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Abstract: The rapid population growth results in a crucial problem in the
early detection of diseases in medical research. Among all the cancers unveiled,
breast cancer is considered the second most severe cancer. Consequently, an
exponential rising in death cases incurred by breast cancer is expected due to
the rapid population growth and the lack of resources required for performing
medical diagnoses. Utilizing recent advances in machine learning could help
medical staff in diagnosing diseases as they offer effective, reliable, and rapid
responses, which could help in decreasing the death risk. In this paper, we
propose a new algorithm for feature selection based on a hybrid between
powerful and recently emerged optimizers, namely, guided whale and dipper
throated optimizers. The proposed algorithm is evaluated using four publicly
available breast cancer datasets. The evaluation results show the effectiveness
of the proposed approach from the accuracy and speed perspectives. To
prove the superiority of the proposed algorithm, a set of competing feature
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selection algorithms were incorporated into the conducted experiments. In
addition, a group of statistical analysis experiments was conducted to empha-
size the superiority and stability of the proposed algorithm. The best-achieved
breast cancer prediction average accuracy based on the proposed algorithm is
99.453%. This result is achieved in an average time of 3.6725 s, the best result
among all the competing approaches utilized in the experiments.

Keywords: Medical dataset; breast cancer; guided whale optimizer; dipper
throated optimizer; feature selection; meta-heuristics

1 Introduction

The proper diagnosis of some crucial information is a critical challenge for bioinformatics or
medical research [1]. In medicine, disease diagnosis is a demanding and challenging task. Many
diagnostic hospitals and research institutes, as well as various websites, have a vast amount of medical
diagnostic data. It is barely essential to categorize them to automate and speed up disease diagnosis.
The medical planning officer’s expertise and skill in the medical profession are frequently used to
diagnose the ailment. As a result, there are instances of inaccuracies, unintended biases, and the
requirement for a lengthy time for a precise disease diagnosis [2].

Breast cancer affects more women than all other malignancies, according to the American Cancer
Society. In 2017, around 252,710 women in the United States will be diagnosed with invasive breast
cancer, while approximately 63,410 women will be diagnosed with in situ breast cancer. Breast cancer
is more common in men than in women. In 2017, it was estimated that roughly 2470 males in the
United States would be diagnosed with prostate cancer. According to another estimate, around 41,070
people would die in 2017 from this malignancy. Breast cancer affects 41,000 women in the United
Kingdom each year, but just 300 males. The most frequent malignancy among women globally is
breast cancer. Breast cancer is caused by the abnormal multiplication of specific breast cells. Several
techniques have been developed for the reliable diagnosis of breast cancer. Breast cancer is detected
through mammography, often known as breast screening. The status of a woman’s nipple is assessed
using X-rays. Breast cancer is difficult to detect in its early stages because of the small size of the cancer
cell when viewed from the outside. Mammography is a quick and painless procedure that can identify
cancer in its early stages [3–5].

Ultrasound is a well-known tool for identifying breast cancer that uses sound waves to inspect
the inside status of the body. The bounce of sound waves from a transducer that generates sound
waves and is placed on the skin captures the echoes of the body’s tissues. The echoes are transformed
to grayscale, which is a binary value that can be understood by a computer. F-fluorodeoxyglucose
positron emission tomography (PET) imaging helps doctors see where a tumor is in the body. It works
by looking for radiolabeled cancer-specific tracers. Dynamic magnetic resonance imaging (MRI) has
been used to develop a detection tool for breast abnormalities. The modality forecasts the pace at
which contrast enhancement occurs by boosting tumor angiogenesis. Magnetic reasoning imaging has
been associated with contrast enhancement metastases in those with breast cancer. Elastography is an
imaging-based technique that is fresh new. This method can be employed when the breast cancer tissue
is greater than the surrounding parenchyma. To identify benign from malignant types, this approach
employs a color map of probe compression [6–8].

The mortality of breast cancer can be reduced effectively if the diagnosis and detection are
performed early. However, the lack of sufficient medical resources and inaccurate treatment make
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the timely diagnosis of breast cancer hard to achieve. Therefore, computer-aided diagnosis systems
present an effective solution to radiologists and pathologists to help them achieve an efficient and
accurate medical diagnosis. Currently, existing machine learning techniques offer accurate and effec-
tive assistance in diagnosing breast cancer. They can achieve low positive and negative classification
rates. These machine learning techniques include ensemble learning, deep learning, computer vision,
feature selection, and feature fusion. To generate highly accurate annotations for medical images, a
substantial economic cost is usually required. In addition, the availability of a large set of samples is
limited by individual privacy and ethical issues [9].

Moreover, the acquisition of high-quality samples is affected by the large gap between the fields of
computer science and medicine. On the other hand, scientists tried to find the actual reasons causing
breast cancer by studying the factors that can raise the probability of growing breast cancer in a
woman. These risk factors include family background, age, genetic properties, smoking, gene variation,
obesity, taking alcohol, etc. Based on these studies, four datasets have emerged as a collection of data
describing the cases of normal and breast cancer based on these risk factors. These datasets are the
breast cancer Wisconsin (diagnostic) data set, breast cancer Wisconsin (original) data set, breast cancer
Coimbra data set, and breast cancer data set [10–13].

Prediction of breast cancer based on the data of these four datasets requires building a machine
learning model that processes the risk factors to find the best decision. However, not all the risk factors
have the same relevance in finding the best decision. Therefore, the process of feature selection of
essential to keep only the most relevant risk factors in achieving better results. There are many feature
selection methods in the literature. From these methods, the binary grey wolf optimization (bGWO),
binary guided whale algorithm (bGWA), binary particle swarm optimization (bPSO), binary dipper
throated optimization (bDTO), and many others. The efficiency of these feature selectors is usually
evaluated in terms of the classifier that determines whether the selected feature can achieve the best
prediction rates or not. On the other hand, these feature selection methods are based on parameter
optimization algorithms that generate continuous values, converted to binary to match the feature
selection problem [14].

Parameter optimization is defined as the problem of finding the best parameter set that can achieve
the highest classification/prediction values. The optimization problem can be utilized in the problem
of breast cancer prediction by employing the exploration and exploitation processes of the optimizer
to find the best set of risk factors that can be used in breast cancer prediction [15]. In addition, many
hybrid optimization algorithms recently emerged to perform better than the single optimizer—these
hybrid optimizers such as PSO-GWA and PSO-GWO. Consequently, binary hybrid optimizers have
emerged for better feature selection and better classification accuracy. A summary of the research
papers that addressed the task of breast cancer diagnosis is listed in Table 1. As presented in this table,
the best accuracy achieved was 97.89%, and the speed of the corresponding approach is not available.

Table 1: Summary of recent research papers on breast cancer diagnosis

Paper Method Dataset Findings

[16] The deep feature fusion method Histopathology images dataset. The maximum achieved accuracy is 97% for
differentiating two combined groups of breast
cancer classes.

[17] Probabilistic graphical models and deep
belief network

Ljubljana breast cancer dataset,
breast cancer dataset, and
Netherlands cancer institute
dataset.

The authors employed a deep belief network
and probabilistic graphical models.

(Continued)



1886 CMC, 2023, vol.75, no.1

Table 1: Continued
Paper Method Dataset Findings

[18] Deep learning Breast cancer Wisconsin dataset
from the University of
California, Irvine (UCI)
repository.

The maximum achieved accuracy is 96.99%
accuracy using deep learning.

[19] Machine learning techniques Breast cancer Wisconsin dataset
from UCI repository.

Authors proved that employing recent
enhancements in machine learning achieved
better results.

[20] Deep learning Digital database for screening
mammography dataset.

The maximum achieved accuracy is 96% using
deep learning.

[21] Machine learning techniques Mammogram images. The maximum achieved accuracy is 96% using
a deep neural network.

[22] Machine learning techniques Breast cancer Wisconsin dataset
from UCI repository.

The authors applied machine learning
techniques to the breast cancer dataset.

[23] Support vector machines (SVM),
k-nearest neighbors (KNN), Naïve bayes,
and Decision tree.

Breast cancer from From UCI
repository datasets.

The maximum achieved accuracy is 97.89%
using support vector machines.

[24] Deep learning Mammographic image analysis
database

The maximum achieved accuracy is 98% using
convolutional neural network (CNN).

[25] Deep learning CNN BreakHis dataset is used The maximum achieved accuracy is 95.4%
using DenseCNN.

[26] Data mining techniques Breast cancer Wisconsin dataset
from UCI repository

Authors could detect hidden
cancer-associated for classification.

[27] Random forest, KNN and Naïve bayes. Breast cancer Wisconsin dataset
from UCI repository.

Authors achieved high accuracy using the
KNN classifier.

We propose in this paper a new feature selection algorithm for selecting the significant features
from four breast cancer datasets publicly available in UCI Repository. The proposed algorithm is
compared with a set of recently emerged feature selection algorithms in the literature. The achieved
results proved the efficiency of the proposed algorithm in terms of speed and accuracy.

This paper is organized as follows. The materials and methods employed in this work are presented
in Section 2. Section 3 illustrates the proposed feature selection algorithm, followed by a detailed
explanation of the achieved experimental results in Section 4. The conclusions and future perspectives
are finally presented in Section 5.

2 Materials and Methods

This section starts by presenting the datasets employed in the conducted experiments, then the
basic algorithms used in developing and testing the proposed algorithm are explained.

2.1 Datasets

In this work, four datasets from the UCI repository are employed to evaluate the proposed
approach. These datasets are the breast cancer data set, which is referred to as D1 [10], breast cancer
data set, which is referred to as D2 [11], breast cancer Wisconsin (original) data set which is referred to
as D3 [12], and breast cancer Wisconsin (diagnostic) data set which is referred as D4 [13]. The features
of each dataset are listed in Table 2. As shown in the table, the first nine rows represent the dataset
features (denoted by F1, F2, . . . , F9), whereas the last two rows represent the classes to which the
feature values belong and the size of the dataset.
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Table 2: Attributes of the four datasets incorporated in this research

D1 [10] D2 [11] D3 [12] D4 [13]

F1 Age Age Clump thickness Radius
F2 Menopause BMI Uniformity of Cell

size
Texture

F3 Tumor-size Glucose Uniformity of Cell
shape

Perimeter

F4 Inv-nodes Insulin Marginal adhesion Area
F5 Node-caps HOMA Single epithelial cell

size
Smoothness

F6 Deg-malig Leptin Bare nuclei Compactness
F7 Breast Adiponectin Bland chromatin Concavity
F8 Breast-quad Resistin Normal nucleoli Concave points
F9 Irradiat MCP-1 Mitoses Fractal dimension
Class Recurrence? Healthy, Patients Malignant, benign Malignant, Benign
Size 286 samples 116 samples 699 samples 569 samples

2.2 Preprocessing

Before using the data of each dataset to learn the machine learning model and feature selector,
two main preprocessing steps are applied to ensure the integrity of the recorded features. These
preprocessing steps replace the null values in a column with the average of the surrounding values
in the same feature column. In addition, a min-max scalar is employed to normalize the importance
of the features to lay in the range between zero and one [28,29].

2.3 Dipper Throated Optimization Algorithm

The inspiration for the dipper throated optimization (DTO) algorithm is based on the dipper
throated bird, which is renowned for its bobbing or dipping motions while perched and belongs to the
Cinclidsae family of birds. The ability of a bird to dive, swim, and hunt beneath the surface sets it apart
from other passerines. It can fly straight and rapidly with no stops or glides because of its tiny flexible
wings. The dipper throated bird has a distinct hunting style, quick bowing motions, and a white breast.
It rushes headlong into the water to get its prey, regardless of how turbulent or fast-flowing it is. As it
descends and picks up pebbles and stones, aquatic invertebrates, aquatic insects, and tiny fish perish.
The great white shark uses its hands to move on the ocean floor. By bending your body at an angle and
traveling down the bottom of the water with your head lowered, you might be able to locate prey. It
can also dive into the water and submerge itself, using its wings to propel itself through the water and
stay submerged for an extended time. The DTO algorithm assumes that a flock of birds is swimming
and flying about looking for food. More details about the DTO algorithm are explained in [30].
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2.4 Guided Whale Optimization Algorithm

The guided whale (GW) optimization approach is effective in various optimization situations.
According to the literature, GW is one of the most successful optimization approaches. On the
other hand, its exploration capabilities may be restricted. For mathematical computations, let n as
the number of variables or the dimension of the search space to be searched by the whales. If the
agents’ positions (solutions) in the space search are updated over time, the best food solution will be
determined. The update of the agents’ positions can be performed using the following equation.
→

W (t + 1) = →
W

∗
(t) − →

A .
→
D (1)

→
D =

∣∣∣∣
→
C .

→
W

∗
(t) − →

W (t)

∣∣∣∣
where the found solution at iteration t is denoted by

→
W (t). The position of the optimal solution is

referred as
→
W

∗
(t). The agent’s new position is denoted by

→
W (t + 1).

→
A and

→
C are two vectors calculated

as follows:
→
A = 2

→
a .r1 − →

a, and
→
C = 2 r2, where

→
a is a vector whose values are linearly changed from

2 to 0, and r1, r2 are randomly changing between 0 and 1. More details about this algorithm can be
found in [31,32].

2.5 Feature Selection

The selection of essential features from the recorded features set is the first step in adequately
training classification models. As a result, training time may be cut in half, and the classification
model can be simplified significantly. Furthermore, by employing feature selection, overfitting may
be prevented. To execute feature selection, the output solution from the continuous optimizer should
be changed to a binary solution using the integers 0 and 1. To convert a continuous optimizer solution
to a binary solution for feature selection, use the following function [33,34].

W (t+1) =
{

0 if Sigmoid (WBest) < 0.5
1 otherwise

Sigmoid (WBest) = 1

1 + e−10(WBest−0.5)
(2)

2.6 Fitness Function

The quality of an optimizer’s output may be determined using fitness functions. The fitness
function’s essential elements include classification and regression errors, as well as the features chosen
for the input pictures. Rather than a solution based on a broad list of specific traits, select one with the
lowest potential classification error rate [35–40]. The following equation is used to evaluate the quality
of the specified attributes.

Fn = α Err(O) + β
|s|
|f | (3)

where α is a number in the range [0, 1], β = 1 − α, |s| is the number of selected features, and |f | is the
number of features in the dataset. Err(O) represents the error of the optimizer (O). In our case, this
optimizer is the proposed bGW-DTO algorithm.
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3 Proposed Methodology

The details of the proposed binary guided whale dipper throated optimizer (bGW-DTO) for
feature selection are depicted in Algorithm 1. To perform feature selection using this algorithm, the
resulting solution is converted to a binary solution based on the sigmoid function, as shown in line 31
of the algorithm. In addition, the K-nearest neighbor is employed to assess the quality of the selected
features that achieve the best fitness for the breast cancer diagnosis.

In addition, a high-level overview of the proposed feature selection algorithm is illustrated in
Algorithm 2. In this algorithm, the process goes through iterations at which the bGW-DTO is
performed to retrieve binary values representing the selected features. These selected features are
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assessed using k-NN with the help of a fitness function. At the end of these iterations, the algorithms
return the set of features that achieve the best fitness among all other collections of features.

4 Experimental Results

To evaluate the efficiency of the proposed algorithm, several experiments were conducted to assess
its performance. The conducted experiments are based on several evaluation criteria presented in
Table 3. These criteria include average error, best fitness, worst fitness, average fitness size, mean, and
standard deviation.

Table 3: Evaluation metrics

Metrics Equation

Average error
1

M

M∑
j=1

1
N

N∑
i=1

mse (Ci , Li )

Average select size
1

M

M∑
i=1

size
(
gi

∗
)

Average fitness
1

M

1∑
M

gi
∗

Best fitness minM
i=1g

i
∗

Worst fitness MaxM
i=1g

i
∗

Standard deviation
(STD)

√
1

M − 1

∑(
gi

∗ − Mean
)2

The configuration parameters of the proposed algorithm are presented in Table 4. These values
are used as initial values to start the optimization algorithm. It can be noted that these parameters are
set once, and their values are not changed during the running of the algorithm.

Table 4: Configuration parameters of the proposed bGW-DTO algorithm

Parameter Value

Number of search agents 10
Number of iterations 80

(Continued)
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Table 4: Continued
Parameter Value

Number repetitions of runs 20
Problem dimension Number of features
Search domain [0, 1]
K-neighbors 5
K-fold cross-validation 10
Maximum diffusion level 1

To prove the superiority of the proposed algorithm, a set of eleven feature selectors were applied
to the same four datasets incorporated in the conducted experiments, and the results were recorded.
Table 5 presented the average error resulting from selecting the best features using the proposed
algorithm (bGW-DTO) and the other eleven approaches. As shown in the table, the proposed
algorithm could achieve the minimum average error of (0.57186) for the dataset D1, (0.50924) for
the dataset D2, (0.58111) for the dataset D3, and (0.52502) for the dataset D4. In addition, the overall
average error is (0.5468), which is the minimum among all the employed feature extraction methods. In
addition, a visual representation of the general average error is depicted, the minimum value is recorded
by the proposed algorithm. Moreover, the average select size is presented in Table 6, the average fitness
is presented in Table 7, the best fitness is presented in Table 8, the worst fitness is presented in Table 9,
and the standard deviation in Table 10. As shown in these tables, the proposed algorithm has been able
to find the superiority fitness for all datasets.

Table 5: Average error

Dataset D1 D2 D3 D4 Average

bGW-DTO 0.57186 0.50924 0.58111 0.52502 0.5468
bGWO 0.58558 0.52224 0.59422 0.54002 0.5605
bGWO_PSO 0.57872 0.52326 0.59227 0.52784 0.5555
bPSO 0.57591 0.55001 0.59956 0.53176 0.5643
bSFS 0.58456 0.52935 0.59615 0.52536 0.5589
bWAO 0.57284 0.53506 0.59131 0.53415 0.5583
bMGWO 0.58225 0.51083 0.58290 0.55653 0.5581
bMVO 0.57284 0.54403 0.60732 0.53545 0.5649
bSBO 0.59048 0.53035 0.61363 0.53914 0.5684
bGWO_GA 0.59440 0.56967 0.60004 0.53219 0.5741
bFA 0.57971 0.54061 0.60587 0.54241 0.5671
bGA 0.57284 0.52993 0.59519 0.53002 0.5570
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Table 6: Average select size

Dataset D1 D2 D3 D4 Average

bGW-DTO 0.7158 0.5111 0.7813 0.64694 0.663818
bGWO 0.7798 0.6414 0.8748 0.80337 0.774861
bGWO_PSO 0.7748 0.6657 0.8748 0.83194 0.786811
bPSO 0.9098 0.8657 0.8831 0.90694 0.891395
bSFS 0.7347 0.6888 0.8779 0.86051 0.790479
bWAO 1.0048 0.7066 0.8831 1.05337 0.91198
bMGWO 0.8261 0.6289 0.8635 0.74622 0.766157
bMVO 0.87982 0.8460 0.8914 0.88909 0.876593
bSBO 0.89481 0.8051 0.8078 0.94622 0.863482
bGWO_GA 0.85482 0.7991 1.0748 0.90337 0.907993
bFA 0.91481 0.8626 0.8831 0.89981 0.890103
bGA 0.87481 0.7657 0.8831 0.88194 0.851395

Table 7: Average fitness

Dataset D1 D2 D3 D4 Average

bGW-DTO 0.59959 0.52125 0.5918 0.6878 0.6001
bGWO 0.63548 0.55622 0.76536 0.70265 0.6649
bGWO_PSO 0.6178 0.5228 0.71738 0.527843 0.5965
bPSO 0.62189 0.58372 0.77064 0.69447 0.6677
bSFS 0.6358 0.5291 0.6191 0.515365 0.5748
bWAO 0.62286 0.56891 0.76247 0.69684 0.6628
bMGWO 0.6013 0.5529 0.5978 0.556539 0.5771
bMVO 0.62286 0.57779 0.77833 0.69813 0.6693
bSBO 0.6298 0.5298 0.7128 0.539148 0.6029
bGWO_GA 0.5938 0.5688 0.6998 0.532191 0.5986
bFA 0.62965 0.57441 0.77689 0.70502 0.6715
bGA 0.62286 0.56383 0.76632 0.69275 0.6614

Table 8: Best fitness

Dataset D1 D2 D3 D4 Average

bGW-DTO 0.50445 0.46949 0.68271 0.65121 0.5769
bGWO 0.52386 0.48641 0.70192 0.66391 0.5940
bGWO_PSO 0.60150 0.51179 0.74997 0.67252 0.6339
bPSO 0.52386 0.52025 0.69231 0.65961 0.5990
bSFS 0.58509 0.47621 0.74036 0.67582 0.6194

(Continued)
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Table 8: Continued
Dataset D1 D2 D3 D4 Average

bWAO 0.56268 0.49487 0.69231 0.65531 0.6013
bMGWO 0.55209 0.51956 0.69114 0.66821 0.6078
bMVO 0.58209 0.47795 0.71153 0.67252 0.6110
bSBO 0.58209 0.50333 0.74997 0.68112 0.6291
bGWO_GA 0.58209 0.55410 0.72114 0.68112 0.6346
bFA 0.56268 0.46949 0.71153 0.66822 0.6030
bGA 0.52386 0.50333 0.69231 0.66391 0.5959

Table 9: Worst fitness

Dataset D1 D2 D3 D4 Average

bGW-DTO 0.69898 0.62072 0.82448 0.72167 0.71646
bGWO 0.71798 0.63025 0.80765 0.77152 0.73185
bGWO_PSO 0.67915 0.57948 0.76920 0.71556 0.68585
bPSO 0.73739 0.63872 0.83648 0.75431 0.74172
bSFS 0.65974 0.66242 0.79842 0.69404 0.70365
bWAO 0.73739 0.65564 0.83648 0.73709 0.74165
bMGWO 0.71797 0.63871 0.84609 0.81026 0.75326
bMVO 0.69856 0.62179 0.87493 0.71987 0.72878
bSBO 0.69856 0.60486 0.87492 0.71126 0.72240
bGWO_GA 0.69856 0.66410 0.81726 0.71126 0.72279
bFA 0.75681 0.67256 0.98066 0.87052 0.82013
bGA 0.69856 0.68102 0.87493 0.72848 0.74574

Table 10: Standard deviation fitness

Dataset D1 D2 D3 D4 Average

bGW-DTO 0.40767 0.40777 0.40078 0.39023 0.4016
bGWO 0.42669 0.41732 0.40362 0.40683 0.4136
bGWO_PSO 0.41028 0.41311 0.40339 0.39366 0.4051
bPSO 0.43437 0.40814 0.41477 0.39674 0.4135
bSFS 0.42669 0.44944 0.42328 0.40161 0.4253
bWAO 0.42104 0.41714 0.41249 0.39843 0.4123
bMGWO 0.41724 0.41251 0.41237 0.40885 0.4127
bMVO 0.41458 0.41445 0.41516 0.39019 0.4086
bSBO 0.42234 0.41235 0.42593 0.39154 0.4130
bGWO_GA 0.41906 0.42129 0.41037 0.39412 0.4112
bFA 0.42537 0.42278 0.43883 0.42032 0.4268
bGA 0.42514 0.42234 0.41976 0.39269 0.4150
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On the other hand, the speed of finding the single iteration performed for finding the best set
of features is measured are recorded in Table 11. As shown in the table, the processing time of the
proposed algorithm for D1 is (3.7327), for D2 is (4.1507), for D3 is (3.4027), and for D4 is (3.4037).
In addition, the overall average processing time of the proposed algorithm is (3.6724). Based on these
results, it can be noted that the proposed algorithm can perform the feature selection process in the
shortest time among the other competing feature selection algorithms. It is clearly shown in this table
that the proposed algorithm is considered the fastest when compared with the other eleven feature
extraction algorithms.

Table 11: Processing time

Dataset D1 D2 D3 D4 Average

bGW-DTO 3.7327 4.1507 3.4027 3.4037 3.6724
bGWO 4.3767 6.0817 4.5987 4.0697 4.7817
bGWO_PSO 3.9687 5.2187 4.8387 4.1987 4.5562
bPSO 4.0587 5.6537 4.6777 4.9147 4.8262
bSFS 5.4587 5.4087 4.7687 4.4287 5.0162
bWAO 3.8657 4.9867 3.4137 3.5057 3.9429
bMGWO 4.1487 4.6887 4.0997 3.0212 4.3123
bMVO 4.3197 5.5937 4.3707 4.6827 4.7417
bSBO 4.7887 5.6187 4.5587 4.1487 4.7787
bGWO_GA 4.5087 5.8887 4.8787 4.0487 4.8312
bFA 5.0867 5.6707 4.9267 4.0067 4.9227
bGA 4.3327 5.6067 4.0777 4.1647 4.5454

On the other hand, the statistical difference between the proposed bGW-DTO and the other
competing algorithm is tested. To realize this test, a one-way analysis of variance (ANOVA) test is
employed. Two main hypotheses are set in this test, namely, the null hypothesis and the alternate
hypothesis. For the null hypothesis denoted by H0, the mean values of the algorithm is set equal,
μbGW-DTO = μbGW = μbGW-PSO = μbSFS = μbPSO = μbWAO = μbMGWO = μbMVO =
μbSBO = μbGW-GA = μbFA = μbGA). Whereas in the alternate hypothesis denoted by H1, the
means of the algorithms are not equal. The results of the ANOVA test are presented in Table 12. As
shown in the table, the expected effectiveness of the proposed algorithm is confirmed when compared
with other feature selection methods. In addition, a statistical analysis of the achieved results is
presented in Tables 13 and 14.

Table 12: ANOVA table

ANOVA table SS DF MS F (DFn, DFd) P value

Treatment (between
columns)

0.006185 11 0.0005623 F (11, 120) =
18.77

P < 0.0001

(Continued)
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Table 12: Continued
ANOVA table SS DF MS F (DFn, DFd) P value

Residual (within
columns)

0.003595 120 0.00002996

Total 0.009781 131

Table 13: Statistical analysis (part 1)

bGW-DTO bGWO bGWO_PSO bPSO bSFS bWAO

Number of values 11 11 11 11 11 11
Minimum 0.5709 0.5756 0.5787 0.5759 0.5846 0.5728
25% percentile 0.5719 0.5856 0.5787 0.5759 0.5846 0.5728
Median 0.5719 0.5856 0.5787 0.5759 0.5846 0.5728
75% percentile 0.5719 0.5856 0.5787 0.5759 0.5846 0.5728
Maximum 0.5719 0.5996 0.5987 0.5959 0.5996 0.5928
Range 0.001 0.024 0.02 0.02 0.015 0.02
10% percentile 0.5711 0.5776 0.5787 0.5759 0.5846 0.5728
90% percentile 0.5719 0.5988 0.5967 0.5939 0.5986 0.5908
95% CI of median
Actual confidence
level

98.83% 98.83% 98.83% 98.83% 98.83% 98.83%

Lower confidence
limit

0.5719 0.5856 0.5787 0.5759 0.5846 0.5728

Upper confidence
limit

0.5719 0.5956 0.5887 0.5859 0.5946 0.5828

Mean 0.5718 0.5869 0.5814 0.5786 0.5868 0.5756
Std. deviation 0.0003 0.00615 0.0064 0.0064 0.0051 0.0064
Std. error of mean 0.0001 0.001854 0.0019 0.0019 0.0015 0.0019
Skewness −3.317 0.6713 2.42 2.42 2.127 2.42
Kurtosis 11 2.013 5.51 5.51 3.492 5.51
Sum 6.289 6.455 6.396 6.365 6.455 6.331

Table 14: Statistical analysis (part 2)

bMGWO bMVO bSBO bGWO_GA bFA bGA

Number of values 11 11 11 11 11 11
Minimum 0.5823 0.5728 0.5905 0.5944 0.5797 0.5728
25% percentile 0.5823 0.5728 0.5905 0.5944 0.5797 0.5728
Median 0.5823 0.5728 0.5905 0.5944 0.5797 0.5728
75% percentile 0.5823 0.5728 0.5905 0.5944 0.5797 0.5728
Maximum 0.5993 0.5928 0.5995 0.5994 0.5997 0.5928

(Continued)
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Table 14: Continued
bMGWO bMVO bSBO bGWO_GA bFA bGA

Range 0.0171 0.0221 0.0091 0.0051 0.0211 0.0221
Mean 0.5847 0.5756 0.5918 0.5951 0.5824 0.5756
Std. deviation 0.0056 0.00646 0.0029 0.0016 0.0064 0.0064
Std. error of mean 0.0017 0.00195 0.0008 0.0005 0.0019 0.0019
Skewness 2.2491 2.4211 2.3092 2.2292 2.4221 2.4223
Kurtosis 4.3411 5.5122 4.7521 4.2012 5.5121 5.5123
Sum 6.4322 6.3311 6.5091 6.5462 6.4071 6.3311

Moreover, the statistical difference between every two algorithms is performed to get the
p-values between the proposed bGW-DTO algorithm and the other competing approaches to prove
that the proposed method has a significant difference. To realize this test, Wilcoxon’s rank-sum
test is employed. Two main hypotheses are set in this test, namely, the null hypothesis and the
alternate hypothesis. For the null hypothesis denoted by H0, the mean values of the algorithm is set
equal, μbGW-DTO = μbGW, μbGW-DTO = μbGW-PSO, μbGW-DTO = μbSFS, μbGW-DTO =
μbPSO, μbGW-DTO = μbWAO, μbGW-DTO = μbMGWO, μbGW-DTO = μbMVO, μbGW-DTO
= μbSBO, μbGW-DTO = μbGW-GA, μbGW-DTO = μbFA, and μbGW-DTO = μbGA). Whereas
in the alternate hypothesis denoted by H1, the means of the algorithms are not equal. The results of
Wilcoxon’s rank-sum test are presented in Tables 15 and 16. As shown in the table, the p-values are
less than 0.05 between the proposed algorithm and other algorithms, confirming the superiority of the
proposed bGW-DTO algorithm and its statistical significance.

Table 15: Wilcoxon signed-rank test (part 1)

bGW-DTO bGWO bGWO_PSO bPSO bSFS bWAO

P value (two
tailed)

0.001 0.001 0.001 0.001 0.001 0.001

Exact or
estimate?

Exact Exact Exact Exact Exact Exact

P-value
summary

∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗

Significant
(alpha = 0.05)?

Yes Yes Yes Yes Yes Yes

Table 16: Wilcoxon signed-rank test (part 2)

bMGWO bMVO bSBO bGWO_GA bFA bGA

P value (two tailed) 0.001 0.001 0.001 0.001 0.001 0.001
Exact or estimate? Exact Exact Exact Exact Exact Exact
P-value summary ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗

(Continued)
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Table 16: Continued
bMGWO bMVO bSBO bGWO_GA bFA bGA

Significant
(alpha = 0.05)?

Yes Yes Yes Yes Yes Yes

A more investigation of the results achieved by the proposed algorithm is represented by the
plots in Fig. 1. In this figure, four plots are depicted to emphasize the effectiveness of the proposed
algorithm. The first plot is the residual plot, in which the predicted values are plotted with the residual
error. In this plot, it can be shown that the residual error is minor and lies between -0.01 and 0.02,
which indicates the high accuracy of the resulting values. The second plot is the QQ plot in which the
actual and predicted values approximately fit a line, and this proves the effectiveness of the proposed
algorithm. in which the proposed approach is shown to outperform the other methods.

Figure 1: Analytical plots of the achieved results

Fig. 2 depicts the histogram of the average error of the achieved results using the proposed and
other approaches. In this figure, the error values achieved by the proposed bGW-DTO are smaller than
those achieved by the different methods. In addition, the number of occurrences of these error values is
more enormous than the corresponding values reached in the other approaches. These results confirm
the effectiveness of the proposed method in selecting the significant features that could achieve the
minimum error values.
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Figure 2: Histogram of the average error

5 Conclusions

In this paper, we proposed a new algorithm for feature selection based on a hybrid guided
whale optimization algorithm and dipper throated optimizer. The proposed algorithm exploits the
advantages of both optimizers in terms of exploration and exploitation properties. The proposed
algorithm is applied to the problem of a breast cancer diagnosis. Four datasets from the UCI
repository were incorporated in the conducted experiments. To prove the effectiveness of the proposed
algorithm, a set of experiments were conducted and evaluated using several evaluation criteria. The
achieved results showed the superiority of the proposed algorithm and its stability in classifying breast
cancer cases. In addition, statistical analysis is performed in terms of the Wilcoxon and analysis of
variance tests to emphasize the effectiveness of the proposed method. The overall results achieved by
the proposed method outperform the corresponding results using the other eleven feature selection
methods. The future perspective of this research is to evaluate the proposed algorithm using thermal
images of breast cancer cases.

Acknowledgement: Princess Nourah bint Abdulrahman University Researchers Supporting Project
Number (PNURSP2022R104), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Ara-
bia.

Funding Statement: Princess Nourah bint Abdulrahman University Researchers Supporting Project
Number (PNURSP2022R104), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Ara-
bia.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] A. Ibrahim, S. Mohammed, H. Ali and S. Hussein, “Breast cancer segmentation from thermal images based

on chaotic salp swarm algorithm,” IEEE Access, vol. 8, pp. 122121–122134, 2020.



CMC, 2023, vol.75, no.1 1899

[2] M. Etehadtavakol and E. Ng, “Breast thermography as a potential non-contact method in the early
detection of cancer: A review,” Journal of Mechanics in Medicine and Biology, vol. 13, no. 2, pp. 1–20,
2013.

[3] J. Shan, “A fully automatic segmentation method for breast ultrasound images,” Ph.D. dissertation,
Department of Computer Science, Utah State Univ., Logan, UT, USA, 2011.

[4] C. Sehgal, S. Weinstein, P. Arger and E. Conant, “A review of breast ultrasound,” Journal of Mammary
Gland Biol Neoplasia, vol. 11, no. 2, pp. 113–123, 2006.

[5] T. Nelson, L. Cervino, J. Boone and K. Lindfors, “Classification of breast computed tomography data,’’
Medical Physics, vol. 35, no. 3, pp. 1078–1086, 2008.

[6] A. Jalalian, S. Mashohor, R. Mahmud, B. Karasfi, M. Iqbal Saripan et al., “Computer-assisted diagnosis
system for breast cancer in computed tomography laser mammography (CTLM),” Journal of Digital
Imaging, vol. 30, no. 6, pp. 796–811, 2017.

[7] P. Pavithra, R. Ravichandran, S. Sekar and M. Manikandan, “The effect of thermography on breast cancer
detection: A survey,’’ Systematic Reviews in Pharmacy, vol. 9, no. 1, pp. 10–16, 2018.

[8] S. Prabha, C. Sujatha and S. Ramakrishnan, “Asymmetry analysis of breast thermograms using BM3D
technique and statistical texture features,” in Proc. of Int. Conf. on Informatics, Electronics and Visualization,
Dhaka, Bangladesh, pp. 1–4, 2014.

[9] L. Silva, D. Saade, G. Sequeiros, A. Silva, A. Paiva et al., “A new database for breast research with infrared
image,” Journal of Medical Image and Health Informatics, vol. 4, no. 1, pp. 92–100, 2014.

[10] M. Tan and J. Schlimmer, M. Zwitter and M. Soklic, “Breast cancer data set,” 1988, Accessed: April. 1,
2022. [Online]. Available: https://archive.ics.uci.edu/ml/datasets/Breast+Cancer.

[11] M. Patrício, J. Pereira, J. Crisóstomo, P. Matafome, M. Gomes et al., “Breast cancer coimbra data set,”
2018, Accessed: April. 1, 2022. [Online]. Available: https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+
Coimbra#.

[12] O. Mangasarian and W. Wolberg, “Breast cancer Wisconsin (Original) data set,” 1990, Accessed: April. 1,
2022. [Online]. Available: https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Original
%29.

[13] K. Bennett and O. Mangasaria, “Breast cancer Wisconsin (Diagnostic) data set,” 1992, Accessed:
April. 1, 2022. [Online]. Available: https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28
Diagnostic%29.

[14] S. Mambou, P. Maresova, O. Krejcar, A. Selamat and K. Kuca, “Breast cancer detection using infrared
thermal imaging and a deep learning model,” Sensors, vol. 18, no. 9, pp. 2799, 2018.

[15] L. Ehsan and F. Mohammad, “Early breast cancer detection in thermogram images using AdaBoost
classifier and fuzzy C-means clustering algorithm,” Middle East Journal of Cancer, vol. 7, no. 3, pp. 113–
124, 2016.

[16] A. Lashkari and M. Firouzmand, “Developing a toolbox for clinical preliminary breast cancer detection
in different views of thermogram images using a set of optimal supervised classifiers,” Scientific Iranica,
vol. 25, no. 3, pp. 1545–1560, 2018.

[17] F. Li, C. Ou, Y. Gui and L. Xiang, “Instant edit propagation on images based on bilateral grid,” Computers
Materials & Continua, vol. 61, no. 2, pp. 643–656, 2019.

[18] N. Mohamed, “Breast cancer risk detection using digital infrared thermal images,” International Journal
Bioinformatics and Biomedical Engineering, vol. 1, no. 2, pp. 185–194, 2015.

[19] S. Kamath, K. Prasad and K. V. Rajagopal, “Segmentation of breast thermogram images for the detection
of breast cancer: A projection profile approach,’’ Journal of Image and Graphics, vol. 3, no. 1, pp. 47, 2015.

[20] H. Minh, M. Van and T. Lang, “Deep feature fusion for breast cancer diagnosis on histopathology images,”
in 11th Int. Conf. on Knowledge and Systems Engineering (KSE), Da Nang, pp. 1–6, 2019.

[21] M. Khadermi and S. Nedialkov, “Probabilistic graphical models and deep belief networks for prognosis
of breast cancer,” in IEEE 14th Int. Conf. on Machine Learning and Applications, Miami, FL, USA, pp.
727–732, 2015.

https://archive.ics.uci.edu/ml/datasets/Breast+Cancer
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Coimbra#
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Coimbra#
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Original%29
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Original%29
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28 Diagnostic%29
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28 Diagnostic%29


1900 CMC, 2023, vol.75, no.1

[22] P. Mekha and N. Teeyasuksaet, “Deep learning algorithms for predicting breast cancer based on tumor
cells,” in Int. Conf. on Digital Arts, Media and Technology and 2nd ECTI Northern Section Conf. on
Electrical, Electronics, Computer and Telecommunication Engineering, Nan, Thailand, pp. 343–346, 2019.

[23] N. Rane, J. Sunny, R. Kanade and S. Devi, “Breast cancer classification and prediction using machine
learning,” International Journal of Engineering Research & Technology, vol. 9, no. 02, pp. 576–580, 2020.

[24] W. Fathy and A. Ghoneim, “A deep learning approach for breast cancer mass detection,” International
Journal of Advanced Computer Science and Applications, vol. 10, no. 1, pp. 175–182, 2019.

[25] R. Chtihrakkannan, P. Kavitha, T. Mangayarkarasi and R. Karthikeyan, “Breast cancer detection using
machine learning,” International Journal of Innovative Technology and Exploring Engineering, vol. 8, no. 11,
pp. 3123–3126, 2019.

[26] S. Nallamala, P. Mishra and S. Koneru, “Breast cancer detection using machine learning way,” International
Journal of Recent Technology and Engineering, vol. 8, no. 2S3, pp. 1402–1405, 2019.

[27] A. Kumar, R. Sushil and A. Tiwari, “Comparative study of classification techniques for breast cancer
diagnosis,” International Journal of Computer Science and Engineering, vol. 7, no. 1, pp. 234–240, 2019.

[28] W. Wang, Y. Li, T. Zou, X. Wang, J. You et al., “A novel image classification approach via dense-MobileNet
models,” Mobile Information Systems, vol. 2020, no. 1, pp. 1–8, 2020.

[29] A. A. Abdelhamid and S. R. Alotaibi, “Robust prediction of the bandwidth of metamaterial antenna using
deep learning,” Computers, Materials & Continua, vol. 72, no. 2, pp. 2305–2321, 2022.

[30] A. Takieldeen, E., El-kenawy, E. Hadwan and M. Zaki, “Dipper throated optimization algorithm for
unconstrained function and feature selection,” Computers, Materials & Continua, vol. 72, no. 1, pp. 1465–
1481, 2022.

[31] M. M. Eid, E.-S. M. El-kenawy and A. Ibrahim, “A binary sine cosine-modified whale optimization
algorithm for feature selection,” in National Computing Colleges Conf., Taif, Saudi Arabia, pp. 1–6, 2021.

[32] M. Hassib, I. El-Desouky, M. Labib and E.-S. M. El-kenawy, “WOA + BRNN: An imbalanced big data
classification framework using whale optimization and deep neural network,” Soft Computing, vol. 24, no.
1, pp. 5573–5592, 2020.

[33] A. Ibrahim, H. A. Ali, M. M. Eid and E.-S. M. El-Kenawy, “Chaotic harris hawks optimization for
unconstrained function optimization,” in 2020 16th Int. Computer Engineering Conf. (ICENCO), Cairo,
Egypt, IEEE, pp. 153–158, 2020.

[34] A. A. Salamai, E.-S. M. El-kenawy and A. Ibrahim, “Dynamic voting classifier for risk identification in
supply chain 4.0,” Computers, Materials & Continua, vol. 69, no. 3, pp. 3749–3766, 2021.

[35] N. Prerita, A. Rana and A. Chaudhary, “Breast cancer detection using machine learning algorithms,” in
Int. Conf. on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO),
Noida, India, pp. 114–118, 2021.

[36] S. S. M. Ghoneim, T. A. Farrag, A. A. Rashed, E.-S. M. El-Kenawy and A. Ibrahim, “Adaptive dynamic
meta-heuristics for feature selection and classification in diagnostic accuracy of transformer faults,” IEEE
Access, vol. 9, no. 1, pp. 78324–78340, 2021.

[37] E.-S. M. El-Kenawy, S. Mirjalili, A. Ibrahim, M. Alrahmawy, M. El-Said et al., “Advanced meta-
heuristics, convolutional neural networks, and feature selectors for efficient COVID-19 X-ray chest image
classification,” IEEE Access, vol. 9, no. 1, pp. 36019–36037, 2021.

[38] E.-S. M. El-kenawy and M. Eid, “Hybrid gray wolf and particle swarm optimization for feature selection,”
International Journal of Innovative Computing, Information & Control, vol. 16, no. 1, pp. 831–844, 2020.

[39] W. Wang, X. Huang, J. Li, P. Zhang and X. Wang, “Detecting COVID-19 patients in X-ray images based
on MAI-nets,” International Journal of Computational Intelligence Systems, vol. 14, no. 1, pp. 1607–1616,
2021.

[40] Y. Gui and G. Zeng, “Joint learning of visual and spatial features for edit propagation from a single image,”
The Visual Computer, vol. 36, no. 3, pp. 469–482, 2020.


	Adaptive Dynamic Dipper Throated Optimization for Feature Selection in Medical Data
	1 Introduction
	2 Materials and Methods
	3 Proposed Methodology
	4 Experimental Results
	5 Conclusions



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [300 300]
  /PageSize [612.000 792.000]
>> setpagedevice


