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Abstract: Over the past decade, the significant growth of the convolutional
neural network (CNN) based on deep learning (DL) approaches has greatly
improved the machine learning (ML) algorithm’s performance on the seman-
tic scene classification (SSC) of remote sensing images (RSI). However, the
unbalanced attention to classification accuracy and efficiency has made the
superiority of DL-based algorithms, e.g., automation and simplicity, partially
lost. Traditional ML strategies (e.g., the handcrafted features or indicators)
and accuracy-aimed strategies with a high trade-off (e.g., the multi-stage
CNNs and ensemble of multi-CNNs) are widely used without any training
efficiency optimization involved, which may result in suboptimal perfor-
mance. To address this problem, we propose a fast and simple training CNN
framework (named FST-EfficientNet) for RSI-SSC based on an EfficientNet-
version2 small (EfficientNetV2-S) CNN model. The whole algorithm flow
is completely one-stage and end-to-end without any handcrafted features
or discriminators introduced. In the implementation of training efficiency
optimization, only several routine data augmentation tricks coupled with a
fixed ratio of resolution or a gradually increasing resolution strategy are
employed, so that the algorithm’s trade-off is very cheap. The performance
evaluation shows that our FST-EfficientNet achieves new state-of-the-art
(SOTA) records in the overall accuracy (OA) with about 0.8% to 2.7% ahead
of all earlier methods on the Aerial Image Dataset (AID) and Northwest-
ern Poly-technical University Remote Sensing Image Scene Classification 45
Dataset (NWPU-RESISC45D). Meanwhile, the results also demonstrate the
importance and indispensability of training efficiency optimization strategies
for RSI-SSC by DL. In fact, it is not necessary to gain better classification
accuracy by completely relying on an excessive trade-off without efficiency.
Ultimately, these findings are expected to contribute to the development of
more efficient CNN-based approaches in RSI-SSC.
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1 Introduction

SSC via ML algorithms is an active research area in RSI data analysis. In fact, the critical step
in almost all computer vision tasks is developing discriminative features to represent visual data [1–
6]. In the past decades, the classical ML-SSC methods proposed in previous studies can be roughly
divided into three categories according to the different feature extraction approaches, i.e., handcrafted
features [7], unsupervised learning features [8], and DL features [9,10]. Driven by the advances in big
data, hardware computing resources, and iterative algorithms, the DL-based algorithm has rapidly
overwhelmed the RSI-SSC research area in the past decade, accounting for the advantage in many
aspects, such as classification accuracy, fully automatic feature learning and representation, and
generalization ability. As the algorithm’s engine, a series of DL models have been proposed, e.g., deep
belief networks [11], auto-encoders [12], generative adversarial networks [13], and deep CNNs [14].
In the last five years, the deep CNN has gradually become prominent in the RSI-SSC research fields,
mainly owing to its end-to-end feature learning and higher classification accuracy.

Training a deep CNN model from scratch commonly requires massive amounts of annotated data.
However, it is hard to obtain such a large RSI dataset without a big research team. Hence, transfer
learning approaches based on pre-trained models of natural images have been the prior mainstream
route, which mainly includes fine-tuning models [15] and using models as feature extractors with frozen
architecture parameters [16]. Under this situation, no overwhelming advantages were found until those
large-scale RSI datasets of SSC benchmarks appeared, i.e., the AID [17] and NWPU-RESISC45D [18].
Since then, many CNN-based RSI-SSC approaches have been demonstrated successively.

Firstly, those approaches by using classic CNN models as feature extractors coupled with feature
fusion, feature re-weighting, or feature recombination strategies were proposed. Chaib et al. [19]
employed a pre-trained visual geometry group network (VGGNet) as a deep feature extractor and
then fused those every-layer features after a discriminant correlation analysis (DCA). The results were
finally treated as final representations for RSI-SSC. Wang et al. [20] also employed a pre-trained
Alex CNN (AlexNet) as a deep feature extractor, but differently added a long-short-term memory
network into the algorithm as the attention weight matrix generator. Then they re-weighted the 5th

layer output features of the AlexNet with the attention weight matrixes and fed the results to an
attention recurrent convolutional network (ARCNet) for RSI-SSC. These two approaches both show
an overwhelming performance against those traditional ML methods, but the performance evaluation
by the OA on AID is still less than 93%. Moreover, as a preliminary exploration, Cheng et al. [21]
separately employed three pre-trained CNN models, i.e., an AlexNet, a VGGNet, and a Google
CNN (GoogleNet) as deep feature extractors, and then re-combined the deep features as image
descriptors for the input of a bag of convolutional features (BoCF) model. In the end, the output of
the BoCF model was fed into a linear support vector machine classifier for RSI-SSC. Unsurprisingly,
the approach’s OA on NWPU-RESISC45D is a very limited 84.32%.

These three previous works are all rough or coarse applications of deep CNN. The model’s under-
fitting state, coming from poor training and unwise reprocessing of deep features, has greatly decreased
the model’s performance. To improve classification accuracy, approaches based on CNN models
as feature extractors coupled with re-mined information of interclass relationships were presented.
Liu et al. [22] leveraged three pre-trained CNN models, i.e., an AlexNet, a VGGNet-16, and a
VGGNet-Places365 as multi-scale deep feature extractors, and then re-used those extracted features
as source data to obtain the ground Wasserstein distance (WD) matrix. At the end of the approach’s
pipeline, they engineered a handcrafted WD loss instead of the routine cross-entropy loss and retrained
a GoogleNet model for RSI-SSC. Furthermore, Liu et al. [23] re-used the same WD idea again and
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fused the multi-information extracted from three retrained CNN models, i.e., an AlexNet, a VGGNet-
16, and a GoogleNet, for building sample class category hierarchies of RSI. After being re-weighted
by the hierarchical results, the hierarchical WD (HWD) loss was purposely embedded into the training
process of individual CNN models for RSI-SSC. Similarly, Zhang et al. [24] also employed two pre-
trained CNN models (i.e., a VGGNet-16 and an Inception-V3) as feature extractors and then fed deep
features into a capsule network (CapsNet) for the purpose of achieving a better capture of the spatial
and hierarchical information of RSI. Sorting these three approaches’ OAs, the WD-CNN is at the best
97.24% on AID, while the HWD-CNN is at the best 94.38% on NWPU-RESISC45D.

Despite the complex process and so many handcrafted features, these three prior approaches do
lift the performance of CNNs in RSI-SSC noticeably. Hence, more approaches utilizing the spatial
attention mechanism or the combination of multi-level deep features, as well as the ensemble of multi-
CNNs, have been demonstrated and shown to have more competitive OAs than ever. Zhu et al. [25]
sought to obtain deep features and spatial attention maps, respectively, based on a residual CNN
(ResNet) and a gradient-weighted class activation mapping technique. Then those attention maps
were fed into a designed spatial feature transformer network to generate saliency map features, which
were successively fused with the CNN features by dot multiplication. In the end, an attention-based
deep feature fusion (ADFF) CNN model was built for RSI-SSC. Similarly, Zhu et al. [26] employed a
Caffe CNN to extract deep features and simultaneously engineered an adaptive deep sparse semantic
modeling (ADSSM) framework to extract mid-level features. Then the mid-level features were fused
with high-level ones for RSI-SSC. Differently, Minetto et al. [27] employed a dozen ResNets and dense
CNNs to build a CNN ensemble called “Hydra”, which includes two CNNs in the body and twelve
CNNs in the heads. The output score of each head of Hydra was involved in a majority vote in which a
negative result represents the number of votes below or equal to half the sum of heads. Amid the three
approaches’ OAs, only the ADFF-CNN tested on AID is at 94.75%, which is below the WD-CNN.
But when comparing OAs on NWPU-RESISC45D, the Hydra ensemble is at best 94.51%.

However, the significant advantage of DL is end-to-end automatic feature learning with little
expert experience dependence. Furthermore, the trade-off of a DL-based approach is always important
owing to the fixed hardware budget, particularly the graphics processing unit (GPU) budget. Back to
the aforementioned representative studies, we can find that these approaches are full of either multi-
stages or excessive parameters (i.e., corresponding with out-of-control trade-offs), as well as too many
handcrafted features or discriminators (i.e., corresponding with high expert experience dependence). In
our options, automation and simplicity are the top priorities of the DL algorithm, i.e., it is unnecessary
to sacrifice them for the excessive pursuit of accuracy.

Generally speaking, manually labeling a massive dataset is time-consuming. Hence, data augmen-
tation is routinely employed at training time in DL tasks to improve model generalization and reduce
over-fitting [28–30]. Moreover, other data preprocessing techniques recently introduced for natural
image classification have also shown advantages in potentially improving model validation accuracy,
robustness, and convergence speed simultaneously, with more significant gains in training efficiency. In
other words, efficiency optimization has become an indispensable part of the training process of deep
neural networks. However, to the best of our knowledge, we find that these very meaningful techniques
have not been applied sufficiently in the earlier CNN-based studies. Despite this, the backbone CNN
models used in the previous studies are former SOTA models, and more efficient ones have recently
been demonstrated.
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Therefore, we believe that this situation may have caused three problems. Firstly, the earlier
approaches may have achieved suboptimal performances considering the lack of efficiency opti-
mization in the training process. Secondly, the earlier performance evaluation results of CNN-based
algorithms for RSI-SSC may be inaccurate somehow owing to the lack of efficient training. Thirdly,
and most crucially, it will be very likely to achieve a new SOTA performance for RSI-SSC while the
priorities of simplicity and automation are retained if the latest model and efficient optimization in
the training process are reasonably employed.

Motivated by the above questions, in this study we propose a fast and simple training CNN
framework named FST-EfficientNet for RSI-SSC. More specifically, we introduce a set of classical
data preprocessing techniques both for training and testing efficiency optimization into a CNN model,
i.e., the EfficientNetV2-S [31], but still employ a typical and simple transfer learning strategy. During
the practice of the FST-EfficientNet, we only employ several routine data augmentation tricks coupled
with a fixed ratio of resolution or a gradually increasing resolution strategy to speed up the convergence
rate and improve the model’s performance. The whole process of the proposed algorithm is completely
one-stage and end-to-end, without any handcrafted features or discriminators involved. The three
contributions of this study are summarized as follows:

Firstly, our FST-EfficientNet achieved new SOTA performance records for AID and NWPU-
RESISC45D challenges via a routine transfer learning strategy. The model has fewer parameters at
about 22 mega (M) with 8.8 billion (B) floating point operations (FLOPs), and the whole algorithm
flowchart is understandable.

Secondly, our FST-EfficientNet practice demonstrates the importance and indispensability of
training efficiency optimization strategies in RSI-SSC by DL. The techniques can significantly boost
model performance and reduce time costs as well in RSI-SSC tasks.

Thirdly, and most crucially, the results of our study suggest that it is unwise to give up simplicity
and automation unthinkingly in RSI-SSC tasks by DL. We argue that an excellent DL-based algorithm
should include simplicity and automation as much as possible. To address this, we must pay more
attention to the new techniques emerging in the natural image classification domain, particularly when
developing new CNN-based methods.

2 Materials and Methods
2.1 Model Architecture

The framework of FST-EfficientNet is illustrated in Fig. 1. On the top of Fig. 1, we can
observe the flowchart of the FST-EfficientNet and the base model’s architecture, i.e., the original
EfficientNetV2-S, which includes stage0–7 blocks and one pooling and full-connection (FC) linear
classifier layer. More specifically, stage0 and stage7 have fewer conv-layers inside compared to other
stages, i.e., stage0 includes only one down-sample 3 × 3 conv-layer with a 2 × 2 stride, while stage7
includes only one 1 × 1 conv-layer with a 1 × 1 stride. However, the stage 1–6 blocks are composed of
multi-conv-layers that are called the Mobilenet conv-layer (MBC) [32] or Fused Mobilenet conv-layer
(FMBC) [33]. In detail, the number of FMBCs in stages 1–3 is 2, 4, and 4, while the number of MBCs
in stages 4–6 is 6, 9, and 15. Inside the framework of the FST-EfficientNet, we only fine-tune the linear
classifier layer of the original EfficientNetV2-S architecture, i.e., the model’s original parameters and
FLOPs are unchanged.
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Figure 1: The framework of FST-EfficientNet and structure changes between the MBC and FMBC

The EfficientNetV2 CNN family models were released by Tan et al. in 2021. The model architec-
ture is developed by using a combination of training-aware neural architecture search and scaling. The
largest one of the family models holds a new SOTA top-1 accuracy of 87.3% on ImageNet-2012. The
EfficientNetV2 architecture is an improvement on the previous EfficientNet [34], which was released
in 2019. In terms of parameters and FLOPs, the EfficientNet architecture was smaller and faster at
that time. But as Radosavovic et al. [35] concluded in 2020, the size of the output tensors of all conv-
layers, which is defined as “activations”, can heavily affect the run-time on memory-bound hardware
accelerators, i.e., GPU accelerators. That is, the higher total number of activations and convolution
operations of the EfficientNet architecture slows down the training and inference speeds in practice.

To solve the problems, several changes were made to the EfficientNetV2 architecture design. As
shown at the bottom of Fig. 1, the most significant change in conv-layer structure is the MBC replaced
by the FMBC, i.e., the structure of a depth-wise 3 × 3 conv-layer behind the expansion 1 × 1 conv-layer,
which is also called the depth-wise separable convolution, is replaced by a single regular conv3 × 3.
Secondly, the Squeeze-and-Excitation (SE) block, which improves CNN performance via the channel
attention mechanism, is excluded from the FMBC. It is well known that the SE block has two conv-
layers. Understandably, these two changes in structure will greatly reduce the conv-layer activations
and convolution operations. Additionally, a non-uniform scaling strategy is used for different stages
in EfficientNetV2, compared to the same scaling rule for all stages in EfficientNet. Eventually, the
baseline model with 8 stages, which is named “EfficientNetV2-S”, is developed with 22 M parameters
and 8.8B FLOPs.

The EfficientNetV2-S model not only achieves better classification accuracy on Image-Net2012
with smaller parameters and FLOPs, but also has good transfer learning performance on other
datasets. In addition, the model’s source code is publicly available on the internet for nearly unlimited
usage. Therefore, the EfficientNetV2-S model is employed in this study for research purposes owing
to its smaller size and better performance.
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2.2 Dataset

There are two RSI datasets used in this study, i.e., AID and NWPU-RESISC45D. The AID was
released in 2017 with a total of 30 scene subclasses and 10,000 images, while each subclass contains
220–420 images at a fixed resolution of 600 × 600 pixels. The images are cropped from Google Earth
images and the spatial resolution is about 0.5–8 m. The samples for each category are shown in Fig. 2.
Similarly, the NWPU-RESISC45D was published in 2017 with a total of 45 subclasses and 31,500
images, while each class contains 700 images at a fixed resolution of 256 × 256 pixels. The images are
also cropped from Google Earth images and the spatial resolution is about 0.2–30 m. The samples for
each category are shown in Fig. 3.

Figure 2: Sample images of AID for 30 subclasses

Figure 3: Sample images of NWPU-RESISC45D for 45 subclasses
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These two datasets have been commonly used as benchmarks in previous studies. In brief, the OA
and confusion matrix have been widely used as evaluation criteria for the approaches’ performance.
In detail, the OA is as described in Eq. (1):

OA = Nc/Nt (1)

where the OA is defined as the total number of accurately classified samples (Nc) divided by the total
number of tested samples (Nt).

The confusion matrix is a detailed classification result table of the performance belonging to every
single classifier; i.e., for each element Xij (i represents lines and j represents rows) in the table, the
proportion of the predicted images in the ith category that actually belong to the jth class is computed.

In addition, for algorithm performance evaluation, a typically fixed training ratio of these two
datasets has been widely used, with the remaining for testing. In detail, training ratios of 20% and 50%
have been used for AID, while training ratios of 10% and 20% have been used for NWPU-RESISC45D.
For a fair comparison, the evaluation criterion and training ratio in this study are the same.

2.3 Proposed Approach
2.3.1 Related Work

Training efficiency has become more and more important with the continuous expansion of deep
learning applications, and recently, many techniques have been demonstrated to either shorten training
time or improve model performance.

Initially, Howard [36] demonstrated a “progressive resizing” method by using smaller images at
the start of training and gradually increasing image size at further training steps. To be specific,
the typical 224 × 224 resolution of the Imagenet-2012 dataset used in training time is replaced by a
128 × 128 resolution at initial epochs, and then larger size images (a resolution of 288 × 288, etc.) are
used at the final epochs. However, the testing accuracy is not very ideal, though the convergence speed
has improved. Furthermore, Hoffer et al. [37] proposed a “Mix & Match” (MM) method by using
stochastic images and batch sizes through random sampling to improve the training and inference
speed. The study shows that the CNN model accuracy, as well as robustness to image scale variants,
can be improved, and the total number of training iterations can also be reduced. For the same purpose,
Tan et al. also proposed a new method called “progressive learning” (PL) when EfficientNetV2 was
released. In detail, the study demonstrates a similar progressive strategy by increasing the image size
at training time but differently by using a stronger regularization at training time as the image size
increases, which is called “adaptive regularization.” The study also shows that the PL technique can
improve the accuracy and reduce the training time of EfficientNetV2 synchronously, and the technique
can also work well for EfficientNet and ResNet. However, the MM and PL techniques are designed
and applied for training CNNs from scratch on super-large-scale datasets, which are 100 to 400 times
bigger than the RSI ones.

Finally, Touvron et al. [38] proposed another “FixRes” method. In detail, at the initial training
steps, the strategy of a fixed ratio of image resolution, which includes a smaller image sampled by
the random-size crop (RSC) transformation (i.e., cropping a random portion of the original image
and resizing it to a given size) for training but a larger image for testing, is employed. But in the final
training steps, as the training images change to larger ones, another strategy by fine-tuning the model’s
last several layers or making some parametric adaptations to the activation of the model’s pooling
layer is employed to gain non-trivial performance improvements. Since the paper’s publication, the
FixRes technique has been widely examined on a lot of SOTA CNN models, and the latest result
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shows that the FixRes is a model-agnostic technique with simple and cheap parameter adaptations
[39]. More specifically, the training strategy via FixRes is 2.3 times faster than the routine ones,
with understandably cheaper trade-offs owing to the smaller training image size consuming less GPU
memory while it works well in transfer learning. However, these very meaningful techniques have never
been applied in RSI-SSC ever. There may be a great chance to improve the CNN-based algorithm’s
performance in RSI-SSC tasks if these simple techniques are properly used.

Therefore, in the study, we employ a partial idea of the FixRes technique in our FST-EfficientNet.
Similarly, we use the RSC transformation and set a fixed training vs. testing resolution ratio at the
initial training steps, and then change the RSC to the resize transformation for the same larger
resolution both in the training and testing process during the later training steps. Differently, at the
final training steps, we just train the model normally instead of fine-tuning layers or making parametric
adaptations introduced by FixRes, mainly considering that the RSI datasets are smaller than natural
image ones. For the same reason, in the base EfficientNetV2-S model, we also keep the dropout rate
before the linear classifier layer and other stochastic-depth settings as default. The increasing image
resolution is separately used in our FST-EfficientNet with respective results compared to the sequential
one in the PL method. In other words, the whole idea of the MM method is not implemented in our
study yet.

2.3.2 Algorithm

Algorithm 1: The procedures of FST-EfficientNet
1 Step 1 Initial training
2 Input: The original images X and corresponding labels Y
3 Resize 256 × 256 transformation: X256 = Resize (X)
4 RSC 256 × 256 transformation: XRSC = RSC (X256)
5 Random transformations, including: a. color Jitter, b. horizontal and vertical Flip, c. rotation

XRtrans = Rtrans (XRSC)
6 Output: images X Rtrans and labels Y
7 For Epoch = 1, 2, . . . , N do
8 Predict image’s probability P = f (XRtrans)
9 Update parameters through back propagating
10 End For
11 Return best OA weights-file: File1

12 Step 2 final training
13 Input: The original images X and corresponding labels Y
14 Resize R × R transformation: XR = Resize (X), where R = 256, 384, 512, and 600,

respectively.
15 Random transformations, including: a. horizontal and vertical flip, b. rotation, then XRtrans

= Rtrans (XR)
16 Output: images XRtrans and labels Y
17 Reload model with weights-file File1

18 For Epoch = 1, 2, . . . , N do
19 Predict image’s probability P = f (XRtrans)
20 Update parameters through back propagating
21 End For
22 Return best OA weights-file: File2, and prediction probability: P



CMC, 2023, vol.74, no.3 5749

Algorithm 1 summarizes the running process of the FST-EfficientNet framework. In summary,
the approach can be divided into Steps 1 and 2 according to the different resolutions used for training
and testing. In detail, Step 1 includes a total training epoch of 120, an initial learning rate of 0.001
with cosine decay, a training image resolution of 208 × 208, a testing image resolution of 256 × 256,
and a training batch size of 36 with all transformations used. More specifically, all layers of the
model are frozen except the classifier during the initial training epochs of 20, and then all layers
are unfrozen during the remaining training epochs of 100. Correspondingly, Step 2 includes a total
training epoch of 240, an initial learning rate of 0.0001 with cosine decay, training and testing images
with the same resolutions of 256 × 256–512 × 512 for NWPU-RESISC45D (but 256 × 256–600 × 600
for AID), and a training batch size of 24 to 36 for NWPU-RESISC45D (but 18 to 36 for AID) with
all transformations used except the RSC. All layers of the model are unfrozen during all the training
epochs of 240. In addition, in training, the loss function is the cross-entropy loss function, and the
error back propagation algorithm is the stochastic gradient descent with a momentum of 0.9 and a
weight decay of 0.0001. The EfficientNetV2-S model is initialized by the “rwightman” pre-trained
weights-file on ImageNet2012 [40].

2.3.3 Data Augmentation and Dataset Division

We employ six kinds of image transformations to implement data augmentation during training,
i.e., the RSC, resize, color jitter, random rotation, random horizontal, and vertical flip transformation.
The running order of transformations is the resize followed by the RSC, and then is the color jitter,
horizontal flip, vertical flip, and rotation in turn. Only the resize transformation is applied to images
during testing. In our implementation, the sequentially transformed images are generated on the
central processing unit (CPU) via the default Python code in the PyTorch libraries while the GPU
is training on the previous batch of transformed images. As a result, these data augmentation schemes
do not increase any GPU’s trade-off.

In general, all the experiments in this study were conducted by using a random selection of images
in each subclass from the dataset, and the results of OA were averaged over three runs.

2.3.4 Hardware and Software Environments

The experiments were performed on a personal computer equipped with an AMD Ryzen 5700X
CPU, a single RTX2060 GPU with 12 gigabytes (GB) of video random access memory (RAM), and
32 GB of RAM, running Pytorch 1.11.0 with the Compute Unified Device Architecture (CUDA) 11.5
on Win 10.

3 Results
3.1 OA on AID

Table 1 reports the OA comparison of different methods on AID with a training ratio of 20% and
50%. Given the description in Table 1, the OA results of the line Step 1 are related to a training size of
208 × 208 (by the RSC transformation) and a testing size of 256 × 256, compared to a fixed training
and testing size of 600 × 600 for the line Step 2. Given the results of the previous studies in Table 1, our
FST-EfficientNet is outperforming all the other methods noticeably. For example, the CapsNet claims
the highest OA of 93.79% with a training ratio of 20% before 2021, which is some 1.00% lower than
our result of step 1 and, more significantly, some 2.58% lower than the result of step 2, respectively.
Similarly, the WD claims the highest OA of 97.24% by the training ratio of 50%, which is still some
0.77% lower than the result of step 2, although a very lower testing ratio of 30% is used in the WD
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method. If comparing our FST-EfficientNet to those earlier methods, e.g., the DCA, ARCNet, and
ADFF, we can observe a greater OA gap.

Table 1: The OA (%) comparison of different methods on AID

Methods Training ratio

20% 50 (%)

DCA [19] - 89.71 ± 0.36
ARCNet [20] 88.75 ± 0.40 93.10 ± 0.55
WD [22] - 97.24 ± 0.32
HWD [23] - 96.98 ± 0.33
CapsNet [24] 93.79 ± 0.13 96.32 ± 0.12
ADFF [25] 93.68 ± 0.29 94.75 ± 0.24

Our FST-EfficientNet Step 1 94.79 ± 0.24 96.77 ± 0.30
Step 2 96.37 ± 0.03 98.01 ± 0.22

Regardless of the OA’s difference, these six methods both have a common complexity and require
prior expert experience. Additionally, the handcrafted features and indicators that do exist in these
methods may have decreased the model’s generalization ability, i.e., these methods may be over-fitting
on AID owing to the huge parameters corresponding to handcrafted engineering.

Hence, our FST-EfficientNet does present excellent performance on the relatively small AID, with
better simplicity, automation, and generalization ability considering its transfer learning strategy.

3.2 Confusion Matrix of AID

Fig. 4 presents the confusion matrixes of AID at a resolution of 600 × 600. As shown in Fig. 4a,
26 of all the 30 scene subclasses gain classification OAs higher than 90%, and five subclasses, including
“beach”, “forest”, “mountain”, “port”, and “viaduct”, achieve OAs of 100%. Only 3 of these 26
subclasses, including “industrial”, “medium residential”, and “square”, gain OAs lower than 96.37%,
indicating that only 7 of all the 30 scene subclasses have relatively greater interclass dissimilarities in
AID. In addition, the subclasses with lower OAs, including “center”, “park”, “resort” and “school”,
are also consistent with the CapsNet, but the OAs of the three subclasses in our study are higher by
2.8%, 6.5% and 12.9%, respectively. As shown in Fig. 4b, the confusion mainly happens in the “center”,
“park”, “resort”, and “school”scenes. The results are roughly aligned when considering that in Fig. 4a,
but the OA of the “center” scene shows a 12.1% increase in Fig. 4b.
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Figure 4: Confusion matrixes of AID at a resolution of 600 × 600

In brief, the results do show that our approach significantly improves the classification accuracy.
However, for the several subclasses with greater interclass dissimilarity, i.e., “center”, “park”, “resort”,
“square”and “school”scenes, there is still a need for more training samples to gain better performance.

3.3 OA on NWPU-RESISC45D

Table 2 presents the OA comparison of different methods on NWPU-RESISC45D with a training
ratio of 10% and 20%. Given the description in Table 2, the OA results of the line Step 1 are the same
as the setting in Table 1, but instead of a different setting by a fixed size of 512 × 512 for the line Step 2.
Given the results of earlier studies in Table 2, our FST-EfficientNet is still outperforming noticeably.
For example, the HWD claims a high OA of 93.27% (by a training ratio of 20% but a different testing
ratio of 30%) in 2018, which is some 1.43% lower than the result of Step 1 and some 2.33% lower than
the result of Step 2, respectively. Similarly, the ADSSM claims a high OA of 91.69% (by a training
ratio of 10%) and 94.29% (by a training ratio of 20%), which is about 0.4%–0.7% lower than the result
of Step 1 and 1.3%–2.0% lower than the result of Step 2, respectively. More specifically, the OA results
of Step 2 show a 1.3% increase (by a training ratio of 10%) and a 1.1% increase (by a training ratio of
20%) compared to the Hydra, which claims the highest OA of 92.44% and 94.51%.

Combining the information in Tables 1 and 2, the results suggest that our FST-EfficientNet has
shown consistently outperforming performance against the other methods, even if the total number of
samples increases 3 times from AID to NWPU-RESISC45D. Compared to the fourteen CNN models
accumulated in the Hydra method, our FST-EfficientNet is also a good explanation that it is not
necessary to gain better classification accuracy in RSI-SSC based on the excessive trade-off.
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Table 2: The OA (%) comparison of different methods on NWPU-RESISC45D

Methods Training ratio

10% 20 (%)

BoCF [21] 82.65 ± 0.31 84.32 ± 0.17
HWD [23] - 93.27 ± 0.17
CapsNet [24] 89.03 ± 0.21 92.60 ± 0.11
ADFF [25] 90.58 ± 0.19 91.91 ± 0.23
ADSSM [26] 91.69 ± 0.22 94.29 ± 0.14
Hydra [27] 92.44 ± 0.34 94.51 ± 0.21
Our
FST-EfficientNet

Step 1 92.37 ± 0.19 94.70 ± 0.13
Step 2 93.74 ± 0.04 95.60 ± 0.08

3.4 Confusion Matrix of NWPU-RESISC45D

Fig. 5 displays the confusion matrixes of NWPU-RESISC45D at a resolution of 512 × 512. As
shown in Fig. 5a, 38 of all the 45 scene subclasses gain classification OAs higher than 90%, and only
the “chaparral” subclass achieves the OA of 100%. The confusion mainly happens in “church” and
“palace” scenes with OAs lower than 85% and also happens in “commercial area”, “dense residential”,
“railway station”, and “wet land” scenes with OAs close to 90%. Given the results shown in Fig. 5b,
only two subclasses gain OAs lower than 90%, i.e., the “church” and “palace” scenes, meaning there
is a need for more training samples to improve the model’s performance. The CapsNet study argues
that the similar styles of buildings in the “church” and “palace” scenes contribute to the classification
confusion. However, the ADSSM method shows a significant improvement in the classification OA
of the “church” scene in contrast to more suboptimal performance in the other scenes (i.e., “storage
tank”, “basketball court”, “tennis court”, “overpass”, etc.), indicating that there is a chance to improve
the CNN-based classification accuracy on NWPU-RESISC45D. Nevertheless, the results do show that
our approach significantly improves classification accuracy on NWPU-RESISC45D in general.

4 Discussions

Training and testing with larger image sizes for the CNN model always leads to a higher OA.
To examine the optimum resolution for classification, we also changed the image size of Step 2 on
the two datasets, i.e., AID from 256 × 256 to 600 × 600 and NWPU-RESISC45D from 256 × 256
to 512 × 512, both in the training and testing period respectively, with other experimental settings
unchanged. Table 3 presents the OA results. The larger resolution of 600 × 600 leads to a significant
0.8% increase on AID compared to 256 × 256. Similarly, the larger resolution of 512 × 512 leads to a
significant 0.5% increase on NWPU-RESISC45D. More specifically, the improvement is more evident
in the lower train ratio. Considering the consumption of GPU resources and time-cost, the method’s
efficiency in practice may be better at the resolution of 384 × 384.
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Figure 5: Confusion matrixes of NWPU-RESISC45D at a resolution of 512×512

Table 3: The OA (%) results of different testing resolutions on AID and NWPU-RESISC45D

Training ratio Overall accuracy (%)

256 × 256 384 × 384 512 × 512 600 × 600

AID-20% 95.74 ± 0.02 96.07 ± 0.14 96.28 ± 0.02 96.37 ± 0.03
AID-50% 97.18 ± 0.20 97.75 ± 0.21 97.97 ± 0.20 98.01 ± 0.22
NWPU-RESISC45D-10% 93.16 ± 0.14 93.64 ± 0.06 93.74 ± 0.04 None
NWPU-RESISC45D-20% 95.28 ± 0.28 95.54 ± 0.04 95.60 ± 0.08 None

This result does demonstrate that using a larger image size for the CNN-based method can lead
to a higher OA for RSI-SSC. However, if using larger images at a “one-size-fits-all” resolution as
previous studies do, the memory consumption of GPUs will go up, and the model’s speed in training
and testing will be reduced more. In other words, the traditional methods in previous studies have
higher time and hardware costs, which restrict the use of larger image sizes for achieving better model
performance. Hence, the data preprocessing strategy used in this study offers us a new route to boost
model performance with a limited cost for RSI-SSC.

Nevertheless, there are still some limitations in our study to date. Firstly, only the channel attention
mechanism is included in the model architecture via SE blocks, and it is well known that the spatial
attention mechanism can boost model performance simultaneously. Secondly, transformed images via
RSC have a random size for training input, so the convergence rate may fluctuate more than usual.
Thirdly, the initial learning rate of 0.001 at Step 1 may be too high for the transfer learning strategy, so
the present results may be suboptimal somehow. We will check all these similar questions in the future.
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5 Conclusions

RSI-SSC via CNN-base DL method is a rapidly developing research field, and many academics
have made massive efforts to seek better performance during the past decade. However, some of
these prior studies unwisely pay more unbalanced attention to the classification accuracy than the
algorithm’s efficiency.

In this study, we propose the FST-EfficientNet, which is a fast and simple training CNN
framework for RSI-SSC. The whole algorithm flow is completely one-stage and end-to-end without
any handcrafted features or discriminators involved. In the implementation of training efficiency
optimization, only some routine tricks run on the CPU, so the algorithm’s trade-off is very cheap.
The performances on the two datasets (i.e., AID and NWPURESISC45D) show that the OA results
are new SOTA records with about 0.8% to 2.7% ahead of all earlier methods, to our best knowledge.
Meanwhile, our study demonstrates the importance and indispensability of the training efficiency
optimization strategy for RSI-SSC by DL. It is not necessary to gain better classification accuracy in
RSI-SSC based on the excessive trade-off. In the end, we hope these findings can help the development
of more efficient CNN-based approaches for RSI-SSC in the future.
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