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Abstract: Gene expression (GE) classification is a research trend as it has
been used to diagnose and prognosis many diseases. Employing machine
learning (ML) in the prediction of many diseases based on GE data has
been a flourishing research area. However, some diseases, like Alzheimer’s
disease (AD), have not received considerable attention, probably owing to
data scarcity obstacles. In this work, we shed light on the prediction of AD
from GE data accurately using ML. Our approach consists of four phases:
preprocessing, gene selection (GS), classification, and performance valida-
tion. In the preprocessing phase, gene columns are preprocessed identically.
In the GS phase, a hybrid filtering method and embedded method are used.
In the classification phase, three ML models are implemented using the bare
minimum of the chosen genes obtained from the previous phase. The final
phase is to validate the performance of these classifiers using different metrics.
The crux of this article is to select the most informative genes from the hybrid
method, and the best ML technique to predict AD using this minimal set
of genes. Five different datasets are used to achieve our goal. We predict
AD with impressive values for MultiLayer Perceptron (MLP) classifier which
has the best performance metrics in four datasets, and the Support Vector
Machine (SVM) achieves the highest performance values in only one dataset.
We assessed the classifiers using seven metrics; and received impressive results,
allowing for a credible performance rating. The metrics values we obtain in
our study lie in the range [.97, .99] for the accuracy (Acc), [.97, .99] for F1-
score, [.94, .98] for kappa index, [.97, .99] for area under curve (AUC), [.95, 1]
for precision, [.98, .99] for sensitivity (recall), and [.98, 1] for specificity. With
these results, the proposed approach outperforms recent interesting results.
With these results, the proposed approach outperforms recent interesting
results.
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1 Introduction

Dementia and memory loss are commonly caused by AD. It seems that in the mid of 1906, AD
is first recognized. It has been discovered as the principal reason for death. AD begins slowly and
slowly exacerbates over time [1]. By 2050, approximately 152 million people worldwide will be detected
with AD [2]. It is expected that [3] one person out of every eighty-five will suffer from AD by 2050.
AD has various symptoms; the most prevalent is the inability of remembering recent occurrences.
Difficulties with self-motivation, language, orientation, memory, self-care, mood, and behavior are
some indications of advanced AD [4]. As the status of AD patients degenerates, they start to keep away
from their families and society. Progressively, Body functions are lost, which finally results in death.
Despite progress might happen quickly or slowly, the average life expectancy after an AD diagnosis is
3 to 9 years [5]. As a result, early identification of AD has the potential to save lives, which is where
the current research comes into play.

So far, most of the recent studies on AD diagnosis have been performed using neuropsychological
testing and brain magnetic resonance imaging (MRI). Because it was challenging to sample the
posterior brains of normal and AD individuals, molecular recognition of AD is inadequate. Recent
trials have thankfully yielded large-scale omics data for numerous brain locations. Using this data, it
is now quite simple to construct prediction approaches, like those described in this study, in which ML
techniques are used to diagnose AD earliest opportunity. These treatments can be advantageous for
the patient because they are simple and affordable. In certain cases, they have even been demonstrated
to predict AD better than physicians [6]. This fact has prompted a lot of studies into utilizing ML to
diagnose AD using medical data in various ways, such as MRI.

In the following articles, the authors used MRI in the diagnosis of AD: an approach based on SVM
with recursive feature elimination to choose the informative features is employed in [7]. They allegate
to have better performance in classifying normal (N), mild cognitive impairment (MCI), and AD cases
(subjects or instances). The authors in [8] used MRI images with an unsupervised convolutional neural
network (CNN) for AD feature extraction. In addition, they classify AD, MCI, and N by employing
k-means clustering. The output achieves an accuracy of 95.52% for AD vs. MCI and 90.63% for MCI
vs. N in one slice of data. For TOP data, the method achieves an accuracy of 97.01% for AD vs. MCI,
and an accuracy of 92.6% for MCI vs. N. Techniques of the type Resting-state functional MRI and
deep learning (DL) have been used in [9] to classify AD and its stages. To apply transfer learning with
and without fine-tuning, they used an expanded network architecture. While off-the-shelf and fine-
tuned models, they produce impressive outcomes with high accuracy. The study in [10] classified AD
and MCI cases from N cases using CNN. They investigate the effects of including information from
diffusion tensor imaging and MRI. They achieved AUC, specificity, and Acc results of 0.93%, 91.7%,
and 88.9%, respectively, for N vs. AD classification, and 0.68%, 81.8%, and 71.1%, respectively, for N
vs. MCI classification.

Interesting results have been obtained in [11], where MRI is used to classify stable MCI, converter
MCI, N, and AD cases. For dimensionality reduction, they used partial least squares and Analysis
of variance (ANOVA) for features selection. For classification, random forest (RF) is used, obtaining
an accuracy of 56.25% for a test set of 160 cases. In [12], mobility data and DL models are used to
identify the stage of AD patients by processing a time series for each patient. In addition, a CNN model
is used to identify the patterns which detect AD stages. The results outperform those of traditional
supervised learning models. In [13] the authors used MRI images to check the presence of AD and
to assess the degree of AD. An evolutionary algorithm is applied to extract specific information for
AD classification. Two experiments are executed; the first one is to classify images into two classes
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moderate demented and non-demented. The second experiment is to classify images into three classes
moderate demented, mild demented, and non-demented. Their approach achieved 100% and 100%
for Acc and F1-score, respectively for the first experiment. For the second experiment, they achieved
91.49%, and 91.49% for Acc and F1-score, respectively.

In [14] ML framework is used to automatically diagnose neurodegenerative diseases, focusing on
AD and frontotemporal dementia. The authors suggested an explainable artificial intelligence tool
to assist clinicians in diagnosis because it includes all the stages necessary to analyze these datasets,
including data preparation, feature selection using an evolutionary approach, and modeling of the
diseases listed. It was evident how the suggested framework enables fluid processing of the cognitive
and image assessments, with a significant decrease in the number of features required for the diagnosis,
and a significant increase in classification accuracy.

GE data-based research enables the diagnosis of numerous diseases through the powerful tech-
nology of Deoxyribonucleic Acid (DNA) microarrays [15]. Thousands of genes’ expression levels are
provided in this data [16]. The gene expression level is signified by some distinct messenger molecules
ribonucleic acid (mRNA) in the cell. Utilizing this level, the diseases can be detected and the best
treatment options and alterations in other processes can be discovered [17]. In this direction, blood-
derived gene expression biomarkers in [18] are used to differentiate AD cases from N cases. XGBoost
is used as a classifier and successfully identifies AD by including associated mental and geriatric health
issues. However, the model’s sensitivity must be improved to create a more accurate blood test for AD.
Three datasets, AD Neuroimaging Initiative (ADNI), AddNeuroMed1 (ANM1), and ANM2 have
been used in [19] to classify AD from N. To select the most relevant genes, various GS methods like
transcription factor, convergent functional genomics (CFG), hub genes, and variational autoencoder
have been employed. Five classifiers, SVM, L1-regularized LR (L1-LR), RF, deep neural network
(DNN), and logistic regression (LR) have been implemented for classification purposes. They achieved
AUC results as follows 87.4% for ANM1, 80.4% for ANM2, and 65.7% for ADNI. Moreover, the
blood genes’ biological functions relevant to AD have been analyzed and the blood bio-signature has
been compared with the brain bio-signature. Several 1291 brain genes have been selected from a GE
dataset with 2021 blood genes selected from the other datasets, reporting that 140 genes are common
among them.

The authors in [20] identify GE from a blood dataset, exploring the correlation between an
AD patient’s blood and brain genes. They discover 789 differentially expressed genes in both the
brain and blood. The least absolute shrinkage and selection operator (LASSO) regression is utilized
as a GS technique. They used logistic ridge regression (RR), RF, and SVM approaches in the
classification stage. With 78.1% for Acc, they successfully distinguish AD cases from N cases. To
identify prospective diagnostic biomarkers of AD, the authors in [21] used multiple brain regions. GE
data from six brain regions are used to identify AD biomarkers. For the selection of the relevant genes,
a t-test is employed. To identify biomarkers and gauge their use for clinical diagnosis, Significance
tests have been performed. GE and DNA methylation datasets have been integrated in [22] for the
prediction of AD using DNN. Moreover, they used t-stochastic nearest neighbor (t-SNE) and principal
component analysis (PCA) techniques for gene selection. They verify the effectiveness of their method
by comparing its Acc and AUC with those of conventional ML models, like SVM, RF, and Naive Bayes
(NB). They achieve 82.3% Acc and 79.7% AUC.

Blood GE data from dementia case registry (DCR) cohorts and the ANM has been used in [23].
For GS, they used recursive feature elimination (RFE) and for the classification task, they used RF.
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In addition, they used ANM1 for training the classifier and used for testing integration of ANM2 and
DCR. Their methods achieve 65.7% for Acc and 72.4% for AUC.

Table 1 presents a summary of recent studies that have been presented to diagnose AD. This table
illustrates the main challenge in analyzing GE data: the imbalance between the number of genes and
cases (the number of genes is significantly more than the number of cases). The Table lists the number
of genes utilized in each experiment at the beginning and after the GS phase. We conclude that the
selection of genes is heavily influenced by the dataset and model and doesn’t have any discernible
pattern or guideline. In other words, depending on the ML model employed, each experiment may
choose a different number for the most significant genes and arrive at a different Acc value.

Table 1: summary of some recent studies using various GS techniques and ML models to predict AD
from GE data

GEO ID Cases number Genes
number

GS method Selected
genes no.

ML model Performance metrics Work

GSE5281 N:74, AD:87 23,643 t-test 1,001 SVM AUC: 0.894 [21]
GSE33000+
GSE44770

N:257, AD:439 19,488 PCA
t-SNE

35
35

RF
SVM

AUC: 0.531, Acc: 0.624
AUC: 0.511, Acc: 0.632

[22]

GSE63060
GSE63061
ADNI

N:104, AD:145
N:134, AD:139
N:136, AD:63

7,584
6,154
3,897

CFG
CFG
CFG

353
188
922

DNN
SVM
DNN

AUC: 0.874
AUC: 0.804
AUC: 0.657

[19]

GSE63060+
GSE63061

N:182, AD:245 16,928 LASSO 3,601 SVM AUC: 0.859, Acc: 0.781 [20]

GSE63060+
DCR

N:118, AD:118 261 RFE 12 RF AUC: 0.724, Acc: 0.657 [23]

This paper proposes an approach to predict AD based on GE data, consisting of steps. In the
beginning, we preprocess each dataset to prepare the datasets for manipulation. Then, we use a filtering
method to evaluate a dataset’s genes. Next, we rank and select the genes that have the highest values.
Then we use an embedded method to select the most relevant and significant genes. Finally, we feed
the selected genes into various ML techniques and track their classification results. The technique with
the greatest performance is chosen to be used in the AD prediction system in the future, which is our
ultimate goal.

The structure of the article follows the following order. In Section 2, we present the materials and
methods of the approach used in our investigations. Section 3 is devoted to the experimental work.
Section 4 is used for the discussion and concluding remarks.

2 Materials and Methods

This section presents our suggested strategy for GS and AD classification as depicted in Fig. 1.
Below, we present the details of the suggested strategy.
2.1 Datasets

The experimental work is applied using five well-known gene expression datasets. The datasets
are composed of multiple human brain tissues for DNA microarray data. They are obtained from the
National Center for Biotechnology Information-Gene Expression Omnibus (NCBI-GEO) database
[24]. The access numbers of the used datasets are GSE5281, GSE118553, GSE132903, GSE48350, and
GSE36980. GSE5281 dataset contains 161 cases from various six brain regions, i.e., medial temporal
gyrus (MTG), hippocampus (HIP), entorhinal cortex (EC), primary visual cortex (VCX), superior
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Figure 1: Workflow of the proposed approach for AD prediction

frontal gyrus (SFG), and posterior cingulate (PC). GSE118553 contains 267 cases from four different
brain regions, frontal cortex (FC), temporal cortex (TC), EC, and cerebellum (CR). GSE132903
dataset contains 195 cases from the MTG brain region. GSE48350 dataset contains 253 cases from
different four brain regions, i.e., EC, HIP, SFG, and post-central gyrus (PCG). GSE36980 dataset
contains 80 cases from three different brain regions HIP, TC, and FC. The five datasets are summarized
in Table 2.

Table 2: Summary of the five datasets used in the present study

Dataset ID Brain regions No. of genes AD cases Normal cases Total no.
of cases

GSE5281 EC, HIP, MTG,
PC, SFG, and VCX

23,516 87 74 161

GSE118553 EC, TC, FC, and CR 31,331 167 100 267
GSE132903 MTG 31,331 97 98 195
GSE48350 EC, HIP, SFG, and PCG 23,516 79 174 253
GSE36980 HIP, TC, and FC 24,533 33 47 80

2.2 Preprocessing

Preprocessing is essential for handling gene expression data because it prepares the datasets for
manipulation. The gene values are normalized to avoid large differences among the genes. The min-
max approach is used for normalization, and rescales the values range to the interval [0,1] for each
individual gene. Denote by C the set of cases described by G as a set of genes. The normalized gene
value Λ̂ci,gj , ci ∈ C, and gj ∈ G, of some gene value Λci,gj is defined by
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Λ̂ci,gj
=

Λci,gj
− min

ck∈C

(
Λci,gj

)
max
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(
Λci,gj

)
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(
Λci,gj

) (1)

where min
ck∈C

(
Λci,gj

)
and max

ck∈C

(
Λci,gj

)
are the minimum and maximum values of gene gj ∈ G over all cases

ck ∈ C.

2.3 Gene Selection

GS is considered the most challenging task in the gene expression data analysis because compared
to the number of genes the number of cases is substantially smaller. Table 2 illustrates this disparity.
It’s a crucial step to select genes from the raw gene expression datasets that are relevant to AD
prediction. Meanwhile, including insignificant and redundant genes can significantly negatively impact
classification accuracy. As a result, we devote great attention to gene selection in our research. There
are three forms of gene selection methods: filter, wrapper, and embedded methods. We employ a hybrid
method for this phase to take advantage of both the filtering and the embedded methods. Filtering
methods are good for a theoretical framework; it helps to understand the structure of the data. It is
suitable to be used for larger datasets, as it is fast to be computed. Additionally, the embedded method
is also fast and more accurate, considering the interaction of the genes, and is less prone to overfitting.
We start by looking at each gene’s importance in AD prediction using a filter-based method, ANOVA,
and order the genes according to their ability for AD prediction. Then we select the most relevant
and informative genes using an embedded method LASSO. Finally, we assess the importance of genes
according to each of the three ML classification techniques that we have used. We can detect the most
relevant and essential genes as well as the best accurate technique for predicting AD at the end of these
two phases.

• ANOVA-F statistic:
ANOVA is an efficient tool usually used to gauge the significance of differentiating between the
means of two random variables [11]. In the current work, the two variables are a gene and the
main output. One metric of the ANOVA family is the F statistic. For a binary dataset with two
classes, 1 and 2. We calculate the F statistic of a gene as follows. First, determine the sum of
squares and the degrees of freedom, then employ the formula below (see [11]).

F = ((ρ1 − 1) + (ρ2 − 1))[ρ1

(
x − x∗)2 + ρ2

(
x − x∗∗)2

]

(
∑ρ1

k=1(x∗,k − x∗
)2 + ∑ρ2

k=1(x∗∗,k − x∗∗
)2)

(2)

with ρ1 as the number of class 1 cases, and ρ2 as the number of class 2 cases. The overall average of the
gene is denoted by x, x∗ denotes the average of the class 1 gene values, x∗∗ is the average of the class
2 gene values, x∗,k the k value, with class 1 gene, and x∗∗,k the average of the values, with class 2 gene.
The gene is significant for determining the class, AD or N if the F statistic has a larger value and vice
versa.

• LASSO:
A potent tool with two primary functions: regularization and feature selection. Also known
as a form of regression method that uses regularization to best fit a generalized linear model.
LASSO shatters the regression coefficient to zero for the variable with the smallest impact on
the model, based on the principle of penalizing the regression model (L1-norm). Consequently,
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the LASSO regression model has the best feature selection ability [25].

ωLasso = argω min

⎧⎨
⎩1

2

N∑
i=1

(
yi − ω0 −

p∑
j=1

xijwj

)2

+ λ

p∑
j=1

|wj|
⎫⎬
⎭ (3)

where λ indicates the penalty parameter, which is frequently obtained using cross-validation, that
defines the shrinkage proportion. For instances where the data has a small sample size and a high
dimension, like in our case, LASSO maintains a great performance. Additionally, when a small number
of variables account for the bulk of the data (have a big coefficient); the remaining variable’s power
for prediction is relatively low. Additionally, LASSO has some important benefits, including when
features have several collinearities, LASSO effectively addresses this and produces highly independent
features. Also, LASSO proved to be computationally less expensive.

2.4 Classification

The classification phase in our approach follows the GS phase, where we identify the most relevant
genes to AD prediction. Generally speaking, any ML model can be used to predict AD, but in the
experiments below, we’ll focus on the three ML classifiers that proved to be the most effective in this
task: MLP, SVM, and k-nearest neighbor (KNN). In the present work, the classification is a binary
task, we classify AD cases from N cases. The three classifiers used in our experiment will be described
as follows.

• MLP:
MLP is a feed-forward neural network containing one or more hidden layers that are directed
in the following order: input, hidden, and output. The rectified linear unit (ReLU) or sigmoid
functions are the activation functions used by MLP. The sigmoid function returns a value in
the range [0,1], enabling the neural network to classify the data smartly. However, there is a
downside to this sigmoid function feature, i.e., with deeper networks; the function’s output is
strongly biased towards the extremes of the range. To overcome this issue, the ReLU function
was introduced. It gives 0 for an input value smaller than 0 but remains the original input value
if it is larger than 0. The ReLU function is defined by

g (x) = x+ ≡ max (0, x) =
{

0, x < 0
x, x ≥ 0 (4)

where x is the input to a neuron. It is well known that some optimizers that improve and stabilize
the learning rates of MLP include momentum, nesterovated gradient, stochastic gradient
descent, and adaptive moment estimation (Adam). Adam is applied in our study, because of
its low memory needs, great computational efficiency, and scalability with big datasets [26].
Since a learning rate of 0.01 is known to help preventing underfitting, it is the default value for
this parameter, which regulates the step size in weight updates.

• SVM:
SVM is a well-known supervised ML technique that classifies data as follows. First, by
nonlinearly transforming the data to higher dimension gene spaces. Second, present a linear
optimal hyperplane or a decision boundary to detach the points of different classes (see [27]).
SVM seeks to maximize distances between the hyperplane and closest training data points. The
SVM classifier (the hyperplane) is denoted by
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wT . γ (t) + a = 0 (5)

w is a weight vector, γ (t) is a nonlinear mapping and a is the bias. The optimal hyperplane is
defined by finding w and a which minimize the function

1
2

wT . w + B
n∑

i=1

vi (6)

with some slack variables vi > 0, n the number of cases, and B some factor.

• KNN:
KNN algorithm is a famous nonparametric technique used in regression or classification (see
[28]). Based on the inter-sample similarity seen in the training set, KNN intuitively categorizes
unlabeled samples. When the number of neighbors is given as a parameter, a small value causes
the model’s decision boundary to be complicated and subsequently overfit, whereas a large value
causes the decision boundary to be simple and underfit. Consequently, choosing a suitable value
for this parameter is crucial. The core parameter of the KNN in this investigation was set to the
value demonstrating the maximum performance, n_neighbors, individually for each dataset.

2.5 Performance Metrics

The last phase is to evaluate the performance of the classification techniques. To widen the
assessment scope, we used for performance evaluation seven metrics: Acc, F1-score, Kappa index,
precision, sensitivity (recall), specificity, and AUC.

To calculate these metrics, we first compose for each classification experiment a confusion matrix,
having the number of the cases classified and whether the classification is true or false. Let TP be the
number of true positive cases, TN the true negatives, FP the false positives, and FN the false negatives.
Then, accuracy is defined as

Acc = TP + TN
TP + TN + FP + FN

(7)

Note that the denominator represents all Predictions.

The F1-Score is given by

F1−score = TP
TP + 0.5 (FP + FN)

(8)

Kappa index is given by

Kappa = 2 × (TP × TN − FN × FP)

(TP + FP) × (FP + TN) + (TP + FN) × (FN + TN)
(9)

Precision is defined as

Precision = TP
TP + FP

(10)

Sensitivity (Recall) is denoted by

Sensitivity = TP
TP + FN

(11)
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Specificity is defined as

Specificity = TN
TN + FP

(12)

3 Experimental Work and Results

This section represents the results of our experimentation to check the validity of the proposed
approach. The experiments were carried out using five different datasets consisting of multi-tissue GE
profiles from various human brain regions as per the Algorithm below.

All the datasets have the property that the number of genes is significantly more than the number
of cases as shown in Table 2. The code was run in Python version 3.7.3 with the Scikit-learn packages,
it was executed on an Intel (R) Core (TM) i7-8550U CPU, 8 GB RAM, and 64-bit OS Win 10
configuration. Using this method, the most informative and pertinent genes for AD were chosen,
and the other genes that did not contribute to the accuracy of a predictive model or would produce
unfavorable outcomes were eliminated. In the beginning, the datasets are preprocessed to facilitate
handling GE data. In predicting AD, every gene was evaluated for its relevance using the ANOVA
filter metric as mentioned above. Genes are ranked in descending order and we select the highest 1000
genes, these numbers of genes are chosen according to the previous experiment we have done in [29]
and achieved great results. Then an embedded method, LASSO, is used to learn which genes best
contribute to the model’s accuracy.

Algorithm 1: Best classifier identification and GS using hybrid filter method and embedded method.
Input: U // AD gene expression dataset

G = {g1, g2, . . . ,g|G|} //Set of genes
Output: The best classifier with the lowest number of genes
//Preprocessing:

1 Normalize the dataset U as per Eq. (1).
//Gene relevance evaluation:

2 for j = 1 to |G| do
3 Calculate for gene g j its F statistic metric Fgj as per Eq. (2).
4 end

//Gene Selection–filter method: Rank the genes based on the ANOVA metric.
5 Sort the genes in descending order based on their F values, placing the sorted genes in the array GF .
6 Select the highest 1000 genes and input them to LASSO.

//Gene Selection– embedded method: Select the minimum number of relevant genes.
//Tuning λ in the LASSO penalty.

7 for λ ε{.1, .01, .001,.0001} do
8 For given λ simply minimize the cost function to find the weights ω as per Eq. (3).
9 Then compute the norm of ω (excluding ω0).
10 end
11 Validate each classifier with the gene subset and calculate the metrics Acc, F1-score, Kappa index,

precision, sensitivity (recall), specificity, and the AUC.
12 Reporting the validation
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Different numbers of genes are selected from the datasets. These genes are compared with the list
of the genes described in the well-known database AlzGene [30], which comprises 695 significant AD
genes derived from 1395 research, and other eminent studies. The final number of the selected genes
and the most significant genes, which are considered biomarkers of AD, are represented in Table 3.
According to the used datasets, we have a kind of imbalanced data, where the number of AD cases
is not equal to the normal cases. To overcome such an issue, we split the datasets using a repeated
stratified k-fold cross-validation approach, with k = 10 and the number of repetitions is 30 (total
of 300 times). This approach is suited for small-sized datasets, which are processed multiple times
and report the mean performance across all folds and all repeats. It has the benefit of improving the
estimate of the mean model performance.

Table 3: Summary of the number of the selected genes from the five datasets, and some of the significant
genes reported in the AlzGene database and other eminent studies

Dataset Selected genes ANOVA+LASSO Significant genes Reported in references

GSE5281 98 genes IRF6
HFE
ND2
COX2

[30]
[30]
[31]
[30]

GSE118553 152 genes CAT
ANK3

[30]
[30]

GSE132903 107 genes RPF1 [32]
GSE48350 92 genes THRA

ND2
COX2

[30]
[31]
[30]

GSE36980 57 genes RPF1
TXNIP

[32]
[33]

Every classifier is employed on the selected genes, and the seven performance metrics, (Acc, F1-
score, Kappa index, precision, sensitivity (recall), specificity, and the AUC), are evaluated. Finally,
the average of 300 results for each performance metric is recorded. We observed that the MLP model
achieved the best results in four datasets. In the datasets GSE5281, GSE118553, and GSE132903,
MLP contained five hidden layers, each hidden layer consisted of 4 neurons and used the ReLU as
the activation function, and Adam as the gradient descent algorithm. The initial learning rate was
0.01 and it is executed over 500 epochs. In GSE48350 datasets MLP contained ten hidden layers and
the remaining hyperparameters are the same in the other datasets. SVM achieved the best results in
only one dataset, GSE36980. Figs. 2–5 represent the results of our experiment for four metrics, Acc,
F1-score, Kappa index, and AUC, whose equations are explained above.

Table 4 represents the average results of the remaining metrics, precision, sensitivity (recall), and
specificity. Each figure represents the average values of this metric for three classifiers, MLP, SVM,
and KNN, and each selected subset of genes for the five datasets.
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Figure 2: Acc of all three ML models applied for five gene subsets

Figure 3: F1-score of all three ML models applied for five gene subsets

Figure 4: Kappa index of all three ML models applied for five gene subsets

Figure 5: AUC of all three ML models applied for five gene subsets
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Table 4: Summary of some performance metrics (Precision, Recall, and Specificity)

Dataset Classifier Precision Recall Specificity

GSE5281 MLP
SVM
KNN

0.9990
0.9448
0.9076

0.9784
0.9822
0.9888

0.9784
0.9822
0.9888

GSE118553 MLP
SVM
KNN

1
1
0.9483

0.9918
0.9898
0.9868

0.9918
1
1

GSE132903 MLP
SVM
KNN

0.9596
0.9504
0.9347

0.9877
0.9275
0.8649

1
1
1

GSE48350 MLP
SVM
KNN

0.9884
0.9883
0.9886

0.9971
0.9535
0.9873

0.9971
0.9535
0.9873

GSE36980 MLP
SVM
KNN

0.9923
0.9911
0.9783

0.9133
0.9933
0.9638

0.9133
0.9933
0.9638

4 Conclusion

We presented an approach for predicting a disease that receives insufficient attention in the
literature—Alzheimer’s disease, using gene expression data. Compared with recently published com-
petitive approaches, the proposed strategy has been demonstrated to accurately and efficiently predict
AD using GE data. We used a hybrid method for GS to decide which genes are most important for
AD prediction. In our experiments, five different GE datasets are used. Firstly, we employ a filtering
method to rank all the genes according to their importance and select the highest ones. Secondly, we
use an embedded method to reduce the number of genes by selecting the most relevant and informative
genes. Third, three different classifiers are utilized and the best of them is what achieves the highest
performance. It turns out that the MLP model has reached the highest performance and outperforms
SVM and KNN in classifying four datasets using the smallest number of genes. While, SVM results
outperform MLP and KNN in classifying only one dataset.

The approach is accurate and reliable for classifying AD cases from N cases using the smallest
number of genes. Its flexibility characterizes it. It can use any ML classification model, filtering,
and embedded method. It can also be applied to other GE-based diseases. It has been proved that it
outperforms the state of the art in terms of achieving superior performance with fewer genes. Although
the reliability of this work, has one constraint, it is used only for binary classification. Potential future
work could solve this constraint by developing a framework capable of predicting AD phases.
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