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Abstract: Localization plays a vital role in the mobile robot navigation
system and is a fundamental capability for the following path planning
task. In an indoor environment where the global positioning system signal
fails or becomes weak, the wireless sensor network (WSN) or simultaneous
localization and mapping (SLAM) scheme gradually becomes a research hot
spot. WSN method uses received signal strength indicator (RSSI) values to
determine the position of the target signal node, however, the orientation of
the target node is not clear. Besides, the distance error is large when the indoor
signal receives interference. The laser SLAM-based method usually uses a 2D
laser Lidar to build an occupancy grid map, then locates the robot according
to the known grid map. Unfortunately, this scheme only works effectively in
those areas with salient geometrical features. The traditional particle filter
always fails for areas with similar structures, such as a long corridor. To
solve their shortcomings, this paper proposes a novel coarse-to-fine paradigm
that uses WSN to assist mobile robot localization in a geometrically similar
environment. Firstly, the fingerprints database is built in the offline stage to
get reference distance information. The distance data is determined by the
statistical mean value of multiple RSSI values. Secondly, a hybrid map with
grid cells and RSSI values is constructed when the mobile robot moves from
a starting point to the ending place. Thirdly, the RSSI values are thought of
as a basic reference to get a coarse localization. Finally, an improved particle
filtering method is presented to achieve fine localization. Experimental results
demonstrate that our approach is effective and robust for global localization.
The localization success rate reaches 97.0% and the average moving distance
is only 0.74 meters, while the traditional method always fails. In addition,
the method also works well when the mobile robot is kidnapped to another
position in the environment.
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1 Introduction

Recently, both mobile robots and the internet of things (IoT) have been hot spots of research
and can be used in many applications [1]. The intelligent mobile robot can be thought of as an
autonomous mobile terminal in the WSN while the sensors or other devices are the static terminals. It’s
already common that mobile robots serve human beings in many areas, for instance, there are many
commercial service robots used for transporting goods in industrial parks, factory workshops, hotels,
restaurants, and hospitals, especially during the COVID-19 epidemic time [2]. The premise for robots
to perform these tasks is that they can navigate and plan paths autonomously [3]. Before the navigation,
the mobile robot needs to achieve its pose which includes position coordinates and orientation on a
two dimensional plane. Given the initial pose and a target position, the following navigation process
will be a relatively mature work. Therefore, localization task is vital and meaningful in mobile robotics
research.

In an outdoor environment, the global positioning system (GPS) is the most popular and widely
used location technology in the world [4]. Due to the absence of GPS signal in the indoor environment,
many other signals are proposed to solve this problem, for instance, WiFi [5], ultrasonic, radio
frequency identification (RFID) [6], ultrawide-band (UWB) [7] and WSN [8]. RSSI is usually used to
calculate the approximate distance between the receiver and the signal transmitter [9]. However, these
methods can only provide basic and rough localization information. The mobile robot still cannot
know where is the free area or obstacle, thus cannot navigate or walk freely in the environment.
Another route is focused on the 2D laser rangefinder or Lidar which can be used to achieve the
2D metric information and map the environment around the mobile robot. In addition, the metric
map is suitable and effective for path planning. A 2D probabilistic occupancy grid map is built firstly
using a technique called SLAM, then the mobile robot performs the localization task according to the
constructed map and Monte Carlo localization method (MCL) [10]. However, when the mobile robot
moves to a geometrically similar area, the 2D laser sensor gets the same data from its surroundings
and the localization task becomes very difficult [11].

To solve the above localization problem in a geometrically similar indoor environment, such as
a long corridor, this work provides an alternative scheme by combining the WSN and laser SLAM
techniques. Firstly, we build a hybrid map using the two techniques. Then, we utilize a coarse-to-fine
paradigm that uses signal retrieval to get a coarse position candidate. Lastly, the laser scanning data
are used to achieve a fine localization pose. The whole framework of the mapping and localization
system is depicted in Fig. 1. The main contributions of this work are as follows:

• A hybrid map consisted of the fingerprints of signal values and an occupancy grid map is built
when the mobile robot moves in a geometrically similar environment. The coordinates of the
signal nodes are determined based on the laser SLAM mapping progress.

• The joint initialization of the global localization. The mobile robot achieves the coarse position
without orientation according to the RSSI retrieval and then moves a short distance to decide
the orientation. The fine localization task is done by using the laser scanning data and the
improved MCL method.

• An improved resampling strategy is used to detect the robot kidnapping incident. RSSI values
and the fixed time interval are considered as the references. Experimental results show that
our proposed approach is efficient and achieves a 97.0% successful localization rate within one
meter moving distance while traditional MCL methods always fail. In addition, the robot can
rapidly recover its pose from a kidnapped incident.
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Figure 1: Framework of the mapping and localization system

This paper is organized as follows. The related work of laser-SLAM and localization, and WSN-
assisted localization are discussed in Section 2. A proposed methodology is presented in Section 3,
which includes building an occupancy grid map, RSSI-distance fingerprint, building a hybrid map
and coarse-to-fine localization. The experiment and discussion are described in Section 4. Finally,
Section 5 gives the conclusion.

2 Related Work
2.1 Laser SLAM and Localization

Laser SLAM is mainly used for constructing a grip map of the environment where the mobile
robot performs tasks. Due to the high costs, 3D laser Lidar is usually used for outdoor self-driving [12]
or indoor 3D reconstruction [13]. In an indoor environment, most of the surroundings are structured
scenes, mobile robot only needs to know which areas can pass through for navigation. Therefore, the
2D laser Lidar is enough for the purpose of building a two-dimensional probability occupancy grid
map. This map is used for the following path plan. The most famous works of the 2D laser Lidar
SLAM are Gmapping [14] and Cartographer [15]. The former is a filter-based scheme and the latter
is a graph optimization scheme. In addition, there are other options such as hector SLAM [16] and
Karto SLAM [17].

Localization solves the question ‘Where am I’ and includes three cases which are global local-
ization, pose tracking (local localization) and the kidnapped robot problem [18]. Global localization
means the robot needs to know its pose when it wakes up anywhere on a given map. Kalman filter and
its extended versions are mainly used for pose tracking, not suitable for global localization and robot
kidnapped problems [19,20]. On the contrary, particle filter approaches can solve the whole cases [21].
Monte Carlo localization methods use particles to simulate arbitrary distribution. More importantly,
they are suitable to deal with nonlinear and non-gaussian problems. However, for those geometrically
similar environments, the MCL method will fail.

2.2 WSN-Assisted Localization

WSNs have been applied in the field of localization which mainly depends on RSSI [22], such
as search and rescue environment [23], and underwater scenes [24]. Generally, the geometric and
fingerprint approaches are commonly used in RSS indoor localization systems. Due to the non-
line-of-sight (NLOS), the geometric approach implements easily but has low position accuracy
[25]. Differently, the fingerprint method requires only the collection of RSS values at several fixed
locations. The signal fingerprint is usually performed in an offline surveying phase and followed by
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an online querying phase [26]. In the offline phase, a database is formed by collecting several location
fingerprints. In the online phase, the mobile robot or agent collects several RSS values to calculate the
approximate position.

However, due to the environmental impacts, the measured RSSI value is time-varying and
unreliable [27]. Consequently, the mobile robot localization only based on the WSN method cannot
achieve an accurate location. More seriously, the orientation of the mobile robot cannot be determined
and the RSSI information is not enough for obstacle avoidance. The combination of WSN and SLAM
is a new trend, especially in the field of mobile robotics. In literature [28,29], the authors combine
the two techniques to realize an accurate pose estimating error. However, they only did the SLAM
process, not the re-localization in the environment given a known map. In addition, the map points
were some simulated sparse features which are not suitable for path planning and navigation tasks [30].
Gives a result of the fusion of WiFi, IMU and SLAM. The result is only thought of as an odometry
measurement, still not a re-localization task according to a previously built map. Different from all
these works, our proposed approach combines the laser-based SLAM and the RSSI techniques to
build an occupancy grid map. Based on the known map, the autonomous mobile robot can realize a
better localization result.

3 Proposed Methodology
3.1 Build an Occupancy Grid Map

In the map building phase, the mobile robot utilizes the SLAM technique to solve a contradictory
problem. The SLAM is a process that a mobile robot perceives an unknown environment and con-
structs a map. The mobile robot needs to concurrently estimate the robot pose and the environmental
structures. In general, a 2D laser-based SLAM mapping system needs odometry to estimate the moving
process and a laser rangefinder to estimate the measurement process.

Fig. 2 shows a diagram of the mobile robot motion model based on odometry which is an encoder
attached to each wheel of the mobile robot. Suppose the poses of the robot at time t − 1 and t are
xt−1 = (xt−1, yt−1, θt−1) and xt = (xt, yt, θt), respectively. The black cycle on the lower left represents the
position of the mobile robot at time t − 1 and the black solid arrow means the orientation. Similarly,
the upper right part means that of time t. The displacement of the robot from time t − 1 to time t can
be decomposed into one translation (δtrans) and two rotations (δrot1 and δrot2).

Figure 2: Diagram of the mobile robot motion model

If the influence of error is not considered, then the translation and rotations can be computed
from Eq. (1).
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⎧⎪⎪⎨
⎪⎪⎩

δrot1 = atan2 (yt − yt−1, xt − xt−1) − θt−1

δtrans = √
(xt − xt−1)2 + (yt − yt−1)2

δrot2 = θt − θt−1 − δ̂rot1

(1)

However, due to the drift and slip of wheels, there is no fixed coordinate transformation between
the coordinates used by the odometer in the mobile robot and the coordinates of the physical world.
The difference between the real value and the ideal value can be obtained by sampling, as Eq. (2)
shows:⎧⎪⎪⎨
⎪⎪⎩

δ̂rot1 = δrot1 − sample
(
α1δ

2
rot1 + α2δ

2
trans

)
δ̂trans = δtrans − sample

(
α3δ

2
trans + α4δ

2
rot1 + α4δ

2
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)
δ̂rot2 = δrot2 − sample

(
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2
rot2 + α2δ

2
trans

) (2)

where the variables α1, α2, α3, and α4 are the specific parameters that specify the robot motion noise.
δ̂rot1, δ̂rot2, and δ̂trans are the estimated results. Then, taking all these information together, the odometry-
based probabilistic motion model from time t − 1 to t can be defined as Eq. (3):
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The measurement function usually utilizes the likelihood field model instead of beam rangefinder
model. The reason is that the latter one lacks of smoothness. Suppose the (xk,sens, yk,sens)

T represents
the position of the sensor local coordinate system fixedly connected with the mobile robot and θk,sens

means the angle of sensor beam relative to robot the heading direction. The endpoint coordinates of
the measurement zk

t can be mapped to the global coordinate system through triangular transformation,
as Eq. (4) shows.(
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The measurement probability q calculated by the likelihood domain is as bellow:⎧⎪⎨
⎪⎩

dist = min
x′ ,y′

{√
(xzk

t
− x′)2 + (yzk

t
− y′)2| 〈x′, y′〉 occupied in m

}
q = q · (zhit · prob (dist, σhit) + zrandom

zmax

(5)

where (x′, y′) is the position of the obstacle in the map system, zhit is the normal measured distance,
zrandom is the random measured distance and zmax is the maximum value of the sensor. Given the
known map and observation values, the localization problem is easy to solve. Similarly, given the
pose and observation of the robot, it is easy to build a map. However, the mapping process without
a known pose which also is named SLAM is difficult. The reason is that the mobile robot needs to
concurrently estimate its pose and build a metric map. The SLAM technique can be thought of as
a state estimation problem which jointly estimates the poses and observations. A diagram of SLAM
process is shown in Fig. 3. The hexagonal star with a solid black line indicates the position of the real
observation landmark and the triangle with a red solid line represents the real pose of the robot. In
contrast, the hexagonal star with a dashed black line indicates the position of the estimated observation
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landmark and the triangle with a red dashed line represents the estimated pose of the robot. Due to the
measurement errors of the odometer and observation sensor, it is difficult to obtain accurate values,
so the error can only be reduced as much as possible.

Figure 3: SLAM or state estimation

The probabilistic occupancy grid map can be thought of as a combination of many basic grid
cells. The grid cells are the discretization of a place and the mathematical equation can be described
as follows:

p (m|z1:t, x1:t) = �
i
p (mi|z1:t, x1:t) (6)

where m is the map to be built and mi is the i-th cell of the map. The logarithmic probability expression
(7) is to avoid the numerical instability near 0 and 1.⎧⎪⎪⎨
⎪⎪⎩

p (mi|z1:t, x1:t) = 1 − 1
1 + exp{lt,i}

lt,i = log
p(mi|z1:t, x1:t)

1 − p(mi|z1:t, x1:t)

(7)

where lt,i is the expression of logarithmic occupancy probability. The SLAM process can be expressed
as:

p (x1:t, m|z1:t, u1:t) = p (x1:t|z1:t, u1:t) p (m|x1:t, z1:t, u1:t)

= p (m|x1:t, z1:t) p (x1:t|z1:t, u1:t) (8)

3.2 RSSI-Distance Fingerprint

The database of RSSI-distance fingerprints needs to be created before the localization and
navigation process. Fig. 4 shows the diagram of the localization which includes reference signal points
and a mobile robot mounted with a signal receiver. The mobile robot collects signal information in
different positions and saves them into a database.

Figure 4: The diagram of RSSI-based localization
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In Fig. 4, the blue marks are reference signal nodes which are also called signal beacons or points in
other literatures. Although the names are different, the essential effects are the same. They are usually
placed in the indoor environment in advance and given the known coordinates by manual calibration.
The locations of all reference signal nodes could be denoted as LOCRN and were shown in the following
formula.

LOCRN = [
x1 y1, x2 y2, · · · xi yi, · · · xn yn

]T
(9)

where (xi, yi) means the i-th coordinates of the reference signal node and n is the total number of
reference signal nodes.

The red dot represents a mobile robot that carries a signal receiving node. Theoretically, in all
areas covered by the reference node signals, the receiver node can receive an RSSI value from each
reference signal node. Consequently, sampling signal strengths at several fixed points can be thought
of as collecting signal fingerprints. The black dots in Fig. 4 denote the fixed sampling points. In each
sampling point or position, the receiving RSSI values can be denoted as a signal vector or fingerprint
FPi, as formula 10 shows.

FPi = (
rss1

i rss2
i · · · rssj

i · · · rssn
i

)
(10)

where rssj
i is the receiving signal strength value from the j-th signal node to the i-th sampling position.

In the i-th sampling position, the receiver node can achieve n RSSI values if the n signal nodes are
distributed within a visual range.

The fingerprint database consists of m vectors which are RSS values combined and collected from
sampling points, as formula 11 shows.

FP =

⎡
⎢⎢⎢⎣

rss1
1 rss2

1 · · · rssn
1

rss1
2 rss2

2 · · · rssn
2

...
...

...
...

rss1
m rss2

m · · · rssn
m

⎤
⎥⎥⎥⎦ (11)

The next work is to achieve the relationship between the receiving signal strength and the distance
information. Given the relationship and the RSSI value, the distance from the i-th sampling point to
each reference signal node can be computed. Similarly, the position of the i-th sampling point can be
a trilateral theorem or the least square value by solving nonlinear equations [31]. Therefore, the key
to the problem is how to obtain the distance according to the receiving signal strength. A classical
path-loss equation [32] for the corridor or open space scene in this work is defined as follows.⎧⎪⎨
⎪⎩

RSSIdi (dBm) = RSSId0
(dBm) −

[
10 × α × log10

(
di

d0

)]
+ δ

di = d0 × 10
RSSId0

(dBm)−RSSIdi(dBm)+δ

10×α

(12)

where di is the distance from the reference signal node to the i-th sampling point. d0 is usually set to 1
as a reference value. RSSIdi is the mean RSSI value that is collected at the i-th sampling point, similarly
with the RSSId0. δ is the measurement noise and α is the signal attenuation index.

After knowing the distance from each sampling point to each reference point, it is easy to calculate
the position coordinates of the sampling point LOCsi, as follows:{

dsi−RN = (dsi1, dsi2, · · · , dsin

LOCsi = (xsi, ysi)
(13)
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3.3 Build a Hybrid Map

Different from the traditional practice in the field of communication, we do not mark the
coordinates of the reference signal nodes in advance. We utilize the laser-based SLAM to construct
an occupancy grid map, in the meanwhile, mark the position of the reference signal node on the map
according to the path-loss equation and relative calculation formulas. The purpose is to convert the
coordinates of RNs into the coordinate system of the mobile robot and the world coordinate system.
Then, the coordinates of the RNs in the map can be represented as formula 14:

MapRN = [
mx1 my1, mx2 my2, · · · , mxn myn

]T
(14)

where
(
mxi, myi

)
is the coordinates of the i-th reference signal node in the grid map as Fig. 5 shows.

Figure 5: The diagram of building a hybrid map

In Fig. 5, each of the RNs is placed on the wall near the door frame which has a corner and is easy
to identify. After building the grid map, the coordinates of the RNs are marked manually according
to the world coordinate.

3.4 Coarse-to-Fine Localization

Given a known map, the localization mode uses a coarse-to-fine paradigm to achieve the mobile
robot pose. Instead of uniformly sampling particles from the whole occupancy grid map, we bias the
region which recommended by the RSSI retrieval result. Due to the infinity of continuous space, the
sampling points cannot cover all areas in the indoor environment. Therefore, when the mobile robot
moves in the coverage area, the estimation position can be computed according to Eq. (15).⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(xest − x1)
2 + (yest − y1)

2 = d2
1

(xest − x2)
2 + (yest − y2)

2 = d2
2

· · ·
(xest − xn)

2 + (yest − yn)
2 = d2

n

(15)

However, the above computation equation is effective only under ideal conditions. In practice,
the distance di between the estimation position and a reference node can not be obtained directly. To
this end, we use the K Nearest Neighbor (KNN) algorithm to achieve the most likely position of the
mobile robot relative to the sampling points [33]. Obviously, the mobile robot is located in a subarea
between the two or adjacent reference signal nodes with the highest RSSI values, like the green area
in Fig. 6a.
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d
(
rssk

est, rsssi

) =
√∑m

j=1

(
rssij

est − rssij
i

)2
(16)

where m is the number of RFs which have high RSSI values relative to the i-th sampling point. k is the
number of sampling points near the position that needs to be estimated.

Figure 6: Coarse localization diagram. (a) Subarea determination. (b) Slightly adjustment to obtain
orientation. (c) Particles initialization

The position of the mobile robot can be coarsely determined by using RSSI information, however,
the orientation of the mobile robot cannot be determined. To this end, our proposed strategy is that
the mobile robot moves a short distance and detects the signal difference. As Fig. 6b shows, the mobile
robot moves from position A to position B to obtain a best perspective like our previous work [11]. If
the RSSI value in the estimation position B relative to RN-i increases, then the orientation is toward
the RN-i, otherwise, toward the opposite direction.

After knowing the initial position and orientation of the mobile robot, the following task is
to get a fine localization using an improved particle filter algorithm. In the initialization of the
global localization step, the particles are scattered evenly in a circular area as Fig. 6c shows and the
representation is shown in Eq. (17):

(x − xest)
2 + (y − yest)

2 = R2 (17)

where R is the radius of the circular and the weights of the particles are equal to 1/N where N is the
number of particles. In this work, the weights are given by a gaussian distribution function as Eq. (18):

winitial = P((x, y); u, �)

= 1

2π�

1
2

exp(−1
2
(x − xest)

T�−1(y − yest))

= 1
2πσxσy

exp

(
−
(

(x − xest)

2σ 2
x

2

+ (y − yest)

2σ 2
y

2
))

(18)
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where (xest, yest) is the estimated position of the robot. The orientations of the particles are parallel to
the corridor, so random generation is not required. Fig. 7 shows the particles with different weights.

Figure 7: Particles with different initialized weights

A detailed algorithm is described in Algorithm 1. The observation data includes the laser scanning
distances and the RSSI values. Resampling trigger can be set to a fixed time interval. Different from
many other resampling schemes that simply replicate the particles with high weights and lose the
particle diversity [34], our proposed approach resamples particles according to the RSSI retrieval result
after a fixed time interval. Consequently, we do not need to worry about losing particle diversity or
spending time on complex resampling algorithms.

Algorithm 1. Improved MCL Algorithm
Input: Last step sample set χt−1, Odometry ut, Observation zt, Hybrid map m
Output: Optimal estimated poses set χt

1: Particles initialization, t = 0,
−
χ t = χt = ∅

2: Orientation determination, coarse position estimation based on RSSI retrieval
3: for i = 1 to N do
4: uniformly samples particles in a circular area with the center (xest, yest) and radius R
5: ŵi

0 ∼ N
(
uxest ,yest , �x,y

)
6: end for
7: Normalized weights wi = wi/

∑N

j=0w
j

8: for t = 1 to k do
9: for i = 1 to N do
10: x̂[j]

t = sample_motion_model
(
ut, x[j]

t−1

)
11: ŵ[j]

t = measurement_model
(
zt, x̂[j]

t , m
)

12:
−
χ t = −

χ t ∪
{〈

x̂t, ŵt

〉}
13: end for
14: if resample trigger
15: resampling the particles, go to step 3

(Continued)
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Algorithm 1. Continued
16: end if
14: end for
15: return χt

4 Experiment and Discussion

Our experimental mobile robot is a modified two-wheel differential driving vehicle shown in
Fig. 8a. A RPLIDAR A2 laser Lidar (SLAMTEC company, China) which has a 360-degree rotation
range and an effective measurement radius of 8 to 10 meters in practice. In addition, the microcom-
puter with 1.5 GHz ARM Cotex-A72 CPU and 8GB RAM. The reference signal nodes and the signal
receiver node use the CC2530 module (Texas Instruments, USA) which is based on the ZigBee protocol
and IEEE 802.15.4 standard.

Figure 8: Experimental setup. (a) The mobile robot platform. (b) CC2530 module

The occupancy grid map is built by using the cartographer SLAM method. The experimental
environment is a long corridor with many symmetrical and similar areas inside a student dormitory
as shown in Fig. 9. It is obvious that the mobile robot will fail to locate itself because of the similarity
of laser scanning data. The length of the corridor is 43.50 m and the width in the non-door area is
1.85 m. We put 10 reference signal nodes on one side of the corridor and paste them on each door. 26
positions are chosen as the sampling points to collect the RSSI fingerprints.

Figure 9: RF nodes and sampling points in the occupancy grid map of the environment
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4.1 Global Localization

In the global localization experiment, we sampled 27 positions in the corridor and most of them
were between two adjacent reference sampling points as shown in the black star signs in Fig. 10. The
ground truth of the signed positions and the distances were measured manually using a tape ruler.
In addition, the whole area was divided into 9 subareas as shown in the green rounded rectangles in
Fig. 10. The subarea was between two adjacent reference signal nodes.

Figure 10: Diagram of the test points distribution

The first experiment was the coarse localization of the fingerprint retrieval method using RSSI
values and the KNN algorithm. The mobile robot mounted with a signal receiver module was placed
on the target sampling position to collect RSSI values and compute the coordinates. 10 times tests
with random robot heading directions in each test position were conducted. The total number of tests
was 270 and we recorded the experimental data to obtain some statistical results. If the computed
coordinates of the test position fell into the relative subarea, we thought it was a correct subarea
localization. Due to the existence of various errors and noises, it was impossible to achieve an
absolutely accurate positioning coordinate. Therefore, we recorded the number of positioning errors
within 1.0 meters and 2.0 meters, respectively. Table 1 shows the coarse localization result using this
method.

Table 1: Coarse localization result using RSSI method

Number of tests Number of correct
subareas

Correct subareas
rate (%)

Success rate within
1.0 m (%)

Success rate
within 2.0 m (%)

270 253 93.7 83.3 91.5%

The detailed error values from the subarea between FN6 and FN7 as shown in Fig. 11.

From left to right, the three estimated test positions E16, E17, and E18 were represented by the
black rectangle, red-filled circle, and blue triangle, respectively. At each test position, we recorded the
absolute value of the difference between the estimated coordinates and the real position coordinates.
Although there was a random error in each measurement, the mean error of all the 30 tests was 0.98
meters which was less than 1 meter and was within an acceptable range.

The second experiment consisted of two separate parts. One of them used the traditional AMCL
method to get a global localization task without a known initial pose, the other utilized our proposed
approach and strategy to obtain an initialization based on the RSSI retrieval result. Both the two parts
aimed to get a fine localization pose. Figs. 12 and 13 are the results of the traditional MCL method
and our proposed method, respectively.
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Figure 11: Errors of the 10 times results in each test position of a subarea

In Fig. 12a, the mobile robot was placed manually at position E17, then a global localization task
was performed. Due to the unknown initial pose of the mobile robot, the particles were scattered
evenly on the whole map. The number of particles was usually proportional to the area of the map. In
other words, the larger the map, the more particles were required. The mobile robot was controlled to
move to the right side of the corridor. Fig. 12b shows a result after 12 iterations (we uniformly called
the number of resampling as the number of iterations). The particles gradually clustered into many
clusters. Fig. 12c demonstrates the process after 25 iterations. In Fig. 12d, we find that the cluster is
3 and the mobile robot has moved closer to the end of the corridor. To obtain a single cluster, we
controlled the mobile robot moving reversely and Fig. 12e shows the final state. Unfortunately, this
pose is not the real pose in the corridor. More experiments have verified the failure of traditional
methods in similar environments.

Different from the traditional AMCL method, our proposed strategy gets a coarse localization
result from fingerprint retrieval according to the RSSI values. The achieved position was within an
error range and did not have orientation information. The orientation was decided according to
the strategy described in Section 3.4 and Fig. 6b. After a slight adjustment to get the orientation
information from position E17, the particle initialization was shown in Fig. 13a. Obviously the number
of particles was less than that of the traditional method.

To get a fine localization result, the mobile robot should move a short distance and the particles
would converge to a single cluster. Fig. 13b shows the particles in the longitudinal direction of the
corridor gradually become narrower. This phenomenon indicates that the lateral error is small because
the width of the corridor is within the scanning radius of the laser sensor. Similarly, the longitudinal
error is slightly larger than the lateral error which is due to the long distance of the corridor. When
the mobile robot moved to the position close to the door area, the uncertainty was less, as shown in
Fig. 13c, and a fine localization process ended. After that, the task is the pose tracking which also is
called local localization.
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Figure 12: Global localization process of traditional AMCL. (a) Initialization of the particles. (b) 12
iterations. (c) 25 iterations. (d) 57 iterations. (e) 79 iterations with a wrong pose
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Figure 13: Global localization results of the proposed method. (a) Initialization of the particles.
(b) Particle distribution after moving a short distance. (c) Successful localization when particles
converged

We placed the mobile robot at every tested position to perform global localization tasks and
conducted it 10 times at each position. The average results of the localization process are shown in
Table 2. When using the traditional AMCL method, we controlled the mobile robot moving along
the corridor till the particles converge into a single cluster. If the mobile robot did not converge after
reaching the end of the corridor, it would continue to move in the opposite direction. The results
show that the traditional method has a low global localization success rate even though the number of
particles increases. In contrast, our proposed method can achieve a high success localization rate with
few particles.

Table 2: Statistical results of global localization

Method Particle number Average iterations Moving distance
(Average)/m

Success rate

AMCL 500 45 14.45 9.6%
AMCL 1000 61 23.19 12.6%
AMCL 5000 73 31.27 26.6%
Ours 50 5 0.72 96.3%
Ours 500 9 0.74 97.0%
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4.2 Recovery from Robot Kidnapping

When a mobile robot was kidnapped from one position to another position, we tested the
traditional method and our proposed approach, respectively. If the constructed map had salient
geometrical or structural features that were extracted by laser scanning data, the mobile robot usually
could recover its pose after a period of adjustment using the traditional AMCL method. Nevertheless,
as shown in Fig. 14, many areas are geometrically similar when using only laser scanning data. Neither
2D laser rangefinder nor 3D laser Lidar could distinguish the highly similar or symmetrical areas in
the corridor.

Figure 14: Diagram of the kidnapped robot problem

In this experiment, we placed the mobile robot on the left side of the corridor and gave its initial
pose manually. The navigation task was moving from the start position to the target position on the
right side of the corridor. As shown in Fig. 14, the start position and target position are fell into subarea
1 and subarea 7, respectively. In Fig. 14 the purple line is the planned path using the navigation package
and the robot will reach the target position smoothly if without accident. When the robot moved to
position K0, we kidnapped the robot and placed it at position K1 where the scanning data of the
surrounding area was similar to that of K0. The traditional AMCL method could not find the change
and the mobile robot continued to move forward until it reached position K3. Unfortunately, the
mobile robot could not recover its pose from this kidnapped accident though the surroundings at
position K3 was different from the target position.

Another experiment repeated the above process but used our proposed strategy. When the mobile
robot was kidnapped from K0 to K1, the robot did not immediately notice the change but moved
forward to the target position. Due to the resampling strategy of our proposed method, the mobile
robot would resample the particles according to the RSSI values and signal fingerprint retrieval after
a fixed time interval. Then, the mobile robot would find itself falling into subarea 5, not subarea 2
or subarea 3. Theoretically, the signal receiving values could be confirmed by multiple times tests and
computations which confirmed the kidnapped robot accident with a larger probability.

Two error variation processes using different methods when the kidnapped mobile robot problem
occurred are shown in Fig. 15. The abscissa is the time interval and the ordinate is the positioning
error. Before time zero, the mobile robot worked normally and moved from one position to another.
We thought the time when the robot was kidnapped as time zero. Fig. 15a shows that the traditional
AMCL method could not find the changes before and after the kidnapping accident though the real
error kept at about 14.85 meters. The robot would eventually be lost in the long corridor environment
and was unable to recover its true position and orientation. In contrast, as shown in Fig. 15b, our
proposed method found the change after a fixed time interval (empirically set to 8 s which was a
resampling strategy) and soon recovered its pose in the real world.
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(a) (b)

Figure 15: Recovery from the kidnapped robot problem. (a) Error variation of AMCL method.
(b) Error variation of the proposed method

5 Conclusion

In this work, we propose a novel approach that combines WSN and laser Lidar-based SLAM
to realize a robust and accurate localization for an autonomous mobile robot. A hybrid map
with occupancy grid cells and RSSI values is built in the mapping stage. Then, the mobile robot
accomplishes the localization task by using a coarse-to-fine paradigm. We use the newly captured RSSI
values to compare with the sampling points in the map building stage and calculate the coarse position
of the mobile robot. However, the position is not accurate and has no orientation information. Our
proposed strategy can rapidly get a basic orientation of the mobile robot. Fine localization is realized
by using an improved MCL approach. Experimental results demonstrate that our method is effective
and robust for global localization. The localization success rate reaches 97.0% and the average moving
distance is only 0.74 meters, while the traditional method always fails. In addition, the method also
works well when the mobile robot is kidnapped to another position in the environment.

Although this work can deal with the localization problem in the geometrically similar environ-
ment, external signal nodes need to place at fixed positions in advance. In the future work, we will
try other technical means to assist SLAM localization solution, such as camera and image processing.
Without considering the external signal node cost, this scheme is very effective and can be applied
to more indoor environments, such as stations, factories and libraries. In addition, this work can be
extended to an outdoor environment like forest or tunnel scenes by using 3D Lidar SLAM and WSN
techniques.
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