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Abstract: Identifying human actions and interactions finds its use in many
areas, such as security, surveillance, assisted living, patient monitoring, reha-
bilitation, sports, and e-learning. This wide range of applications has attracted
many researchers to this field. Inspired by the existing recognition systems,
this paper proposes a new and efficient human-object interaction recognition
(HOIR) model which is based on modeling human pose and scene feature
information. There are different aspects involved in an interaction, including
the humans, the objects, the various body parts of the human, and the back-
ground scene. The main objectives of this research include critically examining
the importance of all these elements in determining the interaction, estimating
human pose through image foresting transform (IFT), and detecting the per-
formed interactions based on an optimized multi-feature vector. The proposed
methodology has six main phases. The first phase involves preprocessing the
images. During preprocessing stages, the videos are converted into image
frames. Then their contrast is adjusted, and noise is removed. In the second
phase, the human-object pair is detected and extracted from each image frame.
The third phase involves the identification of key body parts of the detected
humans using IFT. The fourth phase relates to three different kinds of feature
extraction techniques. Then these features are combined and optimized during
the fifth phase. The optimized vector is used to classify the interactions in the
last phase. The MSR Daily Activity 3D dataset has been used to test this model
and to prove its efficiency. The proposed system obtains an average accuracy
of 91.7% on this dataset.

Keywords: Artificial intelligence; daily activities; human interactions; human
pose information; image foresting transform; scene feature information

https://www.techscience.com/
https://www.techscience.com/journal/cmc
http://dx.doi.org/10.32604/cmc.2023.033769
https://www.techscience.com/doi/10.32604/cmc.2023.033769
mailto:sachelloug@pnu.edu.sa


5854 CMC, 2023, vol.74, no.3

1 Introduction

Human interaction recognition (HIR) is an emerging field in computer vision and artificial
intelligence. It involves identifying humans and the objects they are interacting with and then mining
various features to help the classifier identify the correct interaction. Such interaction recognition
systems are being widely used in the health [1–3], sports [4,5], security [6], and education [7] sectors.
This article uses daily activities to test the proposed model. In daily lives, humans interact with various
objects; for example, they drink water from a glass or cup, eat from a plate or packet, read or write
on a paper, play an instrument, or use a device [8]. If an automatic system is able to identify these
interactions of a patient, it can help provide them with timely assistance [9]. Similarly, if the interactions
of a student are monitored during an online class, it can enhance their learning experience [10].
Moreover, if such interactions are identified at a certain place, better security can be provided [11].

Despite the various uses mentioned above and the excessive amount of research done in this field,
there is still a lot of room for improvement. The existing systems are not a hundred percent accurate
and don’t work as well in practice. One of the main reasons for this is the numerous challenges that
a recognition system might face. These challenges range from occlusion, scale variation, inter-class
similarities, intra-class differences, and illumination variations [12]. Another major problem is the
limited availability of large-scale publicly available datasets that provide all these issues so a system
can be trained for real-life challenges. Keeping all these in mind, we have proposed a novel method for
interaction recognition in this paper.

Some existing HOIR systems rely on scene information as contextual clues provide extra infor-
mation that helps in determining the HOI [13]. Others remove background scenes and consider only
the foreground [14]. The rationale behind this approach is that redundant background negatively
contributes to the process of deciding the correct interaction. The remaining models use interaction
points [15] or a combination of full humans and their key points to identify the interaction being
performed [16]. Our approach uses a hybrid of these three approaches as we try to establish the
importance of all kinds of clues. Scene information is important because if a person is holding
something on a cricket ground, that something is more likely to be a ball or a bat, but if it is a kitchen
scene, the object is probably a kitchen utensil. Similarly, pose estimation is important because some
key body parts are more involved in a certain interaction than others. This will make the human pose
for such an interaction distinctive.

Our proposed model includes six main steps. The first step involves preprocessing the incoming
videos containing human interactions. First, the videos are converted into frames and then these
frames are adjusted and refined using nose removal. In the second step, the human-object pair is
detected through image segmentation. Then the twelve key body parts of the detected humans are
identified during the third step. The fourth step consists of various feature extraction techniques. The
different types of features are extracted. First, full human features are obtained, and then features
based on key body parts are extracted. Lastly, scene features are obtained. In the fifth step, these
features are concatenated, and the resulting vector is optimized. This vector is then fed to the hidden
Markov model (HMM), which recognizes the interaction. The main contributions of this paper are as
follows:

• Using a graph-based image skeletonization technique called IFT for pose estimation that
involves detecting twelve human body parts.

• Proposing a multi-feature approach involving three different types of features: full-body fea-
tures, point-based features, and scene features.

• Optimizing the large feature vector obtained through locally linear embedding (LLE).
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• Using HMM for the final class detection of daily-life activities involving human-object inter-
actions.

The rest of this research article is arranged as follows: Section 2 discusses the related research
work to some extent. Section 3 explains the proposed method and its various phases in detail. Then
the proposed model is evaluated in Section 4. The dataset and the experimental settings and results
are discussed. Section 5 touches upon some limitations of this model and possible future directions of
research that can improve this existing model. Finally, Section 6 provides a conclusion of this research.

2 Literature Review

In this article, an efficient human interaction recognition (HIR) system has been proposed which
uses human pose and scene feature information to accurately identify the interactions. Many previous
researchers have employed human pose for this purpose and others have used scene information, which
has more commonly been referred to as contextual information. These research works are discussed
in detail below:

2.1 HIR Based on Human Pose

Modeling human pose is important because different human poses and the movement of body
parts are related to different interactions. Hence, many research articles have given methods of
detecting body parts and extracting features from them for better human-object interaction (HOI)
classification. Yao et al. [17] exploited the mutual context of the overall human pose, different body
parts, and the object involved in an interaction. They argue that the two difficult tasks of object
detection and human pose estimation can benefit from each other by providing mutual context.
Similarly, Ghadi et al. [18] proposed a model for detecting twelve human body parts using binary
silhouettes. The authors then extracted features from full humans as well as key body parts to obtain a
rich and robust feature vector. For full humans, they used oriented FAST and rotated BRIEF (ORB)
and texton map features. And for body parts, they obtained Radon transforms and Freeman chain
codes. A similar method was followed by Khalid et al. [19] for HOI detection. They use 3 dimensional
(3-D) point clouds and fiducial points as features. They also exploited the overall pose and body parts
information for better classification. Similarly, Waheed et al. [20] extracted six key body points using
heat kernel signatures of 3-D meshes and geodesic distances. Moreover, they extracted convolutional
neural network (CNN)-based features for human pose and topological and geometric features for
key human body parts. Likewise, Wang et al. [21] proposed the use of interaction points for HOI
detection. The authors employed a fully convolutional approach that directly detected interaction
points between the human and the object. Based on these points, their model generated an interaction
vector. However, all these systems are limited to humans and their body parts. These do not utilize
contextual information.

2.2 HIR Based on Scene Information

Scene features are important because they provide additional contextual information about the
interactions. For example, if the scene features identify the scene as a playground, it is easier to detect
that the performed interaction is a sports activity. Many previous works have exploited this additional
information to improve the accuracy of their systems. For example, Ikizler-Cinbis et al. [22] used two
types of scene features for human interaction recognition; namely, shape features and color features.
They used GIST as shape features and for color features, they divided the input frames into three
regions and obtained their histograms. Similarly, Wang et al. [23] employed deep contextual features
for human-object interaction recognition. For this, they obtained CNN features of whole images.
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They called them global features and then also obtained local features from the detected human and
object instances. He et al. [24] used scene graphs for HOIR. They detected the human and object
pairs and then added the external environment or scene information to provide contextual clues.
The scene graphs also provided spatial clues, such as the size and position of the object. Another
interesting approach was presented by Gupta et al. [25], who treated the daunting task of human-
object interaction recognition as a Bayesian problem. To establish the importance of using contextual
clues, the authors give an example of a simple running interaction that will more likely be interpreted
as kicking if there is a ball right next to it. The issue with these models is that they rely too heavily on
scene information and too little on the more important human pose.

3 Material and Methods

The proposed system has six different stages. First, frames are extracted from the input videos
and then the images are preprocessed using intensity adjustment and noise removal techniques. In the
second stage, image segmentation is performed where each image is converted into super pixels and
then these super pixels are merged together to get the desired human-object (HO) pairs. Next, the key
human body parts are identified on the detected HO pairs during the third stage. In the fourth stage,
three types of features are then obtained: full body, parts-based, and scene features. In the fifth stage,
the three different features are concatenated and optimized. The interactions are then classified in the
sixth stage. A complete overview of the proposed model is given in Fig. 1.

Figure 1: A complete overview of the proposed model

3.1 Image Preprocessing

All input videos are first converted into frames at the rate of 20 frames per second. Then these
frames are pre-processed. The intensity values of the images are adjusted using sigmoid stretching
and then noise is removed using Gaussian filtering. These two methods are discussed in detail in the
following sub-sections.

3.1.1 Sigmoid Stretching

For adjusting the contrast of all images, we use sigmoid stretching, which is a linear image
transformation method based on piecewise linear functions. It enhances the quality of an image
by improving the contrast. The intensity values are stretched to fill the entire dynamic range of an
image. For this, a linear and monotonically increasing transformation function is used. This method
highlights the pixels with moderate intensity values and maintains enough contrast at the extreme
pixels. Therefore, all the pixel values seem to be placed along a sigmoidal function (an S-shaped curve).
Hence, the resultant image has less contrast in very bright and very dark areas, and more contrast in
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areas between these two extremes. This kind of stretching works ideally for almost every kind of image.
Eq. (1) shows the sigmoid function.

Sigmoid (x) = 1
(1 + e−x)

(1)

3.1.2 Gaussian Filtering

After intensity adjustment, noise is removed from the images. For this, we use Gaussian filtering. A
gaussian filter has an impulse response of a Gaussian function. It works as a 2-D convolution operator
which removes noise from the image by making it smooth. However, some of the details are also lost
during the process and hence, the resultant image seems blurred. In the output image, each pixel is
a weighted average of the neighbors of the pixel in the original image. The average is weighted more
towards the value of the central pixels. It is quite similar to a mean filter, but it uses a different kernel.
This kernel represents a bell-shaped Gaussian hump, as given in Eq. (2).

G (x, y) = 1
2πσ 2

(
e− x2+y2

2σ2

)
(2)

3.2 Human-Object Pair Detection

After preprocessing, all images are segmented. This means that the images are divided into
background and foreground segments, where the foreground segment contains the human-object (HO)
pair. For this purpose, we employed Felzenszwalb’s method [26], which divides the input image into
multiple regions called super pixels. Felzenszwalb’s method creates a graphical representation of the
input image and then decides which areas are similar and can be categorized as one region. Fig. 2
shows the results of this method. Then these regions are merged further until only 3 regions are left:
the background, the human, and the object. This region merging technique is inspired by the work of
Xu et al. [27], according to which, the regions which are similar and adjacent are merged to get one
bigger region. To determine the similarity, four types of features are obtained for each region. These
features include mean, covariance, scale-invariant feature transform (SIFT), and speeded-up robust
features (SURF). Eq. (3) shows the similarity Si,j formula.

Si,j ←
∑n

i=1,j=1

[
Smean

i,j + Scovariance
i,j + Ssift

i,j + Ssurf
i,j

] × Di,j (3)

where i and j represent any two regions or super pixels, Di,j is their adjacency matrix. This means
that it is equal to 1 if the two regions are adjacent and 0 otherwise. Smean

i,j , Scovariance
i,j , Ssift

i,j and Ssurf
i,j are the

similarities between the mean, covariance, SIFT and SURF features of the two regions.

3.3 Part Identification

After extracting the human silhouette, twelve key human body parts have been identified. For
this purpose, the first step is to convert the human silhouette into a binary silhouette whose image
skeleton is then obtained. In the binary image, the foreground is black and the background is white.
The process of skeletonization keeps reducing the foreground until no more pixels can be removed.
The skeletal remnant is then used to identify key points. For image skeletonization, a graph-based
technique called the image foresting transform (IFT) [28] has been used. IFT represents the path in a
graph with the minimum cost. In such a path forest, the nodes represent the pixels of the input image
and the adjacency relationship between various pixels represents its arcs. To determine the cost of
a path in such a graph, a cost function specific to this application is calculated. Moreover, the IFT
depends on the local properties of the image along the path. For example, the color, gradient, or the
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position of the pixel. A given set of seed pixels is used to determine the roots of this path forest. To get
suitable cost functions for the different paths, one minimum-cost path is assigned to each pixel from
the given set of seed pixels. This is done so that the paths are connected to form an oriented forest that
spans the entire image. There are the outputs of an IFT: an optimum path from the root, the path cost,
and the corresponding root. The path attribute can be used to find an image skeleton.

Figure 2: HO pair detection (a) original image, (b) super-pixels, (c) regions merged and (d) detected
HO pair

7 key points are obtained from the nodes marking the start and end positions of various paths in
the obtained skeleton. These points are identified as head, left hand, right hand, upper torso, bottom
torso, left foot and right foot. Using the obtained 7 points, 5 additional key points are also found,
namely, neck, left elbow, right elbow, left knee, and right knee. The method of finding these additional
points is simple: the mid-point of any two key points is calculated and a point on the contour lying
closest to the obtained mid-point is stored as an additional key point. The mid-point (xm, ym) of two
existing points j and k is calculated using Eq. (4). Each step of the process is shown in Fig. 3.

(xm, ym) =
(

xj + xk

2
,

yj + yk

2

)
(4)

Figure 3: Part identification (a) overall human pose (b) seven key IFT graph nodes and (c) five
additional nodes
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3.4 Feature Extraction

Robust features play a critical role in identifying an HOI interaction. Therefore, three different
types of features have been employed by the proposed system: full body, parts-based, and scene
features. Algorithm 1 explains this process in detail while each type of feature is discussed in the
following sub-sections.

Algorithm 1: Feature Extraction
Input: N: full body silhouettes and twelve key body points
Output: combined feature vector f = (f1, f2, f3 . . . fn)
% initiating feature vector for remote sensing HOI classification %
feature_vector ← []
% loop on all images%
n ← len (images)
For i = 1:n

% extracting scene features%
GIST ← Get_GIST_descriptor (image[i])
feature_vector.append (GIST)
% loop on extracted human silhouettes %
s ← len (silhouettes)
For j = 1:s

% extracting intensity order pattern (LIOP) features%
LIOP ← GetLIOPdescriptor (silhouette[j])
feature_vector.append (LIOP)
% loop on twelve key points %
For k = 1:12

% extracting kinematic posture (KP) features%
KP ← GetKinematicPosture (k, k + 1)
feature_vector append (KP)

End
End

End
Feature-vector ← Normalize (feature_vector)
return Feature-vector f = (f1, f2, f3 . . . fn)

3.4.1 Full Body: LIOP Feature

For the overall human pose or full body silhouette of the detected human, we have extracted
the local intensity order pattern (LIOP) [29]. This feature descriptor works better in the case of low
contrast and illumination changes within an image but faces issues in the case of rotation and scale
variation. It is also useful with challenges such as geometric and photometric transformations. These
can include view-point changes, blur images, and compressed images. The LIOP feature descriptor is
based on the order of intensity values. To obtain this feature, the image region containing the detected
HO pair is divided into multiple sub-regions called ordinal bins based on their intensity order. Then
the LIOP descriptor of each point in the sub-region is obtained on the basis of its relationship with
the intensities of its neighboring points. If P (x) is a vector that contains the intensity values of the
neighbors of a point that belongs to the local patch, then Eq. (5) can be used to get the LIOP of
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this point. In this equation, ω (x) denotes a weight function which is described in Eq. (6). The LIOP
descriptor is obtained by concatenating the LIOPs of the various points of each bin, respectively. Each
image is divided into 6 bins and the number of neighboring points is set to 4, resulting in a feature
vector of size 4! × 6 = 144. Each step of this process is shown in Fig. 4, and Eq. (7) represents the
LIOP descriptor of each bin.

ω (x) =
∑

i,j
sgn

(∣∣I (xi) − I
(
xj

)∣∣ − Tlp

) + 1 (5)

LIOP (x) = ∅ (γ (P (x))) (6)

desi =
∑

x∈bini
ω (x) LIOP (x) (7)

Figure 4: LIOP feature descriptor

3.4.2 Parts-Based: Kinematic Posture

For body parts, we have obtained a feature known as kinematic posture [30]. It includes two feature
sets: linear joint position feature (LJPF) and angular joint position feature (AJPF). To obtain this
feature, every key body part i is represented by a three-dimensional vector Ji in the coordinate space
of Kinect. Then the distance of each body part is obtained with respect to the head Jhead. This distance
di(head) is then normalized with respect to the distance vector between neck and torso points. Hence, for
twelve key points, the LJPF for each frame n can be represented by Eq. (8).

LJPFn = [
d[n,1], d[n,2], . . . d[n,12]

]
(8)

Then the angles between different bone segments are calculated using three body parts. The AJPF
encodes the angles between different bone segments. For example, the angle between the left upper arm
and forearm is calculated using the neck, left elbow, and left-hand join. Since the angle between the
neck and the head is almost constant for all actions, only five angles are computed. Hence, the AJPF
for each frame n can be represented by Eq. (9).

AJPFn = [
a[n,1], a[n,2], . . . a[n,5]

]
(9)

Lastly, for each video frame, these two features are combined to generate the kinematics posture
feature (KPF) set. This feature encodes the change in key body positions and angles across video
frames. Both LJPF and AJPF features of an image skeleton are shown in Fig. 5.
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Figure 5: Kinematic posture (a) LJPF (b) AJPF

3.4.3 Scene: GIST Descriptor

GIST [31] feature descriptor is a global texture-based feature extraction technique that is used
for extracting the dominant structure of a scene. This feature representation is usually based on five
perceptual dimensions, i.e., roughness, ruggedness, naturalness, expansion, and openness. Initially, the
input frames are converted into gray-scale images. To obtain the GIST descriptor, the input frame is
first convolved with 32 Gabor filters. These filters have 4 scales (σ ) and 8 orientations (θ ), resulting in
a series of 32 feature maps. These maps have the same size as the input image frame. Each feature map
is divided into 9 regions and then the values within each region are averaged. These 9 values of the 32
feature maps are then joined together to give the 288-dimensional GIST feature vector for each frame.
The GIST descriptors of two different scenes are visualized in Fig. 6.

3.5 Feature Optimization

Once the three types of features are obtained, they are concatenated. However, this results in a
high-dimensional feature vector in which each dimension represents a specific feature. To reduce the
dimensions of this feature vector and to make the system computational effective, we use a technique
called locally linear embedding (LLE) [32]. It is an unsupervised dimensionality reduction method
for non-linear data. It maps the high-dimensional data to lower dimensions while preserving its
neighborhood embeddings. It does so by representing each point in the original data as a regularized
linear mixture of its neighboring points. As explained in Algorithm 2, LLE works on each point by
creating its neighborhood graph using its K-ary neighborhoods.
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Figure 6: (a) GIST descriptor (a) eat (left) and its GIST descriptor (right) (b) use laptop and its GIST
descriptor

Algorithm 2: Feature Optimization
Input: high dimensional feature vector f
Output: low dimensional feature vector Y
%find neighbors of each data point x%
For i ← 1:N

Distance_vector ← []
For j ← 1:N

D ← distance (xixj)

Distance_vector.append (D)
END
d ← Get_K_smallest_distances (D)
Z ← neighbors_of_x(d)

END
(Continued)
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Algorithm 2: Continued
%solving for reconstruction weights W%
For i = 1:N

%compute local covariance%
C ← Z′ ∗ Z [e]
%solve linear system%
C∗w = 1 for w [f]

If j is not a neighbor of i:
Wij ← 0

Else:
W ← w/sum(w)

END
%computing the output vector Y%
%Create sparse matrix M%
M ← (I − W)′ ∗ (I − W)
E ← Find_bottom_d + 1_eigenvectors (M)
Yq ← q + 1_smallest_eigenvectors (E)
Return Y

3.6 Interaction Classification

For the classification of interactions, a hidden Markov model (HMM) [33] is used. It is a
probabilistic machine learning model that uses some observed or known variables to predict a sequence
of hidden or unknown variables. In this method, system X is assumed to have unobservable or hidden
states, but these states can be determined through another observable process Y. Although 1-D HMMs
are more popular, 2-D HMMs are used for image classification. During training, the model parameters
are estimated based on the obtained feature vectors and their labeled classes. During testing, the
trained HMM searches those classes which have the maximum a posteriori probability given the feature
vectors. Fig. 7 shows the structure of a 2-D HMM.

Figure 7: 2-D HMM structure
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4 Experiments and Results

This section describes the dataset that has been used for experimentation and the details of the
various experiments performed. The leave one subject out (LOSO) cross-validation technique has been
used to evaluate the proposed model. First, classification accuracy is given in terms of the confusion
matrix. It shows the accuracy achieved with each class. Moreover, precision, sensitivity, specificity, and
F1-score values are also given. Then body part detection rate for each part is given by comparing the
obtained coordinates with the ground truth values. The entire training and testing process was carried
out using Python on a Windows-10 operating system which had 16-GB RAM and a core-i7-7500U
CPU @ 2.70 GHz processor. Lastly, the performance of the proposed system is also compared with
that of other state-of-the-art models that used the same dataset.

4.1 MSR Daily Activity 3D Dataset

The MSR Daily Activity 3D dataset [34] contains both depth and RGB video sequences, which
have been recorded using a Kinect sensor at Microsoft Research Redmond. 10 different people perform
16 activities, only 10 of which are human-object interactions, namely, read book, drink, call cellphone,
eat, use vacuum cleaner, write on a paper, toss paper, play game, use laptop, and play guitar. Every person
performs the given interaction once while standing and once while sitting. The dataset has a total of
320 videos, but we have used only 200 videos of the 10 human-object interactions. This dataset is
challenging because of high intra-class variation. Some sample frames from the dataset are given in
Fig. 8.

Figure 8: MSR daily activity 3D dataset. a) read book, b) write on a paper, c) call cellphone, d) use
laptop, (e) use vacuum cleaner and (f) eat
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4.2 Classification Accuracy

The proposed model has achieved an average accuracy of 91.7% on the MSR Daily Activity 3D
dataset and the results are given below. Table 1 shows a confusion matrix of the proposed model. It
shows the number of times (in terms of percentages) each class was identified correctly as well as when
it was incorrectly identified as another class.

Table 1: Confusion matrix over the MSR Daily Activity dataset

Classes DR ET RB WP UL PG CC UV PR LS

DR 0.92 0.03 0.02 0.00 0.01 0.01 0.01 0.00 0.00 0.00
ET 0.04 0.91 0.01 0.00 0.00 0.02 0.02 0.00 0.00 0.00
RB 0.01 0.01 0.91 0.03 0.03 0.00 0.00 0.00 0.00 0.01
WP 0.00 0.00 0.03 0.92 0.03 0.00 0.00 0.00 0.00 0.02
UL 0.01 0.01 0.00 0.02 0.91 0.00 0.02 0.02 0.00 0.01
PG 0.01 0.00 0.02 0.00 0.01 0.92 0.03 0.01 0.00 0.00
CC 0.00 0.02 0.01 0.00 0.01 0.04 0.90 0.00 0.00 0.02
UV 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.94 0.02 0.02
PR 0.00 0.00 0.00 0.01 0.02 0.03 0.00 0.01 0.91 0.02
LS 0.00 0.00 0.02 0.03 0.02 0.00 0.00 0.00 0.00 0.93

Average classification accuracy rate = 91.7%
Note: ∗DR = drink, ET = eat, RB = read book, WP = write on a paper, UL = use laptop, PG = play game, CC = call cellphone, UV =
use vacuum cleaner, PR = play guitar, LS = lay on a sofa.

4.3 Precision, Sensitivity, Specificity, and F1-Score

The proposed model has also been evaluated in terms of other evaluation metrics, such as
precision, sensitivity, specificity, and F1-score. As given in Eq. (10), the precision of a given interaction
class is the number of true positive values out of the total number of positives obtained. Similarly,
Eq. (11) shows that sensitivity is the number of true positive values out of the total number of true
positives and false negatives obtained. On the other hand, specificity is the number of true negative
values out of the total number of true negatives and false positives obtained, as shown in Eq. (12).
F1-score is computed using precision and recall values as given in Eq. (13).

Precision = TruePositive
TruePositive + FalsePositive

(10)

Sensitivity = True Positive
True Positive + False Negative

(11)

Specificity = True Negative
True Negative + False Positive

(12)

F1 − score = 2 (Precision × Recall)
(Precision + Recall)

(13)

The proposed model has achieved an average precision, sensitivity, specificity, and F1-score of
91.3%, 91.7%, 99.1%, and 91.5% respectively over the MSR Daily Activity 3D dataset respectively as
shown below in Table 2.



5866 CMC, 2023, vol.74, no.3

Table 2: Precision, sensitivity, specificity, and F1-scores over the MSR daily activity 3D dataset

Class Precision Sensitivity Specificity F1-score

DR 0.91 0.92 0.99 0.91
ET 0.90 0.91 0.99 0.90
RB 0.91 0.91 0.99 0.91
WP 0.92 0.92 0.99 0.92
UL 0.91 0.91 0.99 0.91
PG 0.92 0.92 0.99 0.92
CC 0.89 0.90 0.99 0.89
UV 0.93 0.94 0.99 0.93
PR 0.91 0.91 0.99 0.91
LS 0.93 0.93 0.99 0.93

Mean 0.91 0.92 0.99 0.91

4.4 Body Part Detection Rate

The accuracy of the identification of the twelve body parts that were detected using the graph-
based approach is also tested by comparing the obtained coordinates of these points with the ground
truth values. The accuracy is given in terms of percentages in Table 3.

Table 3: Body part detection rate achieved over MSR daily activity 3D dataset

Part DR ET RB WP UL PG CC UV PR LS AVG

HD 92.23 90.34 90.03 90.12 92.24 93.4 94.32 90.45 94.35 90.12 91.76
RE 95.67 93.03 92.12 90.11 93.56 96.05 92.35 94.32 93.27 96.05 93.65
LE 93.35 95.67 91.78 94.38 96.05 94.38 93.62 92.23 93.56 94.32 93.93
RH 91.45 90.51 91.63 95.67 92.23 94.38 90.56 93.27 95.67 93.27 92.86
LH 97.59 90.12 95.67 91.45 92.35 97.59 92.03 93.56 96.05 92.23 93.86
NK 94.38 96.05 94.38 95.67 93.35 93.35 91.14 92.23 97.59 95.67 94.38
TRS 93.62 92.72 95.67 87.24 94.32 95.67 93.35 95.67 92.23 94.32 93.48
BTR 92.23 95.67 97.59 93.56 94.38 94.38 90.42 92.23 93.56 96.05 94.01
RK 93.35 91.39 94.38 92.23 97.59 92.23 93.24 93.56 94.38 92.23 93.46
LK 93.56 97.59 93.56 95.67 94.32 93.56 90.76 94.32 92.23 94.38 94.00
RF 93.27 91.45 92.23 91.45 94.38 92.23 91.09 94.38 97.59 94.32 93.24
LF 95.67 92.35 95.67 94.38 93.27 93.27 93.56 92.35 94.38 93.27 93.82

Average part detection rate = 93.53%
Note: ∗HD = head, RE = right elbow, LE = left elbow, RH = right hand, LH = left hand, NK = neck, TRS = upper torso, LTR = bottom
torso, RK = right knee, LK = left knee, RF = right foot, LF = left foot, AVG = average.
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4.5 Comparison with State-of-the-art Methods

This section compares the proposed model with some other recently developed state-of-the-art
(SOTA) models that were tested on the same dataset used in this paper. Table 4 shows the proposed
system outperforms them.

Table 4: Comparison with other SOTA methods

Methods Accuracy (%)

Metric learning autoencoder [35] 67.1
Cross-view action modeling [36] 73.1
Deep moving poselets [37] 84.4
Actionlet ensemble [38] 86.0
Interaction part modeling [39] 89.3
Combined deep architectures [40] 91.3

Proposed method 91.7

5 Discussion

This article proposes an efficient HOIR method that uses overall human pose, human body parts,
and scene features. The proposed model has achieved impressive results in terms of pose estimation and
interaction detection. In this model, all input frames are first pre-processed to enhance their quality.
After this, all images are segmented, and human and object pairs are extracted from them. The human
silhouette is then used for pose estimation, which involves detecting twelve key human body points.
Full images are used to extract scene information, detected human silhouettes are used to extract
full body features, and estimated key points are used for the extraction of points-based features. The
different kinds of features are then combined and then the feature vector is optimized. Finally, this
feature vector is used by HMM to detect accurate human-object interaction.

A quick review of the experimentation and results is as follows: The MSR Daily Activity 3D
dataset has been used for experimentation. The proposed model has achieved a mean accuracy of
91.7%. A confusion matrix showing the true positive, true negative, false positive, and false negative
values of each class is obtained. Moreover, body part detection rates are also obtained by comparing
the detected key points with the ground truth values. An average rate of 93.53% has been achieved
which shows that the proposed pose estimation technique is quite efficient. The proposed model also
outperforms other state-of-the-art systems tested on the same dataset.

Although the experimental results show that the proposed model is capable of recognizing various
human-object interactions accurately, we believe there’s still room for improvement. For example,
currently, only one feature for each category was extracted. However, more features can be mined for
each category to improve the results. This would also mean that the feature vector would get bigger
and hence time complexity would increase. So far, we have worked on the RGB videos of the MSR
Daily Activity 3D dataset. Since this dataset also includes depth videos, using RGBD videos as input
can improve the overall efficiency of the system. One reason for this is that depth information is less
affected by lighting conditions as compared to RGB information. The proposed model was tested on
one dataset but testing it on more complex datasets can be useful for determining its limitations against
various challenges. This dataset is comprised of videos of daily activities. Using different datasets, such
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as sports datasets or those with more outdoor scenes will also be useful for establishing the general
applicability of the proposed model.

6 Conclusion

In this paper, a human interaction recognition system has been proposed that exploits the human
pose and scene features information for accurate classification of different daily activities provided in
the MSR Daily activity 3D dataset. The method involved the various steps of preprocessing the input
videos, segmenting out the human-object pairs, identifying twelve key human body parts, extracting
three different features, optimizing the combined feature vector, and classifying the interactions.
Detailed experiments on this model using the above-mentioned dataset have shown that the system
is efficient and robust against many challenges. Moreover, it has outperformed some other state-of-
the-art solutions that have been tested on the same dataset. Hence, this research proves that using a
combination of human poses, human body parts, and scene information is more fruitful as compared
to using only one of two of these important elements for human interaction recognition.
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