
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited.

echT PressScienceComputers, Materials & Continua
DOI: 10.32604/cmc.2023.033700

Article

A Dual Model Watermarking Framework for Copyright Protection in Image
Processing Networks

Yuhang Meng1, Xianyi Chen1,*, Xingming Sun1, Yu Liu1 and Guo Wei2

1Engineering Research Center of Digital Forensics, Ministry of Education, Nanjing University of Information Science and
Technology, Nanjing, 210044, China

2The University of North Carolina, Pembroke, 31321, USA
*Corresponding Author: Xianyi Chen. Email: 0204622@163.com

Received: 24 June 2022; Accepted: 04 August 2022

Abstract: Image processing networks have gained great success in many fields,
and thus the issue of copyright protection for image processing networks has
become a focus of attention. Model watermarking techniques are widely used
in model copyright protection, but there are two challenges: (1) designing
universal trigger sample watermarking for different network models is still
a challenge; (2) existing methods of copyright protection based on trigger s
watermarking are difficult to resist forgery attacks. In this work, we propose a
dual model watermarking framework for copyright protection in image pro-
cessing networks. The trigger sample watermark is embedded in the training
process of the model, which can effectively verify the model copyright. And we
design a common method for generating trigger sample watermarks based on
generative adversarial networks, adaptively generating trigger sample water-
marks according to different models. The spatial watermark is embedded into
the model output. When an attacker steals model copyright using a forged
trigger sample watermark, which can be correctly extracted to distinguish
between the piratical and the protected model. The experiments show that the
proposed framework has good performance in different image segmentation
networks of UNET, UNET++, and FCN (fully convolutional network), and
effectively resists forgery attacks.

Keywords: Image processing networks; copyright protection; model
watermark

1 Introduction

In recent years, deep learning [1] has revolutionized the research of image processing fields, such
as image classification [2–4], medical image segmentation [5,6], and object detection [7–9]. To fully
excavate the learning capability of deep models, vast amounts of labeled data and high-efficiency
computational resources are often required. However, model distribution on the Internet may suffer
from attacks such as forgery attacks, model pruning [10], and watermark rewriting, so it is crucial to

https://www.techscience.com/
https://www.techscience.com/journal/cmc
http://dx.doi.org/10.32604/cmc.2023.033700
https://www.techscience.com/doi/10.32604/cmc.2023.033700
mailto:0204622@163.com

832 CMC, 2023, vol.75, no.1

protect the model copyright using the digital watermarking techniques [11–13], which is named model
watermarking in a neural network.

The model watermarking methods could be divided into white-box and black-box cases according
to whether the model details are needed to be known during the processing of watermark embedding.
In the white-box case, the watermark is embedded into the to-be-protected network by modifying
its structure or weights, so the full network information is needed to know, including the details of
structure and weights. This case is generally used in neural networks with public model information.
The advantage is that can withstand attacks such as model fine-tuning and pruning.

In the black-box case, a pair of input and output images are constructed as trigger sample
watermarks, the input image is called the trigger key, and the preset output image is called the
verification key. The advantage is that validation only needs to input trigger keys to verify the model
copyright. Currently, there are two classes of methods for trigger key generation: (1) adding relevant
images to the training set [14] and (2) modifying the input to obtain the trigger image by adjusting the
network, such as embedding visible or invisible text, symbols, patterns or noise, etc. in the trigger key
[15,16]. However, the above trigger key generation methods are often applied to the image classification
networks and don’t able to migrate to image processing models efficiently. Moreover, the trigger keys
couldn’t be generated adaptively according to different models.

Recently, some research work began to focus on copyright protection of image processing
networks with commercial value. In real scenarios, the image processing models that are exposed are
almost always served end-to-end to the user, who can only access the input and output sides of the
model. In the previous approach [17,18], forgery attacks were not considered. Therefore, a trigger
sample watermarking method that is resistant to forgery attacks is essential.

In this paper, we propose a new end-to-end dual model watermarking framework for the copyright
protection of image processing networks. A pair of special input and output is embedded in the model
training as a trigger sample watermark, while a spatial watermark is embedded into the output of the
model. The trigger sample watermark is automatically generated using a method based on generative
adversarial networks (GANs) [19], which adaptively is generated according to the protected models.
In the validation process, enter a trigger key to the model to obtain the output, and compare the
consistency between the output image and the preset validation key. When an attacker steals a model
copyright using forged input and output, the spatial watermark can be correctly extracted from the
output of the model to distinguish between the piratical and the protected model. Specifically, we
design a location key to share in the process of embedding and extracting spatial watermarks. In the
verification process, the location key is used to extract the watermark from the output of the model
to prove the ownership of the model. On the contrary, the attacker does not know the location key,
so the watermark cannot be extracted correctly. Experiments show that the proposed framework has
good performance in image segmentation networks with UNET, UNET++, and FCN, while almost
not affecting the overall segmentation accuracy and the number of parameters of the model. And
proposed framework can effectively withstand forgery attacks.

The contributions of this paper are as follows:

• Due to the limitation of the application of the trigger sample watermark generated by the
traditional method to the image processing network, we innovatively design a universal trigger
sample watermark generation method, which can adaptively generate the trigger sample
watermark according to different models.

• We embed a spatial watermark into the output of the model to better resist the forgery attack.

CMC, 2023, vol.75, no.1 833

• Experiments show that the proposed framework has good performance in image processing
networks, while almost not affecting the overall network accuracy and the number of parameters
of the model.

The rest of the paper is structured as follows. We summarize the related work in Section 2. The
proposed approach is described in detail in Section 3, followed by extensive experiments and analysis
in Section 4. Finally, we conclude the paper and provide further discussion in Section 5.

2 Related Works

In the white-box case, where embeds and extracts the watermark by modifying the internal
parameters or the structure of the model. Uchida et al. proposed adding regularizes to the loss function
to control the distribution of weights, embedding the watermark into the weights of the model during
its training [20]. The activation approximation of the intermediate layer of the neural network obeys
a Gaussian mixture distribution. Based on it, Rouhani et al. embed a watermark in the activation
distribution of the intermediate layer, which can effectively withstand model fine-tuning [21].

In the black-box case, where uses the specificity of the output results of the trigger key in the
model to protect the copyright of the model. In recent works, a variety of methods for generating
trigger keys have emerged. For example, Adi et al. first proposed using a neural network backdoor with
an abstract image different from the training set as a trigger key to assign a label to it, constructing
such a set of mapping relations that can then be used to protect the model copyright [14]. The
scheme of Zhang et al. uses specific processing of some images from the training set so that they
correspond to predefined labels [16]. Li et al. improved the trigger key generation method so that an
invisible watermark is hidden on the images in the training set as a trigger key input to the model
to obtain a predefined label that proves the copyright of the model [15]. The trigger keys are almost
indistinguishable in appearance from the images in the original training set, which has the advantage
of being more stealthy and less detectable by attackers than the previous method. However, there is a
deficiency in that trigger keys depend on the manual design and cannot generate trigger keys adaptively
according to different models in the existing methods. When an attacker forges a pair of inputs and
outputs to confuse the model copyright, it is called a forgery attack. Xinpeng Zhang et al. [22]
introduce one-way hash functions to solve the above problem and construct a matching relationship
between trigger keys and labels. An attacker without network training rights would not be able to forge
a set of trigger keys and labels, thereby not being able to obfuscate ownership.

In addition to the mentioned black-box and white-box cases, some research works have started
to focus on the copyright protection of image processing networks. Jie Zhang proposed training a
watermark embedding and extraction network outside of the original model such that each input
image is embedded with a watermark while completing the image processing task [17]. Compared
with the previous method, Wu et al. increased a key mechanism to ensure model security [18].
Adding a watermark embedding network increases the security and robustness of the model, but the
increasing number of parameters makes the training image processing network much more complex
and expensive than before. Moreover, a forgery attack is not considered in the copyright protection of
an image processing network.

3 Proposed Method

In this section, the details will be elaborated on. We propose a new end-to-end dual model
watermarking framework for copyright protection of image processing networks shown in Fig. 1. The

834 CMC, 2023, vol.75, no.1

following will be divided into two parts: (1) the generation, embedding, and verification of trigger
sample watermark and (2) the generation, embedding, and verification of spatial watermark.

Figure 1: An end-to-end dual model watermarking framework

3.1 Trigger Sample Watermark

In the trigger sample watermark, the input image is called the trigger key, and the preset output
image is called the verification key. Since the verification key is preset and does not need to be
generated, the generation method of the trigger sample watermark is equivalent to the generation
method of the trigger key in the following. Due to the limitation of the application of the trigger
key generated by the traditional method to the image processing network, we innovatively design
a universal trigger key generation method, which can adaptively generate trigger key watermark
according to different models.

3.1.1 Trigger Key Generation

An adversarial example is made by intentionally adding subtle perturbations to the training
example that are imperceptible to the human eye so that the model gives a high confidence error
output. In traditional classification networks, there are two main methods to generate trigger keys
by using adversarial examples: (1) Adding relevant images to the training set [14], as shown in Fig. 2b:
and (2) directly modifying the images in the training set, such as embedding visible or invisible text,
symbols, patterns, etc. [15] or adding noise [16], as shown in Figs. 2c–2f.

However, since the output of an image processing network is a processed image, the traditional
trigger key generation methods in classification networks are not well migratory and rely on manual
design, and cannot generate trigger keys adaptively according to different models. To this end, we
propose a trigger key generation method using GAN for application to image processing networks, as
shown in Fig. 3.

The network consists of three main components: the generator G, the discriminator D, and the
image processing model M to be protected. Assume the original training set is X . The generator G
takes X as input and generates the perturbation G(X). And then sends X ′ = G(X) + X into the

CMC, 2023, vol.75, no.1 835

discriminator D to distinguish the original training set X from the trigger key X ′. The two are iteratively
trained to continuously optimize the generator and discriminator until the discriminator D is unable
to distinguish between X and X ′, thus obtaining the optimal trigger key X ′.

Figure 2: Traditional trigger key generation methods: (a) original image (b) abstract image (c) image
with text (d) image with pattern (e) image with noise (f) hide an invisible logo

Figure 3: Trigger key generation network

It is not enough to train the generator G and the discriminator D to distinguish X and X ′ inputs
into the image processing network. For this purpose, we add the image processing network M to the
training of trigger key generation as well so that the trigger keys X ′ are generated adaptively according
to the different image processing networks. To distinguish the output results of X and X ′ in M, the
objective matrix Q is designed according to different image processing tasks such that the output results
of X ′ in M are infinitely close to the objective matrix Q. The distance between the output obtained by
inputting X ′ into M and the target matrix Q is fed back to the generator G to obtain the loss function
as Ladv:

Ladv = EX�(M(X ′), Q) (1)

The design criterion for the target matrix is to make the difference between Q and the ground
truth in the image processing task as large as possible. In Eq. (1), � is the cross-entropy loss function.

836 CMC, 2023, vol.75, no.1

In this paper, Q is designed as:

Q =

⎡
⎢⎢⎢⎢⎣

1 · · · 1 · · · 1
0 · · · 0 · · · 0
1 · · · 1 · · · 1
0 · · · 0 · · · 0
· · · · · · · · · · · · · · ·

⎤
⎥⎥⎥⎥⎦

n×n

(2)

To improve the speed of network training and the generality of the proposed method, we refer to
generative adversarial networks as AdvGAN [23]. Its adversarial loss function LGAN [19] can be written
as:

LGAN = EX log D(X) + EX log (1 − D(X ′)) (3)

To limit the magnitude of the perturbation, we add a hinge loss [24] as:

Lhinge = EX max (0, ‖G(X)‖2 − c) (4)

where c denotes a user-specified bound that also stabilizes the training of the GAN. [25] Finally our
overall loss can be expressed as:

L = αLGAN + βLadv + γLhinge (5)

where α, β, and γ are the hyperparameters to balance these three loss terms. The goal of LGAN is
to generate trigger keys that are more similar to the original training set, while the goal of Ladv is
to make the outputs obtained when the trigger keys and the original training set go through the
image processing network significantly different. A comparison of the trigger keys generated using
the method proposed in this paper with the images in the original training set is shown in Fig. 4.

Figure 4: Comparison of the generated trigger keys with the images in the original training set: (a)
images in the original training (b) the generated trigger keys

3.1.2 Trigger Sample Watermark Embedding

We use the method proposed in the previous section to obtain trigger keys, set the number of
trigger keys X ′ to be 1% of the original training set X , and put them into the original training set to
fine-tune the image processing network M, so that the trigger keys X ′ and the verification keys Y ′

form a set of mapping relationships. To make M(X ′) close to the set verification key Y ′, fine-tune M
according to the following loss function:

Lm = Lorg + λLw (6)

CMC, 2023, vol.75, no.1 837

where Lorg is the loss of the original task of model M, Lw is the loss of the watermark, and λ is used as
the adjustment coefficient to ensure that there is no impact on the accuracy of the original model M.

Lorg =
∑

xi∈X ,yi∈Y
‖M(xi) − yi‖2 (7)

where Y denotes the ground truth, and Lorg aims to make M(X) closer to Y .

Lw = 1 − ssim (M(xi
′) − yi

′) (8)

The purpose of using the ssim function in Eq. (8) is to make the trigger key X ′ increasingly similar
to the verification key Y ′ during the model training process to achieve watermark embedding. To
ensure that Lw does not affect the accuracy of model training, the value of λ in Lm is taken as 0.4.

3.1.3 Trigger Sample Watermark Verification

For the verification process of the trigger sample watermark, as shown in Fig. 5, the trigger key
X ′ is input into the model M, and the obtained M(X ′) compares the similarity with the previously
predefined verification key Y ′. To better measure the similarity of M(X ′) and Y ′, the ssim function is
invoked for comparison, as shown in Eq. (9).

score = ssim(M(X ′), Y ′) (9)

Figure 5: Trigger key verification process

The more similar the two images are, the closer the score value is to 1. Set the threshold value as
η, prove that model M contains watermark when score > η, and obtain η = 0.7 by experimental
verification.

3.2 Spatial Watermark
3.2.1 Spatial Watermark Generation and Embedding

A spatial watermark is embedded into the output of the model, which is generated by a random
binary bitstream, defined as follows:

W = {wi|wiε {0, 1} , i = 0, 1, 2, . . .} (10)

838 CMC, 2023, vol.75, no.1

We design a location key to select the location of the spatial watermark embedding. If location is
fixed, it is vulnerable to attack. Ensure the randomness of the location key K so that it is closely related
to the input of each image. Even if the attackers know that the output image contains a watermark,
they cannot extract the watermark from it because they do not know the location key K. The spatial
watermark embedding process is summarized in Algorithm 1.

Algorithm 1: Embedding of spatial watermark
Input: Target model(M); Training data(X); watermark (wi)

Output: Watermarked model(M ′); Location key(K)

li, lL: ith and last layers of the model
1©Watermark transformation:

w′
i ← trans_w (wi)

2©Location key K generation:
for i in range(L−1): do

ki ← S_location (Xi); K ← ki

3©Embedding of watermark

XL ← embed_w
(
XL−1, w′

i , K
)

Summary of Algorithm 1: In the watermark transformation, we embed the watermark wi into the
model, and since the values 0 and 1 have a large impact on the image, it is transformed into a value
suitable for embedding by the watermark transformation function (trans_w), which is trans_w (wi):

w′
i = trans_w (wi) =

{
−0.95 if wi = 1
−1 if wi = 0

(11)

In the generation of the location key K , the location function S_location (Xi) is expressed as:

ki = 1
m

∑m

k=1

√√√√∑n

j=1

(
Xij

k − Xi
k
)2

n − 1
(12)

The location key K consists of ki, and in Eq. (12) xi represents the input of the image in the i-
th layer of the model, and xi is input into the location function (S_loaction) to obtain ki. Where n
denotes the image size, m denotes that Xi has m feature maps in i-th layer of the model and j denotes
each element in Xi. Since ki is the location of the watermark embedding, its size cannot exceed the
image size n.

Finally, w′
i is embedded into XL−1 according to the location key K.

3.2.2 Spatial Watermark Verification

The algorithm for extracting spatial watermark is summarized in Algorithm 2. The output
of model M is Image, and the spatial watermark is extracted using the extraction function
extract_w (Image).

CMC, 2023, vol.75, no.1 839

Algorithm 2: Watermark extraction
Input: Image, K
Output: wi

li, lL: ith and last layers of the model
1©Watermark extraction:

Image ← M(X) or M(X ′); w′
i ← extract_w(Image, K)

2© Inverse watermark transform:

wi ← trans_w′ (w′
i

)
Summary of Algorithm 2: In watermark extraction, the location key K is shared in the embedding

and extraction process of the spatial watermark. Image is the training set of images X input to model
M to obtain M (X) or trigger key X ′ input to model M to obtain M (X ′). K and Image are used as
inputs to the extraction function (extract_w) to obtain w′

i . Finally, the watermark inversion function
(trans_w′) is used to convert wi

′ to wi, and the watermark inversion function is trans_w′ (w′
i

)
:

wi = trans_w′(w′
i) =

{
1 if wi > 0
0 if wi = 0

(13)

The spatial watermark is embedded in the last layer of the model, which in turn extracts the altered
watermark in the output image of the model. The spatial watermark is independent of the structure of
the model and can be embedded into different models to protect the copyright of the model together
with the trigger sample watermark.

4 Experiments

In this paper, we take an image segmentation network as an example of an image processing
network M. The segmentation networks used UNET++ [26], UNET [27], and FCN [28], whose task
is to input an image of a cell to segment the cells and background. We use 670 cell images from the
Cell nuclei dataset [26] as a training set.

We analyze the performance of the framework by the following metrics: the feasibility of the
trigger key generation method (whether the proposed trigger key generation method is feasible),
fidelity (the effect of watermarking on the accuracy of the model), watermark integrity (whether the
watermark is extracted correctly), robustness (whether the model with the watermark embedded is
withstood to attacks), and the number of parameters (the change in the number of parameters before
and after the watermark is embedded).

4.1 Feasibility of the Trigger Key Generation Method

Different from the traditional trigger key generation methods, the proposed method can generate
trigger keys adaptively according to different models, which solves the shortcomings of traditional
methods that need to design trigger keys manually according to different models. As shown in Fig. 6,
column (a) shows the image without any operations added and validation keys. Column (b) is used to
generate trigger keys using the added text method and the output is obtained by inputting the trigger
key in the model protected with this trigger key. Column (c) uses the abstract image as a trigger key and
the output obtained by inputting the trigger key in the model protected with this trigger key. Column
(d) is the method of adding noise to generate the trigger key and the output obtained by inputting the
trigger key in the model protected with this trigger key. Column (e) is the method to generate trigger
keys for hiding an invisible logo and the output is obtained by inputting the trigger key in the model

840 CMC, 2023, vol.75, no.1

protected with this trigger key. Column (f) is our proposed method to generate the trigger key and the
output obtained by inputting the trigger key in the model protected with this trigger key.

Figure 6: Trigger keys of different generation methods and their verification

The accuracy of embedding the trigger key watermark onto the UNET++ model using the five
methods mentioned above. The intersection of unions (IOU) is a standard performance measure for
segmentation problems, and a larger IOU value indicates higher segmentation accuracy. The IOU
value between the output of the trigger key in the model and the validation key is shown in Table 1.
We use the value of IOU between the output of the trigger key in the model and the validation key
to measuring the performance of the trigger key in the model. Experiments show that the trigger key
generation method proposed in this paper does not affect the accuracy of the model, and the IOU
value of the verification key is 0.77, which can well realize the model verification. At the same time,
the limitation of traditional methods in image processing networks is proved.

Table 1: Model ACC and validation IOU in trigger keys of different generation methods

Text Abstract Noise Hide logo Ours

Model ACC 0.8 0.83 0.808 0.81 0.86
validation IOU 0.09 0.06 0.15 0.09 0.77

4.2 Model Fidelity

Model fidelity is that the model accuracy is not degraded by the embedded watermark. The model
accuracy of different segmentation models without embedded watermarks and with embedded dual
model watermarks is summarized in Table 2. The accuracy before embedding the watermark in the
UNET model is 0.842, while the accuracy after embedding the watermark is 0.835. In the UNET++
and FCN models, the accuracy before watermark embedding is 0.845 and 0.741, and the accuracy
after watermark embedding is increased to 0.86 and 0.84 due to the model fine-tuning.

The changes in model accuracy for different models with and without embedding the dual
model watermarks at 200 epochs of training are shown in Fig. 7. After experimental comparison, our
proposed protection framework for the image processing network has almost no effect on the model
accuracy or even improves the accuracy after fine-tuning the model, which will not affect the use of
the model.

CMC, 2023, vol.75, no.1 841

Table 2: Accuracy of different models before and after embedding watermarks

UNET++ UNET FCN

No watermarked 0.845 0.842 0.741
Watermarked 0.86 0.835 0.84

Figure 7: Changes in the accuracy of embedded and unembedded watermarking models during the
training process

4.3 Watermark Integrity

Watermark integrity is whether the watermark embedded in the model can be extracted success-
fully. Trigger sample watermarks will not be triggered in models without watermarks. As shown in
Table 3, the IOU value between the output of the trigger sample watermark in the UNET++ model
and the validation key in the model without the watermark is only 0.1, however, the IOU value between
the output and the validation key in the model with watermark is up to 0.77; the IOU value between
the output of the trigger sample watermark in the UNET model and validation key in the model
without the watermark is only 0.15, however, the IOU value between the output and the validation
key in the model with watermark is up to 0.73; the IOU value between the output of the trigger sample
watermark in the FCN model and validation key in the model without the watermark is only 0.149,
however, the IOU value between the output and the validation key in the model with watermark
is up to 0.691. Spatial watermark has a watermark extraction rate of 37.5% in the model without
watermarks and 100% in the model with watermark protection, and it is possible to trace the image
by extracting spatial watermark when obtaining an image. It is experimentally demonstrated that the
trigger sample watermark and the spatial watermark can distinguish between the watermarked model
and the unwatermarked model.

4.4 Robustness

Watermarking robustness is demonstrated by the ability to resist attacks. A forgery attack [28] is
where an attacker forges a pair of inputs and outputs to obfuscate the trigger and verification keys,
making the copyright of the model unverifiable. Embedding spatial watermark into the output of the

842 CMC, 2023, vol.75, no.1

model, once the attacker wants to forge a pair of inputs and outputs to obfuscate the model copyright,
we extract the watermark by output using location key K. However, the attacker’s output cannot be
extracted since location key K is not known. As shown in Table 4, assuming that the attacker extracts
the watermark with a random position, the average match rate between what is obtained in this way
and the correct watermark per bit is only 32.583%, which cannot verify the model copyright and proves
that our model protection framework can effectively resist forgery attacks.

Table 3: Verification of watermark integrity under different models

UNET++ UNET FCN
Watermarked or not Not Watermarked Not Watermarked Not Watermarked

Trigger sample
watermark
(IOU_value)

0.1 0.77 0.15 0.73 0.149 0.691

Spatial watermark
(Extraction rate)

37.5% 100% 37.5% 100% 37.5% 100%

Table 4: Verification of resistance to forgery attacks in different models

Fake model output UNET++ output UNET output FCN output

Location key random K K K
Match rate 32.583% 100% 100% 100%
Verification Fail Success Success Success

4.5 Number of Model Parameters

In real scenarios, increasing the number of parameters makes training image processing networks
much more complex and expensive than before. In the protection of the model, try not to increase the
number of parameters of the model to ensure that the training of the model itself is not affected after
the model is embedded in the watermark. As shown in Table 5, the parametric quantities of the model
do not change before and after embedding the dual model watermarks.

Table 5: Comparison of the number of model parameters before and after embedding dual model
watermark

Unwatermarked Watermarked

UNET++ 9, 163, 329 9, 163, 329
UNET 7, 852, 545 7, 852, 545
FCN 16, 282, 881 16, 282, 881

5 Conclusion

We consider some drawbacks of using model watermarking in image processing networks.
We propose a framework that includes two watermarks: trigger sample watermarking and spatial

CMC, 2023, vol.75, no.1 843

watermarking. Due to the limitations of the trigger sample watermark generated by traditional
methods for application in image processing networks, we innovatively design a general trigger sample
watermark generation method, which can generate trigger sample watermarks adaptively according to
different models. And the spatial watermark is embedded into the output of the model to better resist
forgery attacks. Experiments show that the proposed framework has good performance in different
image segmentation networks such as UNET, UNET++, and FCN, and can effectively resist forgery
attacks. Two different watermarks are extracted 100% of the time in the protected model, effectively
distinguishing the watermarked model from the unwatermarked model. The next work applies the
framework to image classification networks to increase the generalizability of the method.

Acknowledgement: We thanks NUIST to give us the opportunity for this research work.

Funding Statement: This work is supported by the National Natural Science Foundation of China
under grants U1836208, by the Priority Academic Program Development of Jiangsu Higher Education
Institutions (PAPD) fund, and by the Collaborative Innovation Center of Atmospheric Environment
and Equipment Technology (CICAEET) fund, China.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] Y. L. Cun, Y. Bengio and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553, pp. 436–444, 2015.
[2] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” in

Proc. ICLR, San Diego, USA, pp. 1–14, 2015.
[3] L. Zhou, Z. Wang, Y. Luo and Z. Xiong, “Separability and compactness network for image recognition

and superresolution,” IEEE Transactions on Neural Networks and Learning Systems, vol. 30, no. 11, pp.
3275–3286, 2019.

[4] Y. Xue, Y. H. Tang, X. Xu, J. Y. Liang and F. Neri, “Multi-objective feature selection with missing data
in classification,” IEEE Transactions on Emerging Topics in Computational Intelligence, vol. 6, no. 2, pp.
355–364, 2022.

[5] S. Hong, M. Wu, Y. Zhou, Q. Wang and J. Xie, “Encase: An ensemble classifier for ECG classification
using expert features and deep neural networks,” in Proc. CinC, Rennes, France, pp. 1–4, 2017.

[6] S. Hong, Y. Zhou, M. Wu, J. Shang and J. Xie, “Combining deep neural networks and engineered features
for cardiac arrhythmia detection from ECG recordings,” Physiol Meas, vol. 40, no. 5, pp. 054009, 2019.

[7] Z. Q. Zhao, P. Zheng, S. T. Xu and X. Wu, “Object detection with deep learning: A review,” IEEE
Transactions on Neural Networks and Learning Systems, vol. 30, no. 11, pp. 3212–3232, 2019.

[8] L. Jiao, “A survey of deep learning-based object detection,” IEEE Access, vol. 7, pp. 128837–128868, 2019.
[9] G. Anitha and S. Baghavathi Priya, “Vision based real time monitoring system for elderly fall event

detection using deep learning,” Computer Systems Science and Engineering, vol. 42, no. 1, pp. 87–103, 2022.
[10] Z. Liu, J. Li, Z. Shen, G. Huang, S. Yan et al., “Learning efficient convolutional networks through network

slimming,” in Proc. ICCV , Venice, Italy, pp. 2755–2763, 2017.
[11] A. Gutub and M. Al-Ghamdi, “Image based steganography to facilitate improving counting-based secret

sharing,” 3D Research, vol. 10, no. 1, pp. 1–36, 2019.
[12] A. Gutub, “Watermarking images via counting-based secret sharing for lightweight semi-complete authen-

tication,” International Journal of Information Security and Privacy (IJISP), vol. 16, no. 1, pp. 1–18, 2022.
[13] X. R. Zhang, W. F. Zhang, W. Sun, X. M. Sun and S. K. Jha, “A robust 3-D medical watermarking based

on wavelet transform for data protection,” Computer Systems Science & Engineering, vol. 41, no. 3, pp.
1043–1056, 2022.

844 CMC, 2023, vol.75, no.1

[14] Y. Adi, C. Baum, M. Cisse, B. Pinkas and J. Keshet, “Turning your weakness into a strength: Watermarking
deep neural networks by backdooring,” in Proc. USENIX Conf. on Security Symp., Baltimore, USA, pp.
1615–1631, 2018.

[15] Z. Li, C. Hu, Y. Zhang and S. Guo, “How to prove your model belongs to you: A blind-watermark based
framework to protect the intellectual property of DN,” in Proc. ACSAC, Austin, USA, pp. 126–137, 2019.

[16] J. Zhang, Z. Gu, J. Jang, H. Wu et al., “Protecting intellectual property of deep neural networks with
watermarking,” in Proc. ASIACCS, Incheon, Korea, pp. 159–172, 2018.

[17] J. Zhang, D. Chen, J. Liao, W. Zhang, H. Feng et al., “Deep model intellectual property protection via
deep watermarking,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 44, no. 8, pp.
4005–4020, 2021.

[18] H. Wu, G. Liu, Y. Yao and X. Zhang, “Watermarking neural networks with watermarked images,” IEEE
Transactions on Circuits and Systems for Video Technology, vol. 31, no. 7, pp. 2591–2601, 2021.

[19] I. Goodfellow, J. P. Abadie, M. Mirza, B. Xu, D. Warde-Farley et al., “Generative adversarial nets,” in Proc.
NIPS, Montreal, Canada, pp. 2672–2680, 2014.

[20] Y. Uchida, Y. Nagai, S. Sakazaw and S. Satoh, “Embedding watermarks into deep neural networks,” in
Proc. ICMR, Bucharest, Romania, pp. 269–277, 2017.

[21] B. D. Rouhani, H. Chen and F. Koushanfar, “DeepSigns: An end-to-end watermarking framework for
ownership protection of deep neural network,” in Proc. ASPLOS, Providence, USA, pp. 485–497, 2019.

[22] R. Zhu, X. Zhang and M. Shi, “Secure neural network watermarking protocol against forging attack,”
EURASIP Journal on Image and Video Processing, vol. 1, no. 2, pp. 1–12, 2020.

[23] C. Xiao, B. Li, J. Y. Zhu, W. He, M. Liu et al., “Generating adversarial examples with adversarial networks,”
in Proc. IJCAI , Stockholm, Sweden, pp. 1801.02610, 2018.

[24] N. Carlini and D. Wagner, “Towards evaluating the robustness of neural networks,” in Proc. Symp. on
Security and Privacy, CA, USA, pp. 39–57, 2017.

[25] P. Isola, J. Zhu, T. Zhou and A. A. Efros, “Image-to-image translation with conditional adversarial
networks,” in Proc. CVPR, Hawaii, USA, pp. 5967–5976, 2017.

[26] Z. Zhou, M. M. R. Siddiquee, N. Tajbakhsh and J. Liang, “UNet++: A nested U-Net architecture for
medical image segmentation,” Deep Learning in Medical Image Analysis and Multimodal Learning for
Clinical Decision Support, vol. 11045, pp. 3–11, 2018.

[27] O. Ronneberger, P. Fischer and T. Brox, “U-Net: Convolutional networks for biomedical image segmenta-
tion,” in Proc. MICCCAI , Munich, Germany, Springer, Cham, pp. 234–241, 2015.

[28] J. Long, E. Shelhamer and T. Darrell, “Fully convolutional networks for semantic segmentation,” in Proc.
IEEE Conf. on Computer Vision and Pattern Recognition, Boston, USA, pp. 3431–3440, 2015.

	A Dual Model Watermarking Framework for Copyright Protection in Image Processing Networks
	1 Introduction
	2 Related Works
	3 Proposed Method
	4 Experiments
	5 Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [300 300]
 /PageSize [612.000 792.000]
>> setpagedevice

