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Abstract: The current research aims to implement the numerical results
for the Holling third kind of functional response delay differential model
utilizing a stochastic framework based on Levenberg-Marquardt backprop-
agation neural networks (LVMBPNNs). The nonlinear model depends upon
three dynamics, prey, predator, and the impact of the recent past. Three
different cases based on the delay differential system with the Holling 3rd

type of the functional response have been used to solve through the pro-
posed LVMBPNNs solver. The statistic computing framework is provided by
selecting 12%, 11%, and 77% for training, testing, and verification. Thirteen
numbers of neurons have been used based on the input, hidden, and output
layers structure for solving the delay differential model with the Holling 3rd

type of functional response. The correctness of the proposed stochastic scheme
is observed by using the comparison performances of the proposed and refer-
ence data-based Adam numerical results. The authentication and precision of
the proposed solver are approved by analyzing the state transitions, regression
performances, correlation actions, mean square error, and error histograms.

Keywords: Holling 3rd type; delay factor; mathematical model; neural
networks; levenberg-marquardt backpropagation

1 Introduction

The interactions of the prey and predator present the major evolutionary force, which can be
performed to consider the mechanisms impacts based on the population’s cooperation of the ecological
societies. Many researchers have designed mathematical models based on the influences of the predator
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population on the prey along with the density-dependent conditions of the ecology. Several prey-
predator systems have been used in the growth ratio of the predator species, which are directly linked
to the prey density and its converse processes. The prey’s growth ratio can be directly linked to the
density of the predator at the current time, and predictably, the predator’s growth ratio is dependent
on the prey density in the present [1,2]. Hence, the biological impacts are more reasons to use the
fading effects of the memory that can significantly alter the dynamics. Few more recent studies based
on the density of past prey using the prey-predator interactions are presented in the references [3–6].

The perception of the effect presented by Allee provides a positive form of the correlation between
the size of the population and specific fitness [7–12]. Most prey-predator relations are considered
with the prey’s logistic growth. The Allee effect using the prey dynamics provides the population
difficulties, including deficient alimentation at low densities, mate restriction, genetic drift, inbreeding
depression, and predator evading of defense [13–17]. As a result, the Allee effects are considered a
crucial component for biological regulators and frequently increase the loss probability [18]. These
effects can perform the strong/weak relations associated with the growth ratio. The strong effects
of the Allee [19–21] show the growth rate (positive) per capita, while the weak effects of the Allee
suggest a growth rate (negative) per capita. The presence of Allee impacts has already been discussed
in various biological creatures, like mammals (suricates) [22], insects (Glanville fritillary butterfly) [23],
and marine invertebrates (gastropod) [24].

Since a few of the transitions from one to another state cannot be instantaneous, the interactions
of the prey-predator models using the time delay have gained immense importance over the last few
decades [25–27]. The dynamic of the natural populations presents constancy, which is related to the
species response. The time delay form impacts the population’s constancy [28,29]. Consequently, the
time delay conditions are used in various ordinary differential systems. In various mechanisms, the use
of time delay provides the system’s destabilization using the co-occurrence state via Hopf bifurcation,
along with the dynamics of the strong oscillation [30,31]. Few investigations have been presented in the
literature along with the discussion of the Allee effects that make the system’s stability with time delay
[32]. In the population dynamics, two biological mechanisms named as competition and cooperation
have gained colossal importance using the time delay. Competition in the population commonly arises
for food, while the cooperation in the population usually means evading the predator or adopting
the prey.

The purpose of the present investigations is to provide the numerical results for the delay differ-
ential system using the stochastic framework based on the Levenberg-Marquardt backpropagation
neural networks (LVMBPNNs). The interaction dynamics of the prey-predator, along with the delays
in the prey’s cooperation/competition factors exposed to the effects of Allee with fading memory,
have never been discussed before using the LVMBPNNs stochastic scheme. Stochastic computing
studies have been defined to solve several singular, complex and complicated dynamical models. Few
of them are food chain models [33,34], HIV dynamical models [35], the dynamics of the coronavirus
systems [36], the singular form of the thermal explosion theory [37], eye surgery differential model
[38,39], smoking differential model [40], and singular differential models [41]. The novel outputs of
the proposed study are presented as follows:

• A nonlinear form of the mathematical prey-predator system, including two delay factors based
on the dynamics of the competition and cooperation, is provided using the prey Allee effects
along with the Holling 3rd type.

• The numerical solutions of the prey-predator with the delay factors in the Allee effects and the
Holling 3rd type are presented using the LVMBPNNs stochastic framework.
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• Using the suggested LVMBPNNs stochastic method, three alternative deviations of the nonlin-
ear dynamical delay factors in the Allee effects and the Holling third type of model have been
numerically stimulated.

• By comparing the results of the acquired and the reference solutions, one can see the brilliance
of the LVMBPNNs stochastic scheme.

• The reliability of the LVMBPNNs stochastic method is performed by using the absolute error
(AE) performances for solving the prey-predator model with the delay factors in the Allee
effects along with the Holling 3rd type.

• The regression, state transitions, error histograms, mean square error, and correlation per-
formances are provided using the LVMBPNNs stochastic scheme for the delay differential
mathematical system.

The organization of the paper is provided as follows: Section 2 performs the mathematical form
of the delay models. The proposed network structure is provided in Section 3, while Section 4 provides
the simulations of the results. Conclusions are reported in the last Section.

2 Mathematical Model

This section provides a nonlinear form of the mathematical prey-predator system, including
two delay factors based on the dynamics of the competition and cooperation, using the prey Allee
effects. The predator density is dependent on both present and past prey populations. In the model, a
weakening form of memory is also added. The competition form of the delay factor induces instability,
while the delay factor induces the system’s stability through the Hopf bifurcation.

The prey-predator model, along with the Allee effects with two-time delay constant factors
combined with the prey dynamics, is presented. The fading form of the memory factor is considered
using the predator’s growth ratio. Therefore, a biological system based on the growth ratio in predator
species is considered, which is dependent upon the prey density. The predator’s functional response
in the interactions of the prey-predator has been categorized in four forms called Holling I–IV type.
The Holling 3rd type shows the functional response to the positive predation effects correlated to the
prey population. The predation effect enhances with the increment in the population of the prey. Such
responses are typically considered when the predator efficiently finds an alternate source with a low
prey density. There are many investigations that have been presented based on the Allee effects and
Holling 3rd type using the functional response [42]. The delayed mathematical model with the Holling
3rd type using the functional response is provided as [43]:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

dP(x)

dx
= φP (x)

(
1 − Px1

k

) (
Px1

− h
) − a (P(x))

2 Q(x)

b + (P(x))
2 P (0) = c1,

dQ(x)

dx
= υa (R(x))

2 Q(x)

b + (R(x))
2 − ξQ (x) − S (Q(x))

2 Q (0) = c2,

dR(x)

dx
= 1

d
(P (x) − R (x)) R (0) = c3,

(1)

where Px1
= P(x − τ1) and Px2

= P(x − τ2) are the time delay terms in the system (1). The parameters
used in the delay differential weakening memory system are provided in Table 1.
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Table 1: Parameters used in the delay differential model with the Holling 3rd type of the functional
response system

Parameters Details

P(x) Prey
Q(x) Predator
R(x) Impact of recent past
b Rate of evolution from P(x) to Q(x)

a Increase in the natural population
φ Growth term
ξ Rate of evolution from P(x) to R(x), cure of secluded individuals
s Rate of evolution from P(x) to R(x), cure of diseased individuals
τ1 and τ2 Delay factors
x Time
h There hold for of prey strength
d Personalities’ death rate
c1, c2, c3 Initial conditions

3 Stochastic LVMBPNNs Methodology

The current section performs the Levenberg-Marquardt backpropagation neural networks
(LVMBPNNs) stochastic structure for solving the prey-predator model with the delay factors in
the Allee effects along with the Holling 3rd type as:

• The necessary operator performances by using the LVMBPNNs stochastic scheme are pro-
vided.

• In addition, the implementation procedures based on the LVMBPNNs scheme are provided to
solve the prey-predator model with the delay factors in the Allee effects along with the Holling
3rd type.

Fig. 1 presents the optimization performances using the multi-layer procedures based on the
LVMBPNNs stochastic scheme. In addition, the statistic computing framework for solving the delay
differential system is provided through the selection of 12%, 11% and 77% for training, testing, and
verification, along with 13 neurons.
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Figure 1: Proposed LVMBPNNs procedure for solving the delay factor based on the Holling 3rd type
of the functional response

4 Numerical Simulations

This section provides numerical simulations for three different variations of the delay differential
weakening memory system using the stochastic Levenberg-Marquardt backpropagation neural net-
works (LVMBPNNs) approach. The mathematical representation of each deviation is presented as:
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Case 1: Consider the values a = 0.15, b = 0.5, d = 0.1, τ2 = 0.5, τ1 = 0.5, v = 0.4, S = 0.31,
h = 0.1, ξ = 0.4, k = 0.2, φ = 0.01, c1 = 0.1, c2 = 0.2, and c3 = 0.3 used in the system (1) as:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

dP(x)

dx
= 0.1P (x) (1 − 5P (x − 0.5)) (P (x − 0.5) − 0.1) − 0.15 (P(x))

2 Q(x)

0.5 + (P(x))
2 P (0) = 0.1,

dQ(x)

dx
= 0.21 (R(x))

2 Q(x)

0.5 + (R(x))
2 − 0.4Q (x) − 0.31 (Q(x))

2 Q (0) = 0.2,

dR(x)

dx
= 10 (P (x) − R (x)) R (0) = 0.3.

(2)

Case 2: Consider the values a = 0.15, b = 0.5, d = 0.1, τ2 = 0.5, τ1 = 0.5, v = 0.4, S = 0.31, h = 0.1,
ξ = 0.4, k = 0.2, φ = 0.01, c1 = 0.2, c2 = 0.3 and c3 = 0.4 used in the system (1) as:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

dP(x)

dx
= 0.1P (x) (1 − 5P (x − 0.5)) (P (x − 0.5) − 0.1) − 0.15 (P(x))

2 Q(x)

0.5 + (P(x))
2 P (0) = 0.2,

dQ(x)

dx
= 0.21 (R(x))

2 Q(x)

0.5 + (R(x))
2 − 0.4Q (x) − 0.31 (Q(x))

2 Q (0) = 0.3,

dR(x)

dx
= 10 (P (x) − R (x)) R (0) = 0.4.

(3)

Case 3: Consider the values a = 0.15, b = 0.5, d = 0.1, τ2 = 0.5, τ1 = 0.5, v = 0.4, S = 0.31, h = 0.1,
ξ = 0.4, k = 0.2, φ = 0.01, c1 = 0.3, c2 = 0.4 and c3 = 0.5 used in the system (1) as:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

dP(x)

dx
= 0.1P (x) (1 − 5P (x − 0.5)) (P (x − 0.5) − 0.1) − 0.15 (P(x))

2 Q(x)

0.5 + (P(x))
2 P (0) = 0.3,

dQ(x)

dx
= 0.21 (R(x))

2 Q(x)

0.5 + (R(x))
2 − 0.4Q (x) − 0.31 (Q(x))

2 Q (0) = 0.4,

dR(x)

dx
= 10 (P (x) − R (x)) R (0) = 0.5.

(4)

The delay differential weakening memory system solutions are provided through the designed
LVMBPNNs for three cases. Thirteen neurons have been obtained for the delay differential model
by selecting the data as 12%, 11%, and 77% for training, testing, and verification. The construction of
the layers based on the hidden input and output is illustrated in Fig. 2.

Figure 2: Input, hidden, and output layers structure for the delay factor in the Holling 3rd type of
mathematical model

The numerical performances for three different cases of the delay factor in the Holling 3rd

type of mathematical model are provided in Figs. 3 to 5. The state transitions (STs) and the best
performances are provided in Figs. 3 and 4. Fig. 3 represents the STs and mean square error (MSE)
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depictions for best curves, training, and verification to solve three different deviations of the delay
differential system. These precise measures of the delay differential form of the weakening memory
system are provided by using the epochs at 45, 74, and 59, which are calculated as 5.8824 × 10−10,
2.7183 × 10−10, and 3.6402 × 10−09, respectively. The gradient operator values have been derived in
Fig. 3 for the delay differential system. The performances of these gradient measures have been
reported as 9.722 × 10−08, 9.7663 × 10−08, and 9.902 × 10−08 for the delay differential form of the system.
These representations of the graphical plots signify the convergence of the LVMBPNNs statistical
procedure. Fig. 4 authenticates the design of the fitting cure to obtain the numerical performances
of the delay differential form of the weakening memory system. The graphical curve representations
provide the result comparisons for each deviation of the delay differential form of the system. The
error representations using the authentication, testing, and training measures have been signified to
solve the delay differential form of the weakening memory system using the LVMBPNNs stochastic
procedure. The EHs plots and the regression presentations are also illustrated in Fig. 4 based on the
delay differential form of the system using the LVMBPNNs stochastic procedure. The performances
of the EHs have been drawn as 5.60 × 10−06, 2.41 × 10−06, and 1.41 × 10−05 for each deviation of the
delay differential form of the system. The plots based on the regression have been illustrated in Fig. 5
to signify the correlation performances. It is indicated that the correlation is reported as one for each
deviation of the delay differential form of the system using the LVMBPNNs stochastic procedure. The
validation, training, and testing performances label the correctness and exactness of the LVMBPNNs
stochastic method to present the numerical solutions of the delay differential form of the system. The
convergence based on the MSE through the validation, training, testing performances, generations,
complexity, and backpropagation is tabulated in Table 2 for the validation, training, and testing
performances based on the LVMBPNNs stochastic operator.

Figure 3: (Continued)
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Figure 3: Performances of the mean square error and state transitions through the LVMBPNNs for
delay factor in the Holling 3rd type of mathematical model

Table 2: Designed data performances through LVMBPNNs for the delay factor in the Holling 3rd type
of mathematical model

Case MSE Gradient Mu Iterations PerformanceTime

Testing Training Endorsement
1 8.20 × 10−9 3.37 × 10−10 5.88 × 10−10 9.72 × 10−08 1 × 10−10 45 3.38 × 10−10 02
2 2.63 × 10−10 1.73 × 10−10 2.71 × 10−10 9.76 × 10−08 1 × 10−10 74 1.74 × 10−10 03
3 6.72 × 10−9 3.49 × 10−09 3.60 × 10−09 9.90 × 10−08 1 × 10−09 59 3.49 × 10−09 03
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Figure 4: Performances of the error histograms and result simulations for the delay factor in the Holling
3rd type of mathematical model
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Figure 5: Performances of the regression for the delay factor in the Holling 3rd type of mathematical
model

Figs. 6 and 7 indicate the results comparison and the absolute error (AE) performances based
on three different deviations of the validation, training, and testing performances by using the
LVMBPNNs stochastic procedure. These plots aim to provide the exactness of the LVMBPNNs
stochastic procedure for the delay factor in the Holling 3rd type of mathematical model. Fig. 6
represents the comparison measures based on the obtained and reference solutions for solving the
delay factor in the Holling 3rd type of mathematical model using the LVMBPNNs stochastic procedure.
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The overlapping of the obtained and reference solutions provides the exactness of LVMBPNNs
stochastic procedure to solve the obtained and reference solutions. The AE values for the LVMBPNNs
stochastic solver based on three different deviations of the delay differential system are provided in
Fig. 7. The delay factor in the Holling 3rd type of mathematical model depends upon three dynamics,
prey P(x), predator Q(x), and the memory factor in the growth rate of the predator R(x). The AE for
prey P(x) is calculated as 10−05 to 10−07, 10−06 to 10−07, and 10−05 to 10−08 for cases 1, 2 and 3 based on
the delay differential system. The values of the AE for the predator Q(x) dynamics are found as 10−04

to 10−06, 10−03 to 10−06, and 10−04 to 10−05 for 1st, 2nd and 3rd cases based on the delay differential working
memory system. The AE performances of the memory factor in the impact of the recent past R(x) are
calculated as 10−05 to 10−07 for each case of the delay differential system. These precise performances
enhance the correctness of the LVMBPNNs stochastic procedure for solving the delay factor in the
Holling 3rd type of mathematical model.

Figure 6: Comparison of the results for the prey-predator model based on the delay factor in the
Holling 3rd type
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Figure 7: AE performances for the delay factor in the Holling 3rd type of mathematical model

5 Conclusions

The current project’s goal is to present numerical simulations of the prey-predator model based on
the delay factor in the Holling 3rd type. Prey Allee effects are used to give the nonlinear mathematical
prey-predator system, which includes two delay factors based on the dynamics of the competition and
cooperation. The predator density is dependent on both present and past prey populations. In the
model, a weakening form of memory is also added. The competition form of the delay factor induces
instability, while the cooperation form of the delay factor induces the system’s stability through the
Hopf bifurcation. Few concluding features of the present study are provided:

• A nonlinear form of the mathematical prey-predator system, including two delay factors based
on the dynamics of the competition and cooperation, is provided using the prey Allee effects
along with the Holling 3rd type.

• The dynamical model is complicated since delay factors are present in it; as a result, the
LVMBPNNs stochastic framework is the best option for delivering the numerical results.

• The statistic computing framework for solving the delay differential system is provided through
the selection of 12%, 11%, and 77% for training, testing, and verification, along with 13 neurons.

• Comparing the obtained and reference solutions demonstrates the accuracy of the LVMBPNNs
stochastic framework.
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• The values of the AE are performed in suitable measures, which are calculated around 10−04 to
10−07 for each dynamic of the dynamical model.

Future research directions: The proposed stochastic solver can be used to solve the fractional
order delayed differential models [44–51], delayed dynamical models [52–55], and nonlinear systems
of differential equations [56,57].
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