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Abstract: The prediction of processor performance has important reference
significance for future processors. Both the accuracy and rationality of the
prediction results are required. The hierarchical belief rule base (HBRB)
can initially provide a solution to low prediction accuracy. However, the
interpretability of the model and the traceability of the results still warrant
further investigation. Therefore, a processor performance prediction method
based on interpretable hierarchical belief rule base (HBRB-I) and global
sensitivity analysis (GSA) is proposed. The method can yield more reliable
prediction results. Evidence reasoning (ER) is firstly used to evaluate the
historical data of the processor, followed by a performance prediction model
with interpretability constraints that is constructed based on HBRB-I. Then,
the whale optimization algorithm (WOA) is used to optimize the parame-
ters. Furthermore, to test the interpretability of the performance prediction
process, GSA is used to analyze the relationship between the input and the
predicted output indicators. Finally, based on the UCI database processor
dataset, the effectiveness and superiority of the method are verified. Accord-
ing to our experiments, our prediction method generates more reliable and
accurate estimations than traditional models.

Keywords: Hierarchical belief rule base (HBRB); evidence reasoning (ER);
interpretability; global sensitivity analysis (GSA); whale optimization
algorithm (WOA)

1 Introduction

Currently, processor performance prediction plays a pivotal role in dictating the evaluation of
new processor designs. As with the continuous improvement of processor performance, processor
design and evaluation have become increasingly complicated [1]. Processors consist of structures
that directly or indirectly affect the performance of the whole system [2]. Structural parameters,
program characteristic parameters, processor and applications related parameters all have different
degrees of influence on it. However, the uncertainty in these parameters makes processor performance
predictions difficult. Therefore, it is necessary and crucial to establish an accurate and reasonable
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performance prediction method. This can solve the uncertainty of target attributes and provide a
reliable reference for processor design.

According to the modeling mechanism, performance prediction methods can be divided into three
categories: a black-box model, a white-box model and a gray-box model [3]. The black-box model is
an evaluation model constructed based on data-driven methods, such as neural networks, random
forests [4], support vector machines, etc. The black-box model often does not require the mechanism
analysis of the system itself. Instead, its results rely on a large amount of sample training with unclear
reasoning processes. For example, Maurya [5] et al. used an artificial neural network (ANN) model to
input processor performance features into the ANN model. Then the performance prediction results
after weight adjustment were obtained. The white-box model doesn’t rely on observational data, but is
based on system runtime principles. It establishes modeling by designing and deriving structures based
on expert experience and knowledge such as linear regression [6] and decision tree [7]. The white-box
model describes the input and output well in good details and shows good interpretability, whereas the
complex system structure and systematic environmental factor result in limited accuracy. Interestingly,
by conducting experiments on single-core and multicore processors, Li [1] et al. developed a prediction
modeling method based on a regression tree in combination with advanced sampling technology
in statistical learning and machine learning. Their methods effectively realized the prediction of
processor performance. The gray-box model is an intermediate model compared with the white-box
and the black-box models. It uses the system mechanism to build the model and effectively integrates
the observation data with the model mechanism to reach further model optimization. Therefore, the
gray-box model not only guarantees accuracy, but also improves the interpretability of the model.
Common gray-box models include evidence-based reasoning [8] and belief rule bases [9]. For example,
Wen et al. [10] preprocessed and normalized the historical data of CPU usage. Autoregressive model
and grey model were used as basic prediction models. Then, the particle swarm optimization algorithm
was combined to optimize the model.

The uncertainty of processor parameters brings challenges to traditional modeling methods. The
black-box model can ignore the uncertainty of input and obtain accurate prediction value. However,
the reasoning process is opaque, the results are not traceable, and there is no effective insight into
the impact of each input on the structure. The white-box model is affected by the system structure
and system environment parameters, and the model accuracy cannot be guaranteed. Therefore, the
gray-box model is more suitable for the performance prediction of processors, which can guarantee
the accuracy and interpretability of the model at the same time.

Belief rules are gray box models extended from IF-then rules and traditional D-S theory. It uses
evidential reasoning (ER) as an inference engine to establish the uncertain relationship between input
and output [11]. Up to date, it has been widely used in security assessment [12], fault detection [13] and
other fields. However, when there are too many input attributes, BRB is susceptible to the problem
of combinatorial rule explosion, which impacts the construction of the model. This problem can
be properly solved by hierarchical belief rule base (HBRB), which combines mechanism analysis of
the system for layering and sub-BRB constructs based on underlying indicators. The output of the
previous layer is used as the input of the latter layer which reoccurs and continuously accumulates
with the target output state [14]. For example, Cao [15] proposed a new MLBRB model that divided
the model into extraction blocks and fast processing blocks. Then, hierarchical learning strategy and
the layer adaptive growth strategy were used to optimize these two blocks. This hierarchical structure
ensured model accuracy and the structure was easy to understand. HBRB is affected by the modeling
and optimization processes, but its interpretability would be compromised to a certain extent [16].
As a result, an HBRB-I processor performance prediction method is proposed here. This method
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adds interpretability criteria on the basis of HBRB modeling and also makes the optimization process
interpretable.

To verify the interpretability of the prediction method, a sensitivity analysis method is applied
in this study. As an uncertainty analysis technique [17], sensitivity analysis quantitatively studies the
relationship between input and output changes under given assumptions. Traditional methods include
local sensitivity analysis [18] and global sensitivity analysis [19]. For example, Yang et al. [20] conducted
sensitivity analysis on the matching degree and activation weight of BRB system. A new method for
calculating and optimizing activation weights was proposed to improve the interpretability of BRB
systems. Through global sensitivity analysis of the input and output indicators, the changes predicted
by the proposed model and the actual system are investigated to enhance interpretability of HBRB
system.

The highlights of this study mainly include the followings: (1) A performance prediction model
based on HBRB-I is proposed, which may solve the uncertainty of input parameters and make the
model inference process transparent. (2) An optimization structure with interpretability constraints is
constructed, which ensures the accuracy of the model and increases interpretability of the model. (3)
Sensitivity analysis is used to verify the interpretability of the model.

The remainder of this paper is organized as follows. In the second part, the problems in the
process of processor performance prediction are analyzed, and a performance prediction method
based on HBRB-I and GSA is proposed. The third part constructs the performance prediction model
of processor. The definition of interpretable model, the establishment and optimization of prediction
model and the analysis of parameter sensitivity are described. In the fourth part, the effectiveness of
the method proposed in this paper is verified by a case, and the experimental conclusion is obtained.
In the fifth part, the core steps of the method are summarized, and the future work is prospected.

2 Problem Formulation

Interpretable performance prediction methods are largely implicated in the design of future
processor architectures. The traditional modeling method of performance prediction is affected by the
system structure and environmental factors. It is difficult to improve the interpretability of the model
while ensuring the accuracy of the model, and the output process cannot be deduced and proved.
Therefore, in this section, we build a reasonable and accurate performance prediction model to assist
gaining insights into the involved factors of processor resource usage and provide a reliable reference
for performance analysis. Along with the problems that may occur in the actual project, we make the
following summary.

Question 1: How can the interpretability of performance prediction models be defined? The
interpretability of the model is affected by multiple factors. To ensure the interpretability of the
processor performance analysis process, based on general interpretability criteria and the actual
characteristics of the system, the interpretability of the performance prediction model is defined to
meet the basic requirements of the process. The requirements are described as follows:

principle: {p|p1, . . . , pm} (1)

where p is the guideline and m is the number of criteria.

Question 2: How can a completely and reasonably interpretable HBRB performance prediction
model be built? The definition of interpretability is satisfied as the base. Then, this model fully takes
into account the causal relationship between inputs and outputs. The initial parameters combined with
expert knowledge are set. Finally, the reasoning process of HBRB-I is constructed based on the above



6122 CMC, 2023, vol.74, no.3

preparations. At the same time, to ensure the accuracy of the model, interpretability constraints are
added to build the parameter optimization process of this model. The model inference process in this
paper is described as follows:

y = HBRB (x, β, p, ω) (2)

where x is the set of input metrics that affect processor expert knowledge, p is the set of interpretable
criteria, and ω is the set of parameters for the optimization process. HBRB (·) represents the prediction
model structure.

Question 3: How to verify model interpretability? The interpretability of model parameters is
affected by the input and output indicators. To clearly understand the uncertainty of the input source
and output division, global sensitivity analysis on the input and output of the prediction model is
conducted. Then the reasoning process of sensitivity analysis is established. It helps enhance the
traceability of the model. The relationship between the model indicators is verified by calculating the
sensitivity index of the indicators. The global sensitivity analysis model can be described as follows:

s = GSA (x, y, θ) (3)

where x is the set of input metrics that affect processor performance, y is the output set, and θ represents
the model’s parameters.

3 Model Implementation Process

To solve the problem described in Section 2, a performance prediction model based on HBRB-
I is proposed with the relative performance of processors as the research target. Besides, the global
sensitivity analysis method is used to quantify the uncertainty of the input and output of the model.
It helps a lot to verify the relationship between the indicators. The interpretability of the model can be
better explained. As shown in Fig. 1, the prediction model structure consists of three parts.
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Figure 1: Flowchart of the structure of the model



CMC, 2023, vol.74, no.3 6123

3.1 Interpretability Definition of Predictive Models

As an expert system [21] developed from the if-then rule and the traditional D-S theory, BRB’s
interpretability is constructed by general interpretable criteria. The HBRB performance prediction
model can be divided into several sub-BRBs. Every sub-BRB needs an interpretable definition. They
make up the interpretability of predictive models. As shown in Fig. 2, BRB consists of knowledge
base and an inference engine. The knowledge base is derived from expert knowledge [22], and the ER
inference engine is used to fuse the data. The interpretable criteria are specifically defined as follows:

(1) Integrity of input and output metrics

The integrity of the indicator data is conducive to the reasonable definition of the relationship
between the indicators. According to the modeling causal attributes, the indicators can be divided into
input indicators and output indicators. The difference between the input and output of the model will
directly affect the accuracy of the results. For performance prediction models, at least one reference
value should be set for each indicator, and at least one rule should be activated. Additionally, when
performing rule reduction, it is necessary to ensure that each input corresponds to at least one rule
[23]. Completeness is described as follows:

∀x ∈ U , ∃ 1 ≤ ξ ≤ M, aξ (x) > 0
∀x ∈ U , ∃ 1 ≤ k ≤ K, 0 < ωk ≤ 1 (4)

where the number of reference values for each indicator is M; the matching degree of the ξ -th reference
value is expressed as aξ (x); U represents the entire feasible region of x; the number of belief rules is
K; and ωk represents the activation weight of the rule.

(2) The rationality of rules

The rationality of rules is the basic requirement of model interpretability. Since the setting of
the initial rules comes from expert knowledge, the rationality of rules is guaranteed. In addition, this
criterion should also be satisfied when performing model optimization.

(3) Normativeness of rule matching degree

The matching degree of the rules represents the distribution characteristics of the indicators that
affect the performance of the processor. To ensure the interpretability of the system distribution, the
matching degree of each reference value in indicator space is normalized. Usually, the sum of the
matching degrees of the reference values of each indicator data should be between [0,1], which is
expressed as Eq. (28), which x̃ represents the exact value of x:

∀ξ ∈ M, x ∈ U, 0 ≤ aξ (x) ≤ 1,
m∑

ξ=1

aξ

(
x̃
) ≤ 1 (5)

(4) Structures and parameters have physical meaning

The overall structure and initial parameters of the model should have actual physical meaning.
On the one hand, BRB is established by logical derivation. This conforms to the system principle. On
the other hand, the initial parameters are dominated by belief rules. They include attribute weights,
rule weights, activation weights, and beliefs [24].

a. Attribute weight: the importance of the premise attribute relative to other attributes
b. Rule weight: Indicates the importance of the rule relative to other rules
c. Activation weight: the degree to which the corresponding rule is activated by the input
d. Belief: how well the rules are converted into processor performance evaluation levels
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(5) Distinguishability of the range of values

The input reference value of the model should be reasonably divided. The performance status
evaluation level is represented by different level space ranges. There should be a distinction between
different spatial ranges, so that different divisions of the corresponding meaning are different. It can
help to meet the actual needs of the system.

(6) Normativeness of Information Transformation

Information conversion refers to the process of converting input and output information into
belief distribution. To ensure the equivalence of the information conversion process is to maintain the
characteristics of the original information. Yang et al. had developed a method to convert information
based on rules and utility. This method could convert information reasonably and completely [25].

(7) Transparency of model inference

To maintain the interpretability of the rule base, BRB’s inference engine is required throughout
the inference process. Besides, each reasoning process should be reasonably calculated and have an
obvious causal relationship. This helps to ensure a clear description of the relationship between the
input and output indicators. Based on the above conditions, the reliability of the model in practical
applications can also be improved. As an inference engine for predicting model pairs, the ER algorithm
can not only achieve clear inference and traceability of results, but also be able to explain itself.
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Figure 2: Diagram of the defining interpretable criterion

3.2 Performance Prediction Model Based on HBRB-I

In this section, the construction and optimization of the performance prediction model based
on HBRB-I are defined and included as the following: (1) According to the mechanism analysis
of the indicators, ER is used to evaluate the indicators; (2) Based on the evaluation results of the
indicators, the HBRB model is constructed, and the detailed description and reasoning process of the
prediction model are given; (3) Combined with WOA, a parameter optimization method is designed
with interpretability constrained.
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3.2.1 ER-Based Indicator Performance Evaluation

According to the mechanism analysis of the performance indicators, there may be correlations
between indicators that affect the performance of the processor. If an indicator is analyzed individually
in the process of performance evaluation. It is independent and unconvincing. In addition, the
input and output index data in the process will be incomplete when indicators are blindly screened.
Eventually, the evaluation results will produce errors. Therefore, it is proposed to use the ER algorithm
to build the index evaluation model. The main implementation process is as follows, and Fig. 3 is the
inference flow chart.

Step 1: According to expert knowledge, the belief level of each performance index evaluation level
is initialized, and the m-th metric is described as:

em = {(
Ar, σr,m

)
,
(
ρ, σρ,m

)
, r = 1 . . . R, m = 1 . . . M

}
(6)

where Ar is the evaluation level of the r-th indicator, and σr,m represents the belief to be assessed as
grade Ar under evidence em. ρ is the global ignorance, and σρ,m represents unassigned belief.

Step 2: The ER iterative algorithm is used to calculate the basic probability quality of evidence,
which is described by the following formula Eqs. (7)–(10):

mr,m = ωmρr,m (7)

mA,m = 1 − ωm

R∑
r=1

ρr,m (8)

mA,m = 1 − ωm (9)

m̃A,m = ωm

(
1 − ωm

R∑
r=1

ρr,m

)
(10)

where mr,m is the basic probability quality of the m-th evaluation level in the r-th indicator, ωm is the
weight of the m-th indicator, mA,m represents the unassigned base probability mass, and m̃A,m indicates
the degree of incompleteness of the indicator.

Step 3: Dempster’s rule is used to solve the combined probability mass of evidence, and the
reasoning process is described as follows:

mr,J(m+1) = FJ(m+1) [mr,J(m)mr,m+1 + mr,J(m)mθ ,m+1 + mθ ,J(m)mr,m+1] (11)

mA,J(i) = mA,J(m) + m̃A,J(m) (12)

∼
mA,J(m+1) = FJ(m+1)

[ ∼
mA,J(m)

∼
mA,m+1 + ∼

mA,J(m)

∼
mA,m+1 + ∼

mA,J(m)

∼
mA,m+1

]
(13)

mA,J(m+1) = FJ(m+1) [mA,J(m)mA,m+1] (14)

FJ(m+1) = 1

1 −
R∑

r=1

R∑
s=1

mr,J(m)ms,m+1

(15)

where mr,J(m), mr,J(m+1) = mr,m+1 represents the basic probability quality of the r + 1-th index level after
the r-th index is fused.
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Step 4: The joint belief for evidence is calculated:

ρr = mr,J(M)

1 − ∼
mAJ(M)

(16)

Step 5: If the utility of the evaluation level Ar is u (Ar). The expected utility value of the output
y (k) is calculated as follows:

y (k) =
R∑

r=1

u (Ar) ρr (17)

Convert to confidence
distribution

Convert to weighted
confidence

Calculate the joint
probability density

Calculate joint
confidence

Evaluation result

Processor
performance

metrics

Input
evidence

Weight of
evidence Reliability of evidence

ER algorithm

Figure 3: ER algorithm reasoning flow chart

3.2.2 Description and Reasoning of Performance Prediction Model Based on HBRB

As an expert system with the ER algorithm as the inference engine, the essence of BRB is a gray-
box modeling type. Its system structure is composed of expert knowledge summarized by historical
observation data and corresponding rules [26], so that the model itself has a certain interpretability.
To build an interpretable HBRB expert system, expert knowledge should be embedded into the rules.
However, the number of rules grows exponentially when the number of attributes increase. This leads
to the combinatorial rule explosion problem [27]. To enhance the expansibility of BRB applications,
starting from the system mechanism, a hierarchical HBRB model is constructed, which improves the
modeling ability of BRBs. HBRB is composed of several sub-BRBs, which inherit the interpretability
of BRBs. Additionally, each sub-BRB can perform information conversion, which effectively reduces
the number of rules. Rule k is described as follows:
Rulen

k : if y (1) is Ze
1 ∧ y (2) is Ze

2 . . . y (k) is Ze
S, Then y is

{(
A1, β1,k

)
,
(
A2, β2,k

)
. . .

(
AR, βR,k

)}
,

With rule weight θk, attribute weight δ1, δ2, . . . , δM in p1, p2, . . . , pm.
(18)

where Rulen
k (n = 1, 2, . . . , N) represents the k-th rule of the n-th subrule bas; k = 1 . . . K, K is the

number of belief rules; Ze
i indicates the indicator input reference value (i = 1, 2, . . . , S); βr,k, r = 1 . . . R
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is the belief of the r-th in the k-th belief rule; Ar indicates the reference level of the output result; θk is
the rule weight of the k-th belief rule; and δi represents the attribute weight.

The reasoning process of the HBRB model is mainly divided into five steps. First, expert
knowledge is combined to convert the input value into the form of belief distribution. Second, the
matching degree of the belief rules should be calculated. Finally, ER is used to obtain the output
utility value.

Step 1: Expert knowledge is used to extract the initial parameters of the model, the parameter set
of HBRB is described as:

ηn = {
θ1, . . . θk, β1,1 . . . βR,K

}
(19)

Step 2: The matching degree of the belief rule is calculated:

ηn
k =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Aj+1
i − y (t)

Aj+1
i − Aj

i

, k = j
(
Aj

i ≤ y (k) ≤ Aj+1
i

)
y (t) − Aj+1

i

Aj+1
i − Aj

i

, k = j + 1

0, k = 1 . . . K (k �= j and k �= j + 1)

(20)

where Aj+1
i and Aj

i are the characteristic reference values in rules j + 1 and j respectively.

Step 3: The activation weight of the rule is calculated. The calculation formula is shown in Eq. (21):

Wk = θkηk

K∑
i=1

θiηk

k = 1, . . . K (21)

where Wk represents the activation weight of the belief rule, θk represents the weight of rule k, and ηk

represents the attribute weight.

Step 4: The belief of the performance index evaluation results is calculated based on ER analytical
algorithm:

βr =
ϕ ×

[
K∏

k=1

(
ωkβr,k + 1 − ωk

R∑
i=1

βi,k

)
−

K∏
k=1

(
1 − ωk

R∑
i=1

βi,k

)]

1 − ϕ ×
[

K∏
k=1

1 − ωk

] (22)

ϕ =
[

R∑
r=1

K∏
k=1

(
ωkβr,k + 1 − ωk

R∑
i=1

βi,k

)
− (R − 1)

K∏
k=1

(
1 − ωk

R∑
i=1

βi,k

)]−1

(23)

where βr is the belief level of the r-th evaluation grade produced by the predictive model.

Step 5: According to the utility formula, the output result is described as Eq. (24):

yt =
R∑

r=1

U (Ar) βr (24)

where yt is the actual output of the model and βr is the belief relative to the evaluation result Ar.
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3.2.3 Parameter Optimization Based on the WOA

The parameters of the initial HBRB performance prediction model are derived from the
actual system and expert knowledge. Considering the limited level of expert knowledge, it is
difficult to accurately describe the performance state of the processor. Therefore, it is necessary to
update the initial parameters of the model in conjunction with the optimization algorithm. In addition,
the interpretability of the BRB will be destroyed in the process of parameter optimization. To ensure
the interpretability and accuracy of the prediction model, interpretability constraints are added to the
WOA algorithm. Therefore, the parameters with interpretability constraints are proposed. The model
is shown in Fig. 4.

Population
initialization 

Evaluate the
population and find

the optimal individual

Calculate the
random number P

P>0.5

|A|>1

Shrink wrap

YES

NO

YES

YES

NO

Spiral surround Random search

t<tmax

Optimal
parameters

NO

Add
constraints

Figure 4: Flowchart of the WOA algorithm with interpretability constraints

First, the optimization objective function is given according to expert knowledge and the mean
square error obtained from the actual training output, as shown in Eq. (25). MSE (·) represents the
mean squared error. The actual output value is represented by yt, and the estimated output value is 	yt,
where the optimization objective and constraint conditions are shown in Eq. (26):

MSE
(
βr,k, ωk, θk

) = 1
T

T∑
t=1

(
yt − 	yt

)2
(25)

min MSE
(
βr,k, ωk, θk

)
in p1, p2

s.t. :
R∑

r=1

βr,k = 1, k = 1, 2, . . . , K, r = 1, 2, . . . , R

0 ≤ βr,k ≤ 1, 0 ≤ ωk ≤ 1, 0 ≤ θ1, θ2, . . . , θk ≤ 1, k = 1, 2, . . . , K

(26)

Based on the above analysis, the problem of BRB model optimization is a global optimization
problem with constraints. As a metaheuristic optimization algorithm, the whale optimization algo-
rithm is widely used in engineering [28]. The main advantages include the following: (1) A simple
principle and fewer parameter settings. (2) A strong global search ability. (3) The ability to avoid local
optimization [29]. The specific optimization process of the model is as follows:
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Step 1: Population initialization. Assuming the population size is N, the number of iterations is t,
and the search space is d-dimensional.

Step 2: The original method of scattering points is random and does not take full advantage of
the interpretability of expert knowledge. For this problem, a solution space is formed with expert
knowledge as the center, and points are randomly scattered in a certain area near the expert knowledge
and set εi as the current optimum individual location:

εi = FK + (rand (N, d) − 0.5) ∗ 2 (27)

where FK represents belief in expert knowledge.

Step 3: The constraint operation is added. The optimized belief rule deviates from the actual
system. Conditional constraints should be added in the process of parameter optimization. It helps to
satisfy the interpretability description of the model. Constraints are set in two ways.

Constraint 1: As a representation of processor performance characteristics and states, belief rules
need to match the state of the actual system. However, the optimized rules generate errors that do not
match the actual characteristics and do not satisfy the rationality of the rules in the interpretability
definition. Therefore, constraints are added to the interval of regular distribution. It can be described
as follows:
θk ≤ Fk (k = 1, . . . , K) , Fk ∈ {{θ1 ≤ θ2 ≤ . . . ≤ θN} ,
{θ1 ≥ θ2 ≥ . . . ≥ θN} , {θ1 ≤ . . . ≤ max (θ1, θ2, . . . , ) ≥ . . . ≥ θN}} (28)

where Fk is the interpretable constraint under rule k. Its value range is obtained with reference to
the actual system. After filtering out conflicting belief levels, the final belief distribution shape is
monotonic.

Constraint 2: Belief transformation of rules relies on expert knowledge, which can essentially meet
actual system requirements. To ensure the reliability of the conversion process, the change in each
belief rule cannot violate the expert knowledge. It is necessary to set a reasonable constraint range for
the belief degree and select a belief distribution that meets the requirements:

θmin(p) ≤ θn,k ≤ θmax(p) (n = 1, . . . , N, k = 1, . . . , K) (29)

where θmin(p), θn,k, θmax(p) represents the minimum belief value set by the expert, the k-th belief value of
the n-th rule, and the maximum belief value set by the expert.

Step 4: The whale group surrounds the current optimal individual, and the whale individual
updates its position according to Eqs. (30)–(32):

D = |C ∗ β∗
t − βt | (30)

βt+1 = β∗
t − AD (31)

A = 2ar − a
C = 2r

a = 2 − 2t
tmax

(32)

The current number of iterations is represented by t; the coefficient vectors are A and C; the
position vector of the current best solution is β∗

t, which is updated in each iteration; and the position
vector is written as βt. The scaling factor a decreases linearly throughout the bracketing process,
decreasing from 2 to 0 in turn; the number of iterations at the current position is recorded as t; and
the maximum number of iterations is recorded as tmax.
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Step 5: In the prey stage, the whale group approaches the prey in a spiral pattern, and the update
of each individual’s own position is expressed as:

βt+1 = exp (bl) cos (2π l) Dp + β∗
t (33)

Dp = |β∗
t − βt| (34)

where β∗ (t) is the position of the optimal individual in the whale to the prey; b is constant; and l takes
a random value [−1,1], which is a parameter to control the shape of the spiral.

Step 6: Searching for prey, the whale group searches for prey under the leadership of random
individuals [30], the vector of the random individual position is denoted as βrand, and the searching
process is shown in Eqs. (35) and (36):

D = |Cβrand − βt | (35)

βt+1 = βrand − AD (36)

Remark 1: When evaluating the population to find the optimal individual, randomly scattering
points in the expert knowledge area can make full use of the interpretability of expert knowledge.
Before calculating the random number, constraints are added to the model. On the one hand, it satisfies
the rationality of the belief rule and matches the characteristic state of the actual system. On the other
hand, the expert knowledge won’t be violated by the change of the rules. During the hunting phase,
the whale has a 50% chance to choose between the spiral mode and the shrinking circle mechanism to
update its position. When |A| <= 1, the whale group shrinks to the prey under the leadership of the
optimal individual. When |A| > 1, the whale group searches for the prey under the leadership of the
random individual.

3.3 Global Sensitivity Analysis of Model Indicator Parameters

In the process of constructing the HBRB-I performance prediction model, the parameters of the
model are derived from expert knowledge and the analysis results of input and output indicators.
The expert knowledge is given according to the characteristics of the actual system and can be well
explained by itself. The interpretability of the results of subjective index analysis needs to be further
verified. Therefore, this section performs a global sensitivity analysis on the input and output metric
parameters. Then the interpretability of the model derivation process is demonstrated.

The GSA considers the effect of the interaction between variables on the output when all
parameters are changed at the same time. GSA mainly includes the regression analysis method, Morris-
based screening method, Sobol method based on variance decomposition, and extended Fourier
sensitivity test method [31]. Among the above methods, the variance-based Sobol method enables
quantitatively analysis. Without special requirements for the analysis function, the uncertainty of input
and output will be decomposed. Therefore, it has a wide range of applications [32]. Based on the
Sobol method, indicator parameters are analyzed in the model. First, the model is decomposed into
individual parameters and combined functions between parameters. Then, the influence of a single
input parameter’s variance on the total output variance is calculated. Eventually, the importance of
parameters and the interaction between parameters are analyzed. The steps are as follows:
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First, the prediction model function f (x) is decomposed into a single model indicator parameter.

f
(
x1, x2, · · · , xk

) = f0 +
k∑

i=1

fi (xi) +
k∑

1≤i<j≤k

fij

(
xi, xj

) + · · · + f1,2,··· ,k (x1, x2, · · · , xk) (37)

where xi represents different processor performance index parameters and f (x) expresses the relative
performance of the output.

Based on the above conditions, the partial variance and the total variance are defined. The ratio
of the partial variance to the total variance indicates the degree of the parameters’ influence and their
interactions with the target response. The relationship between them can be expressed as:

D =
∫

Ωk
f 2 (x) dx − f 2

0 (38)

Di1,i2,··· ,in =
∫ 1

0

· · ·
∫ 1

0

f 2
i1,i2,··· ,in (xi1, xi2, · · · , xin) dxi1xi2 · · · xin (n = 1, 2, · · · , k) (39)

D =
k∑

i=1

Di +
∑

1≤i≺j≤k

Dij + · · · + D1,2,··· ,k (40)

where 1 ≤ i1 < · · · < in ≤ k, Di represents the variance produced by the independent action of
the input indicator parameters. Dij represents the variance produced by the joint action of indicator
parameters i and j. By analogy, the calculation formula of each first-order sensitivity is obtained.

Si1,i2,··· ,in = Di1,i2,··· ,in

D
(41)

where Si1,i2,··· ,in represents the sensitivity of each order of input parameters, and their sum constitutes
the total sensitivity, which is calculated as:

STi =
∑

S(i) (42)

where STi indicates total sensitivity. Using the global sensitivity analysis method, the first-order
sensitivity and total sensitivity of the performance indicators can be calculated. The larger the first-
order sensitivity index of the index parameter is, the greater its impact on the relative performance
of the output. If the total sensitivity index of a variable is small, it indicates that the change in the
index parameter has a small impact on the output results. Besides, it also represents that there is a
small interaction effect with other parameters in the index parameter [33]. According to the sorting
of the total sensitivity index, the index parameter with the greatest impact on the performance of the
processor can be found.

4 Case Study

To verify the effectiveness of the proposed method, the computer hardware data of the UCI
database is used as the main experimental data. The relative CPU performance data are obtained
according to the description of processor cycle time and memory size. The data set contains 209
instances with a total of 7 attributes. The specific parameter descriptions are shown in Table 1.
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Table 1: Parameter description

No Parameter Data type Data range

1 Machine cycle (MYCT) Integer [17,1500]
2 Minimum memory (MMIN) Integer [64,32000]
3 Maximum memory (MMAX) Integer [64,64000]
4 Cache (CACHE) Integer [0,256]
5 Minimum channel (CHMIN) Integer [0,52]
6 Maximum channel (CHMAX) Integer [0,176]
7 Relative performance (PRP) Integer [6,1150]

4.1 Building the Performance Prediction Model

In this section, a processor performance prediction model based on the UCI computer hardware
data set is built. Table 2 is a summary of the modeling steps, and Fig. 5 is a flow chart of the
implementation of the performance prediction model.

Table 2: Summary of modeling steps

Step 1: Data analysis
a. According to the data distribution characteristics of the original data set, the trend changes of
the indicators are summarized, and the indicators based on the change analysis are classified.
b. The physical meaning of the classification indicators is considered, and the classification of
indicators are rationally adjusted.
Step 2: Indicator evaluation
a. The parameter settings of the evaluation indicators are given, and the evaluation utility value
are calculated according to ER.
Step 3: Expert knowledge to build initial HBRB-I
a. Combined with Section 3.1, the initial definition of the model is completed.
b. According to the evaluation results and expert knowledge, the index reference value, reference
level and performance status are given.
c. The relationship between the reference value and the evaluation status is analyzed, and the
initial HBRB-I is established.
Step 4: Model optimization
a. Interpretability constraints are determined according to interpretability criteria and
optimization parameters are set.
b. The optimization of the initial HBRB-I is completed, and the belief parameter table is given
after WOA optimization.
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Figure 5: Performance prediction model implementation flow chart

4.1.1 Data Analysis

Combined with the change law of the actual value, the relationship between the processor
indicators is analyzed. The forecast indicator trend analysis is shown in Table 3. According to the
actual situation, the larger the machine cache, the higher the data processing efficiency. The ability to
execute programs concurrently becomes stronger as the number of channels increases. In addition, the
operation per unit time is completed faster when the machine cycle becomes shorter. Therefore, the
improvement of these factors would lead to the improvement of processor performance. According to
the index trend change relationship and physical meaning, the performance influencing factors can be
divided into three categories: storage, channel, and machine cycle. Storage includes minimum memory,
maximum memory, and cache, while channel includes minimum channel and maximum channel.

Table 3: Predictor trend analysis

Machine cycle Storage Cache Channel Relative performance

Increase Constant Constant Constant ↓
Constant Increase Constant Constant ↑
Constant Constant Increase Constant ↑
Constant Constant Constant Increase ↑

4.1.2 Evaluation of Indicators

Based on the above index classification results, the ER algorithm is used for index evaluation. The
reference values are set as shown in Table 4. Each index is set with 4 reference values, corresponding
to (x1, excellent), (x2, good), (x3, middle) and (x4, poor); regardless of the reliability of the evidence,
the sum of the weights of the indicators of the same category is 1. Assuming that Sr and Cr are used to
express the evaluation results of storage factors and channel factors, Mr represents MYCT.



6134 CMC, 2023, vol.74, no.3

Table 4: Evaluation reference value setting

Class Indicator Weight X1 X2 X3 X4

Sr Minimum memory 0.332 −1 −0.9 −0.6 1
Maximum memory 0.211 −1 −0.9 −0.6 1
Cache 0.457 −1 −0.9 −0.7 1

Cr Minimum channel 0.505 −1 −0.9 −0.6 1
Maximum channel 0.495 1 −0.9 −0.7 1

4.1.3 Expert Knowledge to Establish Initial HBRB-I

Based on the above analysis, the initial HBRB-I establishes a belief rule, which is expressed as
follows:
if Sr is Ze

1 ∧ Cr is Ze
2, Then result is

{(
A1, β1,k

)
,
(
A2, β2,k

)
. . .

(
A4, β4,k

)}
,

With rule weight θk, attribute weight δ1, δ2, in p1, p2, . . . , pm.
(43)

where Sr is the estimated utility value of the storage factor, Cr indicates the estimated utility value of
the channel factor, and A represents the level of processor performance state, which can be described
by Very Small (VS), Small (S), Middle (M), and Large (L). The performance status reference values
are shown in Table 5.

Table 5: Performance status reference value

Very small (VS) Small (S) Middle (M) Large (L)

BRB0 −1 −0.96 −0.8 −0.12
BRB1 −1 −0.95 −0.77 −0.15

To avoid the problem of rule combination explosion, an interpretable hierarchical BRB perfor-
mance prediction model is constructed. According to the reasoning process shown in Table 6, the
model structure is divided into two layers. First, the evaluation results St and Ct of the storage factor
and channel factor are used as the input of the first layer BRB0, the initial belief and interpretability
constraints are set in combination with expert knowledge, and the index reference level and reference
value are given. Second, the output result Pr of BRB0 and MYCT Mr are combined as the input of
the second layer BRB1. The initial confidence rules and reference values are set, and the performance
prediction results are obtained by continuous training. The index reference value settings are shown in
Table 6. Each index has 4 reference values, and 16 rules are activated, which conform to the input and
output integrity in the definition of interpretability. The range of values can be distinguished. Both
rule weights and attribute weights are set to the constant 1. According to the normative requirements
of the rules’ matching degree in the interpretability definition, the sum of the matching degree of the
input data is limited between [0, 1].
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Table 6: Indicator reference level and reference value

x Very small (VS) Small (S) Middle (M) Large (L)

BRB0 St 1.9 3.0 4.8 7.7
Ct 1.9 4.0 5.2 7.9

BRB1 Pt −1.0 −0.95 −0.88 −0.32
Mt −1.1 −0.94 −0.88 0.1

4.1.4 Model Optimization

Considering the limitations of expert knowledge, the prediction of the performance state by
the initial model is not sufficiently accurate [34]. Therefore, it is necessary to use the optimization
algorithm to update the initial parameters to improve the accuracy of the model. In this paper,
the parameters are optimized based on the WOA. The number of training iterations is 600, the
optimization dimension is 82, the population size is 25, the training set is 209 data, and the test set
is 100 data.

Taking the initial parameters of BRB1 as an example, the belief constraints and the optimized
belief are shown in Appendix A Table 1.

4.2 The Process of Parameter Sensitivity Analysis

To verify the model interpretability, based on the HBRB-I performance prediction model, Sobol
global sensitivity analysis of parameters is performed. The specific process can be described as follows:

Step 1: Select the performance index parameters input by the model as independent variables, and
the relative performance values predicted by the output model are used as the dependent variable.

Step 2: According to the statistical distribution of the index parameters, the value range of each
parameter is determined, please refer to Table 1.

Step 3: The index parameters are randomly sampled using the Latin hypercube sampling method
[35], and N sets of training samples are generated as input variables.

Step 4: The resulting set of training samples is used to input the surrogate model [36], the sensitivity
analysis data are obtained by training, and the results are shown in Table 7.

Table 7: Performance status reference value

MYCT MMIN MMAX CACHE CHMIN CHMAX

First-order 0.2868 −0.0952 0.2632 0.1519 0.0746 0.1824
Total-order 0.6444 0.4604 0.1697 0.2212 0.2688 0.3483

Comparing the values of different sensitivities of performance parameters, it is found that the total
sensitivity of the machine is significantly higher than other parameters. The first-order sensitivity is
generally smaller than the total sensitivity value. The result indicates that a single index parameter has
a small impact on the processor performance. The interaction between each index has a great impact
on the performance.
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To further explore how each index parameter affected the performance model, the linear fitting
method is used to fit the functional relationship expression between the predicted performance value
and single index parameter. This helps to study the correlation between the index parameter and the
performance. Assuming that the index parameters are uniform linearly, distributed within the range
during the fitting process, other parameters are averaged. The HBRB-I model is used to obtain the
performance prediction value. In addition, the correlation coefficient between each index parameter
of the original data set and the relative performance is calculated as corr1. The correlation between the
performance prediction value and the index parameter in the linear fitting expression is represented
as corr2. R2 is used to reflect the degree of linear fit. The correlation coefficient expression is shown
in Eq. (35) and correlation comparison results are shown as in Appendix B Table 2.

r =

n∑
i=1

(xi − x) (yi − y)√
n∑

i=1

(xi − x)
2

√
n∑

i=1

(yi − y)
2

(44)

where xi is the indicator parameter, x represents the mean value of each parameter, yi is the actual
relative performance value, and y is the value of the predicted performance.

According to the experimental results, the correlation coefficient corr2 of minimum memory,
maximum memory, and minimum channel have higher sensitivity than that of other parameters.
The result indicates that the effect of these indicators on performance is less affected by changes in
other parameters. Moreover, its influence is greater than other parameters. In addition, except for
the machine cycle, which is negatively correlated, the other parameters are positively correlated with
the prediction performance. The correlation between the index parameters and performance in the
HBRB-I model is basically consistent with the original data, which verifies that this interpretable
modeling method can maintain the relationship between input and output metrics. Therefore, the
HBRB-I performance prediction model not only improves the comprehensibility of the model, but
also ensures a stable changing relationship between each input index and the predicted output. This is
in line with the actual operating principle of the system.

4.3 Analysis of Case Experiment Results

In this section, the accuracy and interpretability of the model are mainly compared. The experi-
mental results are combined to prove the effectiveness of the method.

4.3.1 Model Accuracy Analysis

To verify the effectiveness of the method, the method proposed in this paper is horizontally
compared with four types of machine learning methods. They are backpropagation network (BPNN),
radial basis function neural network (RBFNN), extreme learning machine (ELM) and random forests
(RF). For comparison, each method uses the same number of training and test sets, and conducts 10
rounds of experiments. The fitting effect is shown in Fig. 6. The square error value of the HBRB-I
model is maintained between 0.004–0.006, which also maintains good accuracy compared to other
machine learning algorithms. Table 8 shows the prediction accuracy of various methods.
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Figure 6: MSE values of different methods

Table 8: Prediction accuracy of various methods

WOA&HBRB-I BPNN ELM RBFNN RF

Accuracy 83.39% 83.5% 62.3% 77.2% 84.2%

To better evaluate the performance of the proposed algorithm, the computation time and
convergence of the proposed method are discussed. As shown in Fig. 7, the convergence speed of
WOA&HBRB-I is faster, the starting point of optimization is closer to the optimal solution, and
the overall convergence of the model is better. However, in terms of execution time, as shown in
Appendix B Table 3. WOA&HBRB-I takes longer time, and the reasons can be explained as follows.
On the one hand, WOA&HBRB-I reduces redundant rules in the model and the complexity of the
model. It also improves the optimization process. Thus, the convergence speed of the model increased.
On the other hand, the optimization process based on interpretability constraints screens out the rules
that have a greater impact on the system and take more computation time. Therefore, it shows longer
execution time.
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4.3.2 Model Interpretability Analysis

The belief distribution of each rule is shown in Fig. 8. The belief distribution of the HBRB-I model
is basically the same as the rule distribution given by the expert knowledge. The green curve represents
expert knowledge. The blue curve represents the belief distribution of the HBRB model without
adding an interpretable definition. The red curve represents the belief distribution of the HBRB-I
model. Comparing the belief distribution of HBRB and expert knowledge, some rule’s judgments are
quite different. This means that the rules are missing or wrong, and it is verified that the model adds
interpretability constraints to improve the effective use of expert knowledge. Therefore, the HBRB-I
model is more interpretable under the premise of having similar prediction effects.

Table 9 shows the average MSE value and optimal MSE value of different methods. The following
conclusions can be drawn from analyzing the experimental results:
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Table 9: Statistical table of experimental results of different methods

ER&HBRB-I ER&HBRB BPNN ELM RBFNN RF

Average MSE 0.0054 0.005 0.0038 0.0402 0.0057 0.0058
Optimal MSE 0.0047 0.0043 0.0027 0.0377 0.0057 0.0020

(1) Although the accuracy of the HBRB-I model is slightly different from that of machine learning
algorithms such as BPNN, ELM, and RF, the HBRB-I model is interpretable and the reasoning
process can be retroactive. As for data-driven modeling methods such as BPNN, ELM, and
RF, the internal structure is invisible. The inference engine ER deduction is used in HBRB-
I. It could reasonably explain the causal relationship between input and output to make the
conclusion more reliable. Besides, the HBRB-I model can make full use of expert knowledge to
characterize the system and help users better understand the model structure. However, they
cannot be achieved by ordinary machine learning methods.

(2) Compared with the HBRB model without interpretable definition, the HBRB-I model has no
obvious difference in accuracy, and its advantage is reflected in the interpretability. On the one
hand, the optimization method of the HBRB-I model has interpretability constraints. When
the WOA is initialized, the optimal individual is selected based on expert knowledge instead
of random selection in the HBRB model, which effectively utilizes expert knowledge. The
rationality of the optimal individual selection is improved. On the other hand, the rule matching
degree of the HBRB-I model sets a screening interval. Therefore, the belief distribution of the
model satisfies the actual performance prediction system. The HBRB fails to solve the problem
of reasonable belief distribution, such as the 14-th rules in Fig. 7. The judgements of “very
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small” and “small” in the belief level of the HBRB model are inconsistent. The belief level
distribution of the HBRB-I model is basically consistent with the expert knowledge. It shows
the role of the interpretability of the HBRB-I model.

5 Conclusion

This paper proposes a processor performance prediction method based on sensitivity analysis
and an interpretable hierarchical belief rule base. Transparent reasoning engine is used in the model
reasoning process to deduce the problem. Besides, the interpretability criterion is added to make full
use of the characteristics of the expert knowledge description system. It can solve the problems of
ineffective use of expert knowledge and unreasonable belief optimization. Therefore, the performance
prediction method proposed in this paper has strong interpretability. The results of predictive model
are traceable. The relationship between input and output also verifies the role of interpretable
modeling. Compared with other methods, the interpretability enhances the reliability of the system
under the condition that the accuracy is basically guaranteed.
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A Appendix

Appendix A

Table 1: The optimized belief and constraints for BRB1

No θ x1 x2 Belief constraint {β1 β2 β3 β4} The optimized belief {β1 β2 β3 β4}
1 1 VSVS {0.95∼1.00 0.00∼0.05 0.00∼0.05 0.00∼0.05} {0.9530 0.0439 0.0031 0.0000}
2 1 VS S {0.00∼0.05 0.00∼0.50 0.00∼0.05 0.50∼1.00} {0.0000 0.4999 0.0000 0.5001}
3 1 VS M {0.95∼1.00 0.00∼0.05 0.00∼0.01 0.00∼0.01} {0.9968 0.0032 0.0000 0.0000}
4 1 VS L {0.00∼0.01 0.95∼1.00 0.00∼0.01 0.00∼0.01} {0.0000 0.9999 0.0001 0.0000}
5 1 S VS {0.00∼0.01 0.95∼1.00 0.00∼0.05 0.00∼0.01} {0.0000 0.9767 0.0233 0.0000}
6 1 S S {0.00∼0.01 0.95∼1.00 0.00∼0.01 0.00∼0.01} {0.0000 0.9999 0.0000 0.0001}
7 1 S M {0.00∼0.01 0.00∼0.50 0.00∼0.50 0.00∼0.05} {0.0000 0.4950 0.4950 0.0100}
8 1 S L {0.00∼0.01 0.00∼0.01 0.90∼1.00 0.05∼0.10} {0.0000 0.0000 0.9278 0.0722}
9 1 M VS {0.00∼0.01 0.85∼0.90 0.00∼0.01 0.10∼0.15} {0.0000 0.8861 0.0000 0.1139}
10 1 M S {0.00∼0.01 0.00∼0.01 0.00∼0.50 0.50∼1.00} {0.0000 0.0000 0.4999 0.5001}
11 1 M M {0.00∼0.01 0.10∼0.15 0.70∼0.76 0.10∼0.15} {0.0080 0.1244 0.7425 0.1251}
12 1 M L {0.00∼0.01 0.30∼0.35 0.30∼0.35 0.30∼0.35} {0.0000 0.3333 0.3333 0.3334}
13 1 L VS {0.00∼0.01 0.00∼0.01 0.95∼1.00 0.00∼0.05} {0.0000 0.0000 0.9739 0.0261}
14 1 L S {0.90∼0.95 0.05∼1.00 0.00∼0.01 0.00∼0.01} {0.9251 0.0749 0.0000 0.0000}
15 1 L M {0.00∼0.01 0.00∼0.01 0.00∼0.01 0.95∼1.00} {0.0000 0.0000 0.0001 0.9999}
16 1 L L {0.00∼0.01 0.00∼0.01 0.00∼0.50 0.50∼1.00} {0.0000 0.0000 0.4999 0.5001}
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Appendix B

Table 2: Performance status reference value

Index Fit expression corr1 corr2 Results

MYCT f (x) = −0.1219x − 0.9463
(
R2 = 0.05

)
Negative −0.3070(−) Consistent

MMIN f (x) = 0.201x − 0.6935
(
R2 = 0.15

)
Positive 0.7950(+) Consistent

MMAX f (x) = 0.1505x − 0.7616
(
R2 = 0.13

)
Positive 0.8630(+) Consistent

CACHE f (x) = 0.1191x − 0.7618
(
R2 = 0.06

)
Positive 0.6626(+) Consistent

CHMIN f (x) = 0.2887x − 0.624
(
R2 = 0.14

)
Positive 0.6089(+) Consistent

CHMAX f (x) = 0.1927x − 0.7027
(
R2 = 0.08

)
Positive 0.6052(+) Consistent

Table 3: Execution time of different models

Model Max iteration Rules Execution time

WOA-HBRB 800 64 178.81 s
WOA-HBRB-I 800 57 198.32 s
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