information of time τ at that time, so there are some gaps in the optimal decision. For
compensating this fault, the transitory compensatory mechanism should be introduced.

3.2 Transitory Compensatory of Arbitrary Agent

Theorem 2. On time τ ∈ [t0, T ]
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(1) The transitory compensatory agent ji ∈ Ni of the system (1), (2), (5) and (6) should be described
as

Bji (τ ) = − exp [r (s − t0)]
∑

Ki⊆Ni |N ji

(ki − 1)! (ni − ki)!
ni!

×
{ [

W (τ )Ki
t (t, xτ∗

Ki
)|t=τ

]q

−
[
W (τ )Ki�ji

t (t, xτ∗
Ki�ji

)|t=τ

]q

+
{[

W (τ )Ki
xτ∗

N
(t, xτ∗

Ki
)|t=τ

]q

−
[
W (τ )Ki�ji

xτ∗
N

(t, xτ∗
Ki�ji

)|t=τ

]q}
f Ni

[
τ , xτ∗

Ni
, ψ(τ)Ni

ji
(τ , xτ∗

Ni
)
]

+ 1
2

ni∑
hp̂ζ�

p
=1

�
hp̂ζ�

p
Ki

(
τ , x∗

τ

) [
W (τ )Ki

x
hp̂
t x

ζ�
p

t

(
t, x∗

t

) |t=τ

]q

−1
2

ni∑
hp̂ζ�

p
=1

�
hp̂ζ�

p
Ki�ji

(
τ , x∗

τ

) [
W (τ )Ki�ji

x
hp̂
t x

ζ�
p

t

(
t, x∗

t

) |t=τ

]q

⎫⎪⎬⎪⎭
(2) The transitory compensatory agent ji ∈ Ni of the system (1), (3), (6) and (7) should be described

as

Bji (τ ) = −
H∑

h=1

{wh exp [rh (s − t0)]}
∑

Ki⊆Ni |N ji

(ki − 1)! (ni − ki)!
ni!

×
{[

W (τ )Ki
t (t, xτ∗

Ki
)|t=τ

]q

−
[
W (τ )Ki�ji

t (t, xτ∗
Ki�ji

)|t=τ

]q

+
{[

W (τ )Ki
xτ∗

N
(t, xτ∗

Ki
)|t=τ

]q

−
[
W (τ )Ki�ji

xτ∗
N

(t, xτ∗
Ki�ji

)|t=τ

]q}
f Ni

[
τ , xτ∗

Ni
, ψ(τ)Ni

ji
(τ , xτ∗

Ni
)
]

+ 1
2

ni∑
hp̂ζ�

p
=1

�
hp̂ζ�

p
Ki

(
τ , x∗

τ

) [
W (τ )Ki

x
hp̂
t x

ζ�
p

t

(
t, x∗

t

) |t=τ

]q

−1
2

ni∑
hp̂ζ�

p
=1

�
hp̂ζ�

p
Ki�ji

(
τ , x∗

τ

) [
W (τ )Ki�ji

x
hp̂
t x

ζ�
p

t

(
t, x∗

t

) |t=τ

]q

⎫⎪⎬⎪⎭
(3) The transitory compensatory agent ji ∈ Ni of the system (1), (4), (6) and (8) should be described

as

Bji (τ ) = − 1√
πr

exp
[

1
4r

(
τ 2 − t2

0

)] ∑
Ki⊆Ni |N ji

(ki − 1)! (ni − ki)!
ni!

×
{ [

W (τ )Ki
t (t, xτ∗

Ki
)|t=τ

]q

−
[
W (τ )Ki�ji

t (t, xτ∗
Ki�ji

)|t=τ

]q

+
{[

W (τ )Ki
xτ∗

N
(t, xτ∗

Ki
)|t=τ

]q

−
[
W (τ )Ki�ji

xτ∗
N

(t, xτ∗
Ki�ji

)|t=τ

]q}
f Ni

[
τ , xτ∗

Ni
, ψ(τ)Ni

ji
(τ , xτ∗

Ni
)
]
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+ 1
2

ni∑
hp̂ζ�

p
=1

�
hp̂ζ�

p
Ki

(
τ , x∗

τ

) [
W (τ )Ki

x
hp̂
t x

ζ�
p

t

(
t, x∗

t

) |t=τ

]q

− 1
2

ni∑
hp̂ζ�

p
=1

�
hp̂ζ�

p
Ki�ji

(
τ , x∗

τ

) [
W (τ )Ki�ji

x
hp̂
t x

ζ�
p

t

(
t, x∗

t

) |t=τ

]q }
where, xNi(τ ) = xτ∗

Ni
∈ X τ∗

Ni
make Condition 1 implement. Bji(τ ) is the transitory compensatory of Agent

ji at transitory time τ for distributing payoff fairly, which can lead to the dynamical stable solution of
the coalition. W (τ )Ki

t is the payoff of coalition Ki at time τ under cooperative game �, n is population
of agents in system.

4 Behavior and the Equilibrium of the Agent in Multi-Local-Worlds Graph
4.1 The Cooperative Stochastic Differential Game Between Agents of Super-Agent

Regarding the cooperative stochastic differential game, two problems why an arbitrary agent
will cooperate with others and how much it will get coupled with a certain optimal strategy must
be considered. In this sense, the conflicts between coalition and individual rationality should be
considered. Scientists insist that the essence of a cooperative stochastic differential game is to distribute
the payoff between agents in the system after its profit is maximized. As mentioned above, two
problems must be considered. The first is optimizing this system by invoking Bellman dynamic
programming theorem, Pontryagain’s stochastic optimization theorem, and Fleming theorem, then
transferring the optimal problem to a corresponding Hamilton-Jacobi-Isaacs equation, which has
been resolved respectively by Chighoub et al. [10], Guo et al. [11], Gomoyunov [12]. The second one is
constructing a payoff distribution procedure for all agents [13,14]. These papers discuss the properties
and relationships among the kernel, the nucleolus, and the minimum core of the cooperative game. It is
concluded that the Shapley value is a relatively feasible method for distributing the payoff among the
agents in the system if coalition rationality constraint conditions and individual rationality constraint
conditions are considered.

However, these conclusions lack analyzing of time-varied of the system, which makes the results
far from reality. Furthermore, human behavior is very uncertain and cannot be recognized and take
on the property of diversity, which means that every agent has different behaviors at a time, and he
can select a strategy randomly, which makes the deterministic conclusions mentioned cannot fit for
the real complex system and must be adjusted to satisfy this requirement. In this paper, we omit the
diversity of the behavior and abstract them to a certain effort level. It means every agent’s behavior
transfers the input to output by laboring and maximizing the output for a long time. In this sense,
simplifying human behaviors is the most important thing one must study. This paper will analyze the
system’s property according to this idea.

4.1.1 Payoff Maximized of the Sub-System

Because the first process is to optimize an arbitrary Local-World i, i.e., Super-Agent i and the
corresponding optimal strategies can be expressed to a PDE, which has the following formation:

−Vt (t, x) − 1
2

∑
h,ζ=1

�hζ (t, x) Vxhxζ
(t, x) = max

u

{
g [t, x, u] exp

[
−
∫ t

t0

r(y)dy
]

+ Vx (t, x) f [t, x, u]
}
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and V(T , x) = q(x) exp
[
− ∫ T

t0
r(y)dy

]
+ Vx(t, x)f [t, x, u]

As far as the agent’s behavior of discount function with homogeneous exponential distribution
is considered, this is the basic representation. If agent’s behavior satisfies the distribution function
of in-homogenous exponential distribution and Lévy distribution, a similar representation will be
copied except for the discount functions. So, it is concluded that the strategies are independent of
the agent’s property if all agents have identical properties, i.e., all agents have the same distribution but
have different parameters of the dynamics function. This result should be seen in Lemma 1 and the
corresponding proof in Supplementary Material. Furthermore, the corresponding optimal strategies
trajectory should be specified by Theorem 3 coupled with corresponding proofs in Supplementary
Material for the discount function of the homogenous exponential distribution, Theorem 4, and
Lemma 2, Lemma 3, Corollary 1 and Corollary 2 coupled with corresponding proofs in Supplementary
Material for the discount function of the in-homogenous exponential distribution, and Corollary 3,
Corollary 4 and Corollary 4 coupled with corresponding proofs in Supplementary Material for the
discount function of Lévy distribution.

4.1.2 Dynamical Shapley Value for Distribution Coalition’s Payoff

Firstly, some necessary conditions should be introduced in this paper. As well known, an agent
feels rational if the following conditions are all satisfied: (1) The sum of all agent’s payoff distributed
must equal to the maximum payoff of this Local-World; (2) As far as each agent in this system is
considered, the payoff distributed that he take part in the cooperation must be not less than the one
that he does not take part in the cooperation. The former is called coalition rationality, and the latter
is called an individual coalition. Many scientists provide a rational imputation payoff method, for
example, Shapley value, to distribute payoff rationally between Agents in Super-Agent. It is proven
right that dynamical Shapley has the property of joint stability and sub-game consistency [15]. In this
sense, the agent’s payoff in arbitrary Local-World would be calculated, and so would the corresponding
optimal strategies.

Condition 1: System rational constraint Dynamical Shapley value imputation vector

v(τ )ji

(
τ , xτ∗

Ni

)
=

∑
Ki⊆Ni

(ki − 1)! (ni − ki)!
ni!

[
W (τ )Ki

(
τ , xτ∗

Ki

)
− W (τ )Ki\ ji

(
τ , xτ∗

Ki\ ji

)]
ji ∈ Ni, τ ∈ [t0, T ] and xτ∗

Ni
∈ X τ∗

Ni
, where

v(τ )i(τ , xτ∗
Ni

) = [v(τ )1(τ , xτ∗
Ni

), v(τ )2(τ , xτ∗
Ni

), . . . , v(τ )ni(τ , xτ∗
Ni

)]

Satisfying,

(1)
ni∑

ji=1

v(τ )ji

(
τ , xτ∗

Ni

)
= W (τ )Ni

(
τ , xτ∗

Ni

)
(2) v(τ )ji(τ , xτ∗

Ni
) ≥ W (τ )ji(τ , xτ∗

Nj
) for all ji ∈ Ni and τ ∈ [t0, T ]

where, (1) of Condition 1 guarantee v(τ )(τ , xτ∗
Ni

) satisfies Pareto optimization and coalition rational, and
(2) v(τ )(τ , xτ∗

Ni
) makes the individual rationality satisfied, i.e., each agent’s payoff after cooperating is not

less than the one before cooperating. Furthermore, an arbitrary Agent in this complex adaptive system
may play with all other Agents, producing several deterministic coalitions that map the cooperative
states. Set Bji(s) is the transitory payoff distributed of the agent ji at the time s ∈ [t0, T ] coupled with
v(t0)ji(t0, x0

Ni
), see Condition 2.
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Condition 2:
ni∑

ji=1

Bij(s) =
ni∑

ji=1

gji

[
s, xs∗

ji
, ψ

(t0)N∗
i

Ni

(
s, xs∗

ji

)]
, for t ∈ [τ , T ] and xt∗

Ni
∈ X t∗

Ni

From these two conditions, it is easy to see that an arbitrary Agent feels rational if and only if the
deviation among all possible payoffs is the least minimum.

It is concluded that the Shapley vector satisfies Condition 1 and Condition 2. According to
the dynamical Shapley value and cooperative game theory, we can know the agent will take the

strategy vector of
{
ψ

(t0)N∗
i

Ni

(
t, xt∗

Ni

)}T

t=t0

in whole time intervals [t0, T ], with the optimal state trajectory{
x∗

Ni
(t)
}T

t=t0

. Set the initial state is x0
Ni

at the time t0 the payoff distributed to the agent ji under

coordination should be

v(t0)ji

(
t0, x0

Ni

)
=

∑
Ki⊆Ni

(ki − 1)! (ni − ki)!
ni!

[
W t0Ki

(
t0, x0

Ki

)
− W t0Ki\ ji

(
t0, x0

Ki\ ji

)]
, ji ∈ Ni

This kind of distribution fits the initial state but unfits for arbitrary time. The state is always
changed dynamically, which makes the optimal strategies change randomly, too. Here, a dynamical
imputation mechanism must be constructed to fit the real complex management system, i.e.,

v(t0)ji

(
t, xt∗

Ni

)
=

∑
Ki⊆Ni

(ki − 1)! (ni − ki)!
ni!

[
W (t0)Ki

(
t, xt∗

Ki

)
− W (t0)Ki\ ji

(
t, xt∗

Ki\ ji

)]
where xt∗

Ni
∈ X t∗

Ni
.

The fairness of the concept is provided using the Theorem below.

Theorem 3. The transitory payoff distributed to the agent ji ∈ Ni at a time τ ∈ [t0, T ] equal to:

Bji (τ ) = −
∑
Ki⊆Ni

(ki − 1) ! (ni − ki) !
ni!

{ [
W (τ )Ki

t

(
t, xτ∗

Ki

)∣∣∣
t=τ

]
−
[

W (τ )Kii
t

(
t, xτ∗

Ki

)∣∣∣
t=τ

]
+
([

W (τ )Ki
xτ∗

Ni

(
t, xτ∗

Ki

)∣∣∣
t=τ

]
−
[

W (τ )Ki\ ji
xτ∗

N∗
i

(
t, xτ∗

Ki\ ji

)∣∣∣∣
t=τ

])
f Ni

[
τ , xτ∗

Ni
, ψ(τ)Ni

ji

(
τ , xτ∗

Ni

)]
+ 1

2

ni∑
hi ,ζi=1

�
hiζi
Ki

(
τ , x∗

τ

) [
W (τ )Kt

x
hi
t

(
t, x∗

t

)∣∣∣∣
t=τ

]
− 1

2

ni∑
hi ,ζi=1

�
hiζi
Kii

(
τ , x∗

τ

) [
W ci

x
hi
t x

(τ )Ki
t \i

(
t, x∗

t

)∣∣∣∣
t=τ

]}
where xNi(τ ) = xτ∗

Ni
∈ X τ∗

Ni
will make Condition 1 be implemented.

The proof is finished by invoking Lemma 2 and Theorem 6 in Supplementary Material. The
specification meaning should be seen in Remark 1 and Remark 2 in Supplementary Material. An
example is given to specify this process in Zheng et al. [16], to explain the agent’s coordination
strategy and effort level in the stochastic cooperative differential game framework. In fact, the rational
payoff distributed and the corresponding compensatory is independent of the discount function; the
distinction is in detail in the imputation process.

4.2 The Noncooperative Stochastic Differential Game Between Super-Agents

An Arbitrary Local-World is regarded as a Super-Agent, in this case, suppose that there are m
Super-Agents in this system. According to Hypothesis 1–2, we can know, the interaction between
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these Super-Agents is a non-cooperative stochastic differential game �. So, the corresponding model
is constructed as follows.

For an arbitrary Super-Agent i, its objective should be described as

Et0

{∫ T

t0

gi[s, xi(s), ui(s)] exp
[
−
∫ s

t0

r(y)dy
]

ds + exp
[
−
∫ T

t0

r(y)dy
]

qi(xi(T))

}
, i ∈ M (9)

The corresponding constraint equation should be:

dxi(s) = f i[s, xi(s), ui(s)]ds + σi[s, xi(s)]dzi(s), xi(t0) = x0
i (10)

There must exist a Nash equilibrium point for the system. Due to its complexity in resolving
the optimal problem, another PDE is introduced to give the corresponding solution identical to the
optimal strategy of the non-cooperative stochastic differential game.

Lemma 1. A set of controls u∗(t) = φ∗(t, x) constitutes an optimal solution to the problems introduced
above, if there exists a continuously differentiable function V(t, x) : [t0, T ] × Rm → R satisfying the
following partial differential equation

−Vt (t, x) − 1
2

∑
h,ζ=1

�hζ (t, x) Vxhxζ
(t, x) = max

u

{
g [t, x, u] exp

[
−
∫ t

t0

r(y)dy
]

+ Vx (t, x) f [t, x, u]
}

and V(T , x) = q(x) exp
[
− ∫ T

t0
r(y)dy

]
+ Vx(t, x)f [t, x, u].

As far as other discount functions are considered, similar forms are reflected except for the dis-
count function. The corresponding proof should invoke Lemma 3 and Corollary 3 in Supplementary
Material.

4.3 Coupling Between the Noncooperative Game of Super-Agent and the Cooperative Game of Agent

So far, the optimal strategy coupled with a cooperative stochastic differential game between agents
in a certain Local-World and the Nash optimal strategy coupled with a non-cooperative stochastic
differential game between differential Local-Worlds has been obtained. However, there exists another
paradox: the optimal strategy due to the cooperative stochastic differential game between Agents in
a certain Super-Agent is not identical to the optimal strategy of the agent. This is because of complex
interaction mixed as a Non-cooperative game and cooperative game, which means the most important
research for obtaining the optimal strategy of the system is to find an algorithm to couple these two
different optimal strategies together. According to Proposition 1, shown in Supplementary Material,
it is evident that the optimal solution for the Cooperative game in Super-Agent is feasible. Let’s
reconsider the essence of these two kinds of games. As far as the cooperative stochastic differential
game between Agents in this Local-World is considered, the corresponding optimal strategy of
arbitrary agents comes from a rationally distributed payoff. In fact, the total payoff comes from the
non-cooperative stochastic differential game between Super-Agents.

So, it is the identical relationship between optimization and game theory shows that there is a
mapping between the Nash optimal solution V(s, x, u) of a non-cooperative stochastic differential
game �(s, x, u) and the optimal solution W(s, x, u) of an optimization problem �(s, x, u). Invoke the
definition of the optimal solution and introduce the proof process of Theorem 2.5.1 of Yeung et al. [17],
it is easy to say that The Nash optimal solution of Super-Agent is one feasible solution of the optimal
problem, so there must be a nonlinear operator between them, which will be obtained as follows.
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According to the theory of calculus of variations, a nonlinear operator ϑ(s, x, u) is con-
structed in this paper such that there is a strong relationship between these two optimal solu-
tions mentioned above, i.e., V(s, x, u) = ϑ(s, x, u)W(s, x, u) + o(�(s, x, u)), where ϑ(s, x, u) =
ϕ(s, x, u, V(s, x, u))/W(s, x, u). Combining these two different optimal strategies, we know that the
following Theorem should be invoked as far as the discount functions with different homogenous
exponential distributions are considered.

Theorem 4. There must be a function ϕ(x) such that V(s, x, u) = ϕ(W(s, x, u))

(1) As for the complex system of management with a discount function of the homogenous exponential
distribution, we have
1) ϕ(t, x) = exp[−r(t − t0)]x if the game � is an infinite-horizon feedback game;

2) ϕ(t, x) = o(exp[−r(t − t0)]xq), and 0 < q < 1 if the game � is a feedback game.

(2) As for the complex system of management with the discount function of the in-homogenous
exponential distribution, we have

1) ϕ (t, x) =
�∑

h=1

{wh exp [−rh (t − t0)]} x if the game � is an infinite-horizon feedback game;

2) ϕ (t, x) = o

(
�∑

h=1

{wh exp [−rh (t − t0)]} xq

)
, and 0 < q < 1 if the game � is a feedback game.

(3) As for the complex system of management with the discount function with Lévy distribution, we
have

1) ϕ (t, x) = 1√
πr

exp
[
− 1

4r

(
τ 2 − t2

0

)]
x if the game � is an infinite-horizon feedback game;

2) ϕ (t, x) = o
(

1√
πr

exp
[
− 1

4r

(
τ 2 − t2

0

)]
xq

)
, and 0 < q < 1 if the game � is a feedback

game.

Theorem 4 couples the cooperative stochastic differential game between agents in an arbitrary
Local-World and the non-cooperative stochastic differential game between Super-Agents. By invoking
this result, the agent’s optimal strategy in the system must be obtained. The proof of Theorem 4 should
invoke Proposition 1, Theorem 1, Theorem 5, and Theorem 6 in Supplementary Material.

5 The Stability of Agents’ Behaviour in Deterministic Multi-Local-World Graph

Section 4 shows us the Agent’s Nash-Pareto optimal solution of the complex system of manage-
ment coupled with the game theory model in a Multi-Local-World graph. Scientists think the solution
is stable if the optimal solution of a cooperative stochastic differential game is stable, which means
the synchronism, coordination, and stability are all satisfied, which will be analyzed in this Section.
However, stability must be discussed to promise the scientific character of the solution.

The stability of the cooperative stochastic differential game solution decides whether optimal
equilibrium strategies are feasible or not. Intuitively, the stability of the solution of the corresponding
Hamilton-Jacobi-Isaacs equation and the stability of the Shapley decide the stability of the optimal
strategies. However, scientists have not yet discussed the attractor of these optimal strategies’ trajectory.
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Definition 2. The following vector is the adjusted Shapley vector if

S̃hji (x0) =
m−1∑
k=0

∫ sk+1

sk

Shk+1
ji

(̃x(s))

ni∑
ji=1

gji (sk, x̃(s))

V (̃x(s), T − s; Ni)
(11)

As for the sub-game v (̃x(s), T − s) , s ∈ [sl, sl+1), l = 0, 1, 2, . . . , m − 1], the adjusted Shapley
vector is defined according to

S̃hji (x0) =
∫ sk+1

s

Shk+1
ji

(̃x(s))

ni∑
ji=1

gji (sl, x̃(s))

V (̃x(s), T − s; Ni)
+

m−1∑
k=l+1

∫ sk+1

sk

Shk+1
ji

(̃x(s))

ni∑
ji=1

gji (sk, x̃(s))

V (̃x(s), T − s; Ni)
(12)

Introduce the adjusted Shapley vector compensatory program, γ (s) which is defined as

γji(s) = Shk+1
ji

(̃x(s))

ni∑
ji=1

gji (sk, x̃(s))

V (̃x(s), T − s; Ni)
, s ∈ [sl, sl+1) (13)

Obviously, γji(s) ≥ 0.

So, S̃hji (x0) satisfies the properties of inter-coordinative, realizable and super-addition, which
should be considered in the complex system.

The Nash-Pareto optimal solution of the cooperative stochastic differential game with the
discount function of the homogenous exponential distribution is stable if the corresponding Shapley
imputation and the corresponding compensatory mentioned in Theorem 4 and Theorem 5 in Supple-
mentary Material are proven to be adjusted Shapley vectors, respectively. The detailed proof can be
seen in Lemma 4 and Lemma 5, coupled with the proof in Supplementary Material. In this sense, the
point of this problem is transferred to find the strong condition of this mapping.

We know that the dynamical distribution mechanism for payoff and the compensatory mechanism
described describe the properties of three complex management systems, driven by agent behavior
coupled with the homogeneous discount function of the exponential distribution exp[−r(s − t0)], an

inhomogeneous discount function of the exponential distribution
�∑

h=1

{wh exp [−rh (s − t0)]} and Lévy

distribution
1√
πr

exp
[
− 1

4r

(
s2 − t2

0

)]
, respectively.

As for the first case, the payoff imputation is

v(t0)ij

(
t0, x0

Ni

)
=

∑
Ki⊆Ni

(ki − 1) ! (ni − ki) !
ni!

[
W(t0)K

(
t0, xt0

Ki

) − W(t0)Ki\ ji

(
t0, x0

Ki\ ji

)]

= Et0

{∫ T

t0

Bji(s) exp
[
−
∫ s

t0

r(y)dy
]

ds + qji

(
x∗

ji
(T)

)
exp

[
−
∫ T

t0

r(y)dy
]

| xNi (t0) = x0
Ni

}

= Et0

{∫ T

t0

Bji(s) exp [−r (s − t0)] ds + qji

(
x∗

ji
(T)

)
exp [−r (T − t0)] | xNi (t0) = x0

Ni

}
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and for t0 ≤ τ ≤ t ≤ T and xt∗
N ∈ X t∗

N , we have

v(τ )ji
(
t0, xt∗

N

) = v(t0)ji

(
t, xt∗

Ni

)
exp

[
−
∫ τ

t0

r(y)dy
]

=
∑
Ki⊆Ni

(ki − 1) ! (ni − ki) !
ni!

[
W (τ )Ki

(
τ , xt∗

Ki

)
− W (τ )Ki\ ji

(
τ , xt∗

K\ ji

)]

= Eτ

{∫ T

Bji(s) exp
[
−
∫ τ

r(y)dy
]

ds | xNi(t) = xt∗
tN .

}
The corresponding compensatory is

Bji (τ )�t = Eτ

⎧⎨⎩−
[

v(τ )ji
t

(
t, xt∗

Ni

)∣∣∣
t=τ

]
�t −

∑
ki∈Ni

[
v(τ )i

xt∗
ki

(
t, xt∗

Ni

)∣∣∣∣
t=τ

]
f N

ki

[
τ , xτ∗

Ni
, ψ(τ)N

ki

(
τ , xτ∗

Ni

)]
�t

−1
2

ni∑
h,ζ=1

�hζ

Ni

(
τ , x∗

τ

) [
v(τ )ji

xh
t xζ

t

(
t, x∗

t

)∣∣∣
t=τ

]
�t −

∑
ki∈Ni

[
v(τ )ji

xt∗
ki

(
t, xt∗

Ni

)∣∣∣∣
t=τ

]
σki

[
τ , x∗

τ

]
�zτ∗

ki

⎫⎬⎭ − o (�t)

The imputation is specified as

v(t0)ij

(
t0, x0

Ni

)
= Et0

{∫ T

t0

Bji(s)
[∫ s

t0

− p

2
√

πr3
exp

[
−p2

4r

]
dp
]

ds

+qji

(
x∗

ji
(T)

) [∫ s

t0

− p

2
√

πr3
exp

[
−p2

4r

]
dp
]

| xNi (t0) = x0
Ni

}

= Et0

{∫ T

t0

Bji(s)
1√
πr

exp
[
− 1

4r

(
s2 − t2

0

)]
ds

+qji

(
x∗

ji
(T)

) 1√
πr

exp
[
− 1

4r

(
T 2 − t2

0

)] | xNi (t0) = x0
Ni

}
(14)

and for t0 ≤ τ ≤ t ≤ T and xt∗
N ∈ X t∗

N , we have

v(τ )ji
(
t0, xt∗

N

) = v(t0)ji

(
t, xt∗

Ni

) [∫ s

t0

− p

2
√

πr3
exp

[
−p2

4r

]
dp
]

=
∑
Ki⊆Ni

(ki − 1) ! (ni − ki) !
ni!

[
W (τ )Ki

(
τ , xt∗

Ki

)
− W (τ )Ki\ ji

(
τ , xt∗

K\ ji

)]

= Eτ

{∫ T

t

Bji(s)
[∫ s

t0

− p

2
√

πr3
exp

[
−p2

4r

]
dp
]

ds | xNi (t) = xt∗
tNi

}
(15)

By analyzing the above, it is evident that the imputation mechanism adjusted has the property of
strong δ stability. The rest two adjusted Shapley vectors are

v(t0)ij

(
t0, x0

Ni

)
=

∑
Ki⊆Ni

(ki − 1) ! (ni − ki) !
ni!

[
W(t0)K

(
t0, xt0

Ki

) ni∑
ji=1

gji (sk, x̃(s))

V (̃x(s), T − s; Ni)
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− W
(t0)Ki\ji

(
t0,x0

Ki\ ji

)ni = 1
ni

gji(sk ,̃x(s))
]

= Et0

{∫ T

t0

Bji(s)
1√
πr

exp
[
− 1

4r

(
s2 − t2

0

)]
ds

+ qji

(
x∗

ji
(T)

) 1√
πr

exp
[
− 1

4r

(
T 2 − t2

0

)] | xNi (t0) = x0
Ni

}
(16)

v(t0)ij

(
t0, x0

Ni

)
=

∑
Ki⊆Ni

(ki − 1) ! (ni − ki) !
ni!

[
W(t0)K

(
t0, xt0

Ki

) ni∑
ji=1

gji (sk, x̃(s))

V (̃x(s), T − s; Ni)

− W(t0)Ki\ ji

(
t0, x0

Ki\ ji

) ni∑
ji=1

gji (sk, x̃(s))

V (̃x(s), T − s; Ni)

]
= Et0

{∫ T

t0

Bji(s)
1√
πr

exp
[
− 1

4r

(
s2 − t2

0

)]
ds

+ qji

(
x∗

ji
(T)

) 1√
πr

exp
[
− 1

4r

(
T 2 − t2

0

)] | xNi (t0) = x0
Ni

}
(17)

6 The Attractor of Agents’ Behaviour in Deterministic Multi-Local-World Graph

Under the interaction between the agent and the external environment, the economic and
management system constantly changes dynamically. If and only if Agent optimal strategy converges
to a relatively constant value, the system tends to be stable and can be described as deterministic.
Furthermore, if and only if the system state converges to a certain small region, the behavior strategy
of each agent in the whole system will tend to a certain deterministic state, which will make the system
converge to its attractor as defined by Definition 6 in Supplementary Material.

The convergence of system game results determines the state’s convergence in the process. If the
system state equation dx = 0, or dx

p→ 0, the system state, can be considered as a constant value and
also means that x(s) can take specific value in-game objective equation, the problem will be simplified
to the classic problem of the game theorem.

The convergence of a random differential game in a deterministic Multi-Local-World graph
determines the property that each Agent behavior tends to a constant state in a relatively small time
scale, which is proven by Lemma 6, Lemma 7, Lemma 8 and Theorem 8 coupled with corresponding
proofs in Supplementary Material. If and only if the Agent behavior in the Multi-Local-World graph
remains constant, external environment interference, internal non-leading factors, and fluctuations
of those factors can make the innovation. Such innovation may lead to dynamic behaviors for Agent
behavior, including creating new reactions with other agents in the same local domain and in different,
breaking the relationship with other agents that have reacted with, eliminating by the system, creating
new reaction relationships with new agents coming into the system. Those behaviors are the sources
of system innovation. And then, the convergence analysis of Agent behavior in a relatively small time
scale has very important value. Furthermore, such convergence is deterministic by constraint condition
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of Agent behavior describing the system characteristics (namely, the convergence of corresponding
random differential equation of state dynamics equation). From such a Perspective, the problem will
turn to attractor analysis of Eqs. (1) and (6).

The attractor of the equation is disused by introducing a corresponding Lyapunov function L;
suppose that

L (W (t, x)) = W (t0)Ki
t

(
t, xKi

) + 1
2

m∑
h,ζ=1

�hζ

Ki

(
t, xNi

)
W (t0)Ki

xhxζ

(
t, xKi

)

+ max
uKi

⎧⎨⎩∑
ji∈Ki

gji
[
t, xji , uji

]
exp

[
−
∫ t

t0

r(y)dy
]

+
∑
ji∈Ki

W (t0Ki)
xji

(
t, xKi

)
f Ki

ji
[t, x, u]

⎫⎬⎭ (18)

For Eq. (18), we set ψ(t) = exp[−r(t − t0)], we have

L [ψ−pα(t)V(t, φ)] ≤ γ (t) − u1

(
ψ−α(t)φ(0)

) +
∫ 0

−τ

ς(θ)u2

(
ψ−α(t + θ)φ(θ)

)
dθ

= γ (t) − u1

(
ψ−α(t)φ(0)

) + E
(
u2

(
ψ−α(t)φ(t)

))
(19)

Suppose that p = 1, φ(t) = x(t), according to the property of x(t), we have

L [ψ−α(t)W(t, x)] ≤ γ (t) − [u1 (hα(t, x)) − u2 (hα(t, x))] = γ (t) − u (hα(t, x))

We can know there does exist some t, x(t) satisfying u(hα(t, x)) = 0 such that lim
t→∞

(hα, ker (u)) = 0.

Combining (18), we can see the solution satisfying this condition must be the solution of Eq. (18), so
Eq. (18) is the optimal strategy (t, xt∗

Ki
) of the agent Ki, which should be seen in Fig. 2.

These optimal strategies are stable when some degree of disruptions are added sharply, as shown
in Fig. 3.

The optimal strategies strategy driven by adjusted Shapley value is more stable, as shown in Figs. 1
and 2. The proof is seen Sub-section in 6.2 and Appendix H in the Supplementary Material.

Figure 2: The property of the attractor of stochastic differential game
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Figure 3: The property of attractor of the stochastic differential game when optimal strategy trajectory
deviates

7 Conclusion

The interaction between Agents can be concluded with two kinds of stochastic differential games:
cooperative and non-cooperative. The former happens between agents in the same Local-World.
However, the latter happens between agents in different Local-World. Agent’s behavior is decided by
two factors: the constraint condition driven by a stochastic dynamics equation on resources and the
objectivity of payoff maximized within a specific time interval.

In this paper, three different behaviors with the discount function of the homogenous exponential
distribution, in-homogenous exponential distribution, and Lévy distribution are analyzed, respec-
tively. By analyzing, it is concluded that the optimal strategy according to the cooperative stochastic
differential game in a certain Local-world and the non-cooperative stochastic differential game
between different Local-worlds are obtained, respectively. The optimal strategy of a cooperative game

is not consistent with the other. It is concluded that a nonlinear operator q =
∣∣∣∣∣∣∣∣(∂g

∂x
∂x
∂t

)
/

(
∂f
∂x

∂x
∂t

)∣∣∣∣∣∣∣∣
could couple these two different games together, which produces a Nash-Pareto optimal strategy. Thus,
it is known that the different payoff coupled with the optimal strategies of the agent ji according to
the behavior of the discount function of the homogenous exponential distribution, in-homogenous
exponential distribution, and Lévy distribution, respectively, will be

v(t)ji

(
t0, x0

Ni

)
=

∑
Ki∈Ni

(ki − 1) ! (ni − ki) !
n!

⎡⎢⎢⎢⎣exp [r (t − t0)] W(t0)Ki

(
t0, x0
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)q

ni∑
ji=1

gji (t, x̃ (t))

V (̃x (t) , T − t; Ni)

− exp [r (t − t0)] W(t0)Ki\ ji

(
t0, x0

Ki\ ji

)q

ni∑
ji=1

gji (t, x̃ (t))

V (̃x (t) , T − t; Ni\ji)

⎤⎥⎥⎥⎦
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v(t)ji
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⎤⎥⎥⎥⎦
where W is the agent’s optimal payoff coming from the cooperative stochastic differential game in
a certain Local-World. The vector (t, x̃ (t)) denotes the optimal strategy, in which the information
vector of transitory resources configuration, agent’s strategy structure, and local topological structure
are included, of the agent ji at the time t coupled with the cooperative stochastic differential game
in the corresponding Local-World; gji (t, x̃ (t)) denotes the objective function of the agent ji at time t;
V (̃x (t) , T − t; Ni) denotes the optimal payoff coming from the non-cooperative stochastic differential
game between Agents who stand in different Local-Worlds; however, W is the optimal payoff coupled
with the optimal solutions.

The optimal strategy is described as a mapping of the optimal strategy of a cooperative game
stochastic differential game, and the stability relies on the payoff distribution mechanism. In this paper,
we construct an adjusted dynamical stochastic Shapley value

S̃hji (x0) =
∑

Ki⊂Ni ,(ji∈Ki)

(ni − ki) ! (ki − 1) !
ni!

[
V̂ (x0, T − t0; Ki) − V̂ (x0, T − t0; Ki\{ji})

]
The adjusted dynamical stochastic Shapley payoff distribution procedure and the transitory

payoff compensatory make the agent’s optimal strategy stable and sustained and make the Agents’
behavior such that the optimal strategy converge into a deterministic attractor.

Funding Statement: This paper is supported by the National Natural Science Foundation of China,
(Grant Nos. 72174064, 71671054, and 61976064); the Natural Science Foundation of Shandong
Province, “Dynamic Coordination Mechanism of the Fresh Agricultural Produce Supply Chain



CMC, 2023, vol.75, no.1 2099

Driven by Customer Behavior from the Perspective of Quality Loss” (ZR2020MG004); and Industrial
Internet Security Evaluation Service Project (TC210W09P).

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] T. Hachijo, H. Gotoda, T. Nishizawa and J. Kazawa, “Early detection of cascade flutter in a model aircraft

turbine using a methodology combining complex networks and synchronization,” Physical Review Applied,
vol. 14, no. 1, pp. 14093, 2020.

[2] S. C. Lera, A. Pentland and D. Sornette, “Prediction and prevention of disproportionally dominant agents
in complex networks,” Proceedings of the National Academy of Sciences, vol. 117, no. 44, pp. 27090–27095,
2020.

[3] A. Li, L. Zhou, Q. Su, S. P. Cornelius, Y. Liu et al., “Evolution of cooperation on temporal networks,”
Nature Communications, vol. 11, no. 1, pp. 1–9, 2020.

[4] M. A. Javarone, “Poker as a skill game: Rational versus irrational behaviors,” Journal of Statistical
Mechanics: Theory and Experiment, vol. 2015, no. 3, pp. P3018, 2015.

[5] A. Mcavoy, B. Allen and M. A. Nowak, “Social goods dilemmas in heterogeneous societies,”Nature Human
Behaviour, vol. 4, no. 8, pp. 819–831, 2020.

[6] S. Gächter, B. Herrmann and C. Thöni, “Culture and cooperation,” Philosophical Transactions of the Royal
Society B: Biological Sciences, vol. 365, no. 1553, pp. 2651–2661, 2010.

[7] A. J. Calvert, K. Ramachandran, H. Kao and M. A. Fisher, “Local thickening of the cascadia forearc
crust and the origin of seismic reflectors in the uppermost mantle,” Tectonophysics, vol. 420, no. 1–2, pp.
175–188, 2006.

[8] T. L. Friesz and K. Han, “The mathematical foundations of dynamic user equilibrium,” Transportation
Research Part B-Methodological, vol. 126, pp. 309–328, 2019.

[9] P. L. Querini, O. Chiotti and E. Fernádez, “Cooperative energy management system for networked
microgrids,” Sustainable Energy Grids and Networks, vol. 23, pp. 100371, 2020.

[10] F. Chighoub and B. Mezerdi, “The relationship between the stochastic maximum principle and the dynamic
programming in singular control of jump diffusions,” International Journal of Stochastic Analysis, vol. 2014,
pp. 1–17, 2014.

[11] L. Guo and J. J. Ye, “Necessary optimality conditions for optimal control problems with equilibrium
constraints,” Siam Journal on Control and Optimization, vol. 54, no. 5, pp. 2710–2733, 2016.

[12] M. I. Gomoyunov, “On viscosity solutions of path-dependent Hamilton–Jacobi–Bellman–Isaacs equations
for fractional-order systems,” arXiv preprint arXiv:2109.02451, 2021.

[13] G. Giallombardo, F. Guerriero and G. Miglionico, “Profit maximization via capacity control for distribu-
tion logistics problems,” arXiv preprint arXiv:2008.03216, 2020.

[14] D. Kosz, “Dichotomy property for maximal operators in a nondoubling setting,” Bulletin of the Australian
Mathematical Society, vol. 99, no. 3, pp. 454–466, 2019.

[15] Y. Filmus, J. Oren and K. Soundararajan, “Shapley values in weighted voting games with random weights,”
arXiv preprint arXiv:1601.06223, 2016.

[16] X. J. Zheng, X. S. Xu and C. C. Luo, “Agent behaviors and coordinative mechanism,” Kybernetes, vol. 41,
no. 10, pp. 1586–1603, 2012.

[17] D. W. Yeung and L. A. Petrosjan, Cooperative Stochastic Differential Games, New York, USA: Springer
Science & Business Media, pp. 1586–1603, 2006.


	Optimal Strategies Trajectory with Multi-Local-Worlds Graph
	1 Introduction
	2 The Model
	3 Main Results
	4 Behavior and the Equilibrium of the Agent in Multi-Local-Worlds Graph
	5 The Stability of Agents' Behaviour in Deterministic Multi-Local-World Graph
	6 The Attractor of Agents' Behaviour in Deterministic Multi-Local-World Graph
	7 Conclusion



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [300 300]
  /PageSize [612.000 792.000]
>> setpagedevice


