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Abstract: In computer vision, convolutional neural networks have a wide
range of uses. Images represent most of today’s data, so it’s important to know
how to handle these large amounts of data efficiently. Convolutional neural
networks have been shown to solve image processing problems effectively.
However, when designing the network structure for a particular problem, you
need to adjust the hyperparameters for higher accuracy. This technique is time
consuming and requires a lot of work and domain knowledge. Designing a
convolutional neural network architecture is a classic NP-hard optimization
challenge. On the other hand, different datasets require different combinations
of models or hyperparameters, which can be time consuming and inconve-
nient. Various approaches have been proposed to overcome this problem,
such as grid search limited to low-dimensional space and queuing by random
selection. To address this issue, we propose an evolutionary algorithm-based
approach that dynamically enhances the structure of Convolution Neural
Networks (CNNs) using optimized hyperparameters. This study proposes a
method using Non-dominated sorted genetic algorithms (NSGA) to improve
the hyperparameters of the CNN model. In addition, different types and
parameter ranges of existing genetic algorithms are used. A comparative study
was conducted with various state-of-the-art methodologies and algorithms.
Experiments have shown that our proposed approach is superior to previous
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methods in terms of classification accuracy, and the results are published in
modern computing literature.

Keywords: Non-dominated sorted genetic algorithm; convolutional neural
network; hyper-parameter; optimization

1 Introduction

Numerous scientific domains, including medicine, astronomy, biology, agriculture, and everyday
life, have been transformed by digital images. Image classification is a complex process and one of
the most frequently performed in applications that use digital images. There has been great progress
since the development of convolutional neural networks. The use of CNNs has greatly improved
image classification applications. With today’s technology, CNNs are very easy to implement and
work with, but for best results you need to choose the optimal architecture and hyperparameters
for each individual task. CNN algorithms can be significantly improved if certain hyperparameters
(underlying architecture, learning rate, regularization variables, etc.) are well defined. In fact, choosing
the right set of hyperparameters can lead to poor or average results, or state-of-the-art performance
[1]. In addition to the standard ANN hyperparameters, CNNs include additional hyperparameters
such as the number of filters per convolutional layer and filter size. One of the main issues is the
time required to evaluate the CNN’s hyperparameter configuration. This is especially true for more
complex models that can have many filters per layer. Therefore, CNN inputs are usually simplified or
compressed by reducing the image resolution. Recent studies have shown that high-resolution images
are beneficial for many classification tasks [2]. This is especially true for images with small regions
of interest or where distortion from scaling parameters affects performance. Therefore, practically
it is advisable to use high-resolution images, especially when optimizing hyperparameters. In 1989,
researchers combined convolutional and backpropagation layers to create the LeNet-5 framework,
a neural network applied to MNIST data to improve CNN architecture [3]. CNNs can more easily
capture local invariant features, overcome the problems of traditional neural networks, and improve
speech and text recognition performance. As the layer depth increases, the gradient vanishes due to the
backpropagation process. However, deep learning overcomes the vanishing problem by using ReLU
functions as trigger functions and is associated with various applications [4]. However, there is no
established method to optimize the hyperparameters, and much research is ongoing. “Manual search”
is the traditional optimization strategy.

It is determined by the experimenter’s experience hyperparameters cannot be replicated scien-
tifically, and requires a lot of intuitive observations. Due to the large number of hyperparameters
and the lack of deterministic techniques for implementing them, finding the ideal configuration
can be difficult. Guess matching techniques are common for tuning CNNs in the early stages of
development. Include guesses and estimates. Since this is a difficult problem to optimize, we can
use optimization meta-heuristics. Stanley et al. Use reinforcement learning to train recurrent neural
networks and identify neural network architectures that are most likely to perform well in professional
activities. However, only the hyperparameters of the architecture are optimized, and the learning
rate and regularization parameters are finally chosen manually. Moreover, this technique requires
a lot of resources. We optimized over 15,000 hyperparameter iterations on hundreds of graphics
processing units (GPUs) [5]. Smithson et al. Use neural networks to predict the performance of a set of
hyperparameters for a given dataset. Potential hyperparameter samples from the Gaussian containing
previously evaluated solutions are sent to the neural network for evaluation. If the neural network uses
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hyperparameters to predict high performance, the proposed solution is trained, tested, and added to
the neural network’s training set. After retraining the neural network predictor on the largest training
set, new candidate solutions are selected from the hyperparameter space [6]. Recent studies have shown
that obtaining more optimized parameters requires more complex and automated procedures.

Hyperparameters are considered constants that are not updated by training and have a large
impact on the accuracy of the algorithm. Various optimization methods are used to optimize
hyperparameter tuning for more accurate results. Recent studies have shown that obtaining the
optimal hyperparameters requires a more automated and complex procedure rather than manual
selection or the guesswork of hyperparameter selection [7]. Most of the basic methods for finding the
best hyperparameters are ‘grid search’ and ‘random search’. According to research results, “random
search’’ is considered to be more effective than “grid search’’ both experimentally and theoretically [8].
Similarly, “Bayesian optimization” is used for hyperparameter optimization. However, population-
based algorithms are better suited for optimizing large numbers of hyperparameters simultaneously,
such as CNNs. Recently, reinforcement learning techniques such as Q-learning have been used for
hyperparameter optimization [9]. However, while most reinforcement learning techniques excel at
optimizing structural parameters, many other parameters such as learning rate and regularization have
drawbacks that are user-selectable. “PSO, Simulated Annealing, and Execution Algorithms” are three
strategies that have been studied recently. Simple iterative and simple probability-related strategies
are suboptimal in hyperparameter optimization In this study, we used the population-based NSGA
algorithm to optimize the hyperparameters of the CNN network and classify the MNIST data, cifar-
10 and cifar-100 dataset. In addition, we use a computationally accurate CNN network to validate the
performance of hyperparameters optimized using the NSGA algorithm.

The contribution of the proposed method can be concluded as follow.

1. We proposed a hybrid non-dominated sorted genetic algorithm (NSGA) approach to system-
atically and automatically optimize CNN hyperparameters, improving CNN performance. It
makes hyperparameter optimization more feasible for researchers within limited computing
resources.

2. Our approach does not have a constraint on the depth of deep learning models, which means
our method can handle problems of different sizes.

3. An Experimental study is performed to evaluate the performance stability of proposed
approach with different schemes on three benchmark datasets. The result shows that the
performance of NSGA-CNN is more stable than other traditional CNN architectures on our
proposed approach.

2 Background

Hyper parameters are parameters that users must define manually before applying a deep learning
model. They are not generated by training. Even if the deep learning model is generated correctly,
setting the wrong hyper parameters will prevent training from functioning properly [10]. Training two
CNN models with two different sets of hyper parameters results in different accuracy performance.
Table 1 shows the results of implementing two CNN models with two different set of hyper parameters.
With the same algorithm network structure, you will see slightly different performance. Assuming the
rest of the hypermeters are the same, change one of the hyper parameters called learning rate and check
the performance of the two CNN networks termed as case 1 and case 2.
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Table 1: Hyper parameter values and their impact on algorithm

Hyper parameter Test 1 Test 2

Learning rate 0.01 0.001
Batch size 200 400
No. of convolutional layers 4 5
Dropout 0.2 0.4

It is clearly indicated from Fig. 1. Due to the numerous ranges and types of hyper parameters, it
is very challenging to systematically find the optimal set of values for hyper parameters.

Figure 1: Accuracy changes according to hyperparameter

2.1 Convolutional Neural Network

In recent years, CNN have consistently performed well on a variety of computer vision tasks.
CNN’s remarkable performance, especially in automated image processing or video-based recognition
and classification systems is not a major factor in CNN’s success. The CNN-based methods require
a change in design and engineering focus ahead from hand-crafted features, such as Histogram of
Oriented Gradient (HoG) [11,12] for image processing or LaSIFT [13,14] for graphics processing, and
toward the heterogeneous network connectivity structures, rigorous training phases with substantial
amounts of data, and relevant optimization techniques.

Optimal choice of hyperparameters is one of the main concerns when implementing CNN-based
techniques. To our knowledge, there seems to be no reliable way to identify specific network structures
that can significantly improve performance. In practice, this means that network architectures are
often based more on “educated guesses” than on successful designs. Furthermore, this seems to mean
that it is often unclear whether a particular solution yields an ideal or near-optimal configuration, or
whether other constructions significantly outperform previous results.
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2.2 Non-Dominated Sorted Gentic Algorithm (NSGA-II) Optimization

Over the past decade, many multi-objective evolutionary algorithms (MOEAs) have been intro-
duced. The main motivation for this is to be able to provide many Pareto optimal solutions in one
run. The main reason a problem has a multi-objective formulation is that it is impossible to have a
single solution that simultaneously optimizes all objectives, so the algorithm provides a large number
of alternative solutions that are Pareto-optimal or nearly so is useful for Great practical value. The
NSGA algorithm proposed by Srinivas and Deb, was one of the original evolutionary algorithms [15].
The standard NSGA algorithm has faced criticism for its high computational cost in non-dominant
sorting, Absence of elitism, and Necessity for Specifying the Sharing Parameter, that explains why
we’re adopting NSGA-II to overcome above aforementioned limitations. The most well-known multi-
objective optimization algorithm, NSGA-II, is characterised by three key characteristics: a quick non-
dominated sorting technique, a quick estimation of the crowded distance parameter, and a quick
comparison operator [16]. According to Babajamali et al. [17], the NSGA-II optimization approach
performed much better than PAES and SPEA in specifying a larger variety of approaches to several
test issues from previous research. It is known as the latest version of Genetic Algorithm because it
implements constraints by adjusting the dominant interpretation without requiring a penalty function
and has a good mating mechanism that depends on the crowding distance. Compared to evolutionary
algorithms, genetic algorithms operate on binary representations of individuals (a string of bits
represents each person), which simplifies the combination of mutation and crossover. Such processes
generate candidate values outside the permitted search space. In contrast, NSGA algorithms focus on
unique data structures that require appropriate mutations and crossovers, which are highly dependent
on the situation at hand [18]. The authors of [19] state that the NSGA algorithm can be used when the
gradient function is not understood at the point of evaluation. It gives good results because there are
many local minima or maxima. In contrast to previous search techniques, features are determined at
multiple locations at once instead of one. Since the function computations at each point are generally
independent of each other, they can run on multiple processors.

Solution steps for suggested algorithm described in following steps:

Step 1: Initializing the population, Generate the population with the problem’s range and
restrictions in consideration.

Step 2: non-dominated sort, sorting approach by using population’s initial non-dominance
criteria.

Step 3: Crowd distance, The crowding distance value assigned front-wise whenever the sorting is
accomplished. The population is determined according to rank and crowding distance.

Step 4: Selecting A binary tournament selection with crowded-comparison operator is used to
choose the individual.

Step 5: Operator Selection, Simulate a binary crossover and integrate a polynomial mutation
encoded real GA.

Step 6: Reorganize and Select, Combine the population of the current generation and its
descendants to select the individuals that make up the next generation. Each front increases the size
of the next generation until the population exceeds the size of the current generation.

Fig. 2 shows the procedure for determining the fitness of the offspring chromosomes. The
new parent chromosomes are previous offspring chromosomes and producing a new generation of
offspring chromosomes. This is the NSGA method for finding an optimal solution by continuing the
phases above.



5646 CMC, 2023, vol.74, no.3

Figure 2: NSGA-II working flowchart

The NSGA-II algorithm is still simple but effective. Route optimization, dynamic channel alloca-
tion, training of various neural networks, neuroscience search problems, deep learning hyper parameter
optimization, aircraft design by evolving better solutions, neural network weight optimization like
great results have been obtained by solving research problems such as optimization. Many challenges
have been solved using a NSGA-II algorithm with variable chromosome length.

2.3 Exsisting Hyperparameter Optimization Algorithms

The two most common strategies for hyperparameter optimization are grid search and random
search [20]. When using the grid search method, each hyperparameter setting is evaluated over a
predefined range of values. Grid search has the advantage of being easy to parallelize. Researchers
and experts select edges and transitions between hyperparameter values that form a configuration grid
[13]. However, if one job does not go as planned, the others will fail to perform accordingly. Machine
learning models typically start with a basic grid and extend it to better lay out the optimal grid while
constantly searching for new grids [21]. Because the number of functions to be evaluated increases
with each new parameter, we cannot use four hyperparameters due to dimensionality constraints [22].

Random search methods randomly sample the hyperparameter space. According to [23], random
search has significant advantages over grid search for applications that can survive the failure of a
computer cluster. Solutions can be changed on the fly, new tests can be added to the collection, and
failed tests can be ignored. The random search strategy allows concurrent use and flexible termination,
making it a whole experiment to be carried out simultaneously. However, if more computers are
available, new tests can be added to the experiment without endangering it [24]. Luketina et al. and
Fu et al. [25,26] used the gradient descent method to adjust hyperparameters. A framework based on
reinforcement learning is used to automatically design the CNN structure. Ma et al. [27] deployed
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a recurrent neural network to develop a CNN model structure and improved it using reinforcement
learning.

Using Bayesian optimization is yet another steady improvement in hyperparameter tuning. It
involves use of the Gaussian Process, which is a distribution over functions. Fitting the Gaussian Pro-
cess to the given data is critical since the resulting function will be very identical to the observed data.
The Gaussian process will optimum the predicted improvement and surrogate the model, which is the
possibility of a next trial and will optimize the most recent best observation in Bayesian optimization.
The next phase will be to use the highest expected improvement, and expected improvement might
well be determined anywhere in the search window. Spearmint, which employs the Gaussian process,
is a frequent source of Bayesian optimization [28]. The strategy of Bayesian optimization, as according
Probost et al. [29] has limitations because it only works with high-dimensional hyperparameters and
is extremely computationally expensive. As a consequence, it performs poorly.

Using an evolutionary algorithm to determine the optimal hyperparameters is another approach.
Population-based optimization techniques are suitable for optimization problems in high-dimensional
variable spaces because they can analyze multiple potential solutions simultaneously. Furthermore,
they provide an additional option to combine random searches with previous findings. Chung et al. [30]
Kumar et al. [31] and Hinz et al. [32] use genetic algorithms to optimize a subset of hyperparameters
in neural networks, showing the general applicability of this approach to problems.

However a small change in hyperparameters can change the efficiency of deep learning algorithms.
This means that random searches initially have a large list of instances where hyperparameters
determine the correct probability. Therefore, it is difficult to choose random search as the optimal
hyperparameter optimization strategy because the first candidate is determined without specific
criteria [33]. To solve these problems, hyperparameter optimization studies are conducted based on
the algorithm performance of the hyperparameter modification results. In this study, a non-dominated
sorted genetic algorithm is used to determine the hyperparameter for CNN which can improve the
efficiency and reduce the training time.

3 Optimization Process

Compared to traditional machine learning algorithms, deep machine learning algorithms require
more time and space to train the algorithms for multiple important mathematical operations [34].
It is not uncommon for these algorithms and models to take hours or days to solve difficult topics
on multiple machines at once. Resolving these issues can be important, but it is time-consuming and
memory intensive. Using deep learning algorithms and models, a variety of specialized optimization
techniques and approaches have been generated to tackle the problem with less effort and time.
These methods and techniques can be successfully used to improve the quality and efficiency of
training deep machine learning models. Therefore, Genetic algorithm is used for this research to
optimize hyperparameters for CNN. The optimization process for this study consists of data selection,
hyperparameter selection and how to create initial population.

3.1 Dataset Selection

This study uses data from the MNIST, Ciphar-10 and Ciphar-100 to train deep CNN networks.
The modified National Institute of Standards and Technology (MNIST) benchmark dataset is based
on the NIST database. NIST was designed for training and testing (SD-3) using data from Special
Database 1 (SD-1) and Special Database 3 (SD-3). SD-3 is less complex than SD-1 because SD-1 is
collected from US high school students, while SD-3 is collected from US Census Bureau staff [35].



5648 CMC, 2023, vol.74, no.3

The conclusions are independent of the proportion of training. The main motivation for combining
two NIST datasets and normalizing them to a 28 × 28 pixel image bounding box to generate the
MNIST dataset. MNIST data consists of a test set of 60,000 training data and 10,000 black and white
handwritten digit data. However, KMNIST contains 70,000 black and white images. Of these, 60,000
will be used for training purposes and the remaining 10,000 will be considered useful for test data.

3.2 Hyperparameter Selection

To perform experiment in this study, the learning rate, dropout rate, batch size, Weight initializa-
tion and number of layers are set as hyperparameters.

The learning rate hyperparameters determine the learning speed of the model. Coordinate the
generation of allocation errors and update the model weights, for example, at the end of each batch of
training samples, each time the parameter is updated. Given a well-designed learning rate, the model
is trained to best approximate the functionality of a given available resource for a given number of
training periods. If the value is too small, learning will stop before training. Similarly, if the value is
too large, the value will diverge and you will not be able to learn effectively.

The concept of “dropout” refers to a neural network unit that is no longer active (both hidden and
obvious) [36]. Deleting a unit temporarily removes it from the network, along with all incoming and
outgoing connections, as shown in Fig. 3. The units to be dropped are randomly selected. In the most
basic example, each unit is held with a fixed probability p. This can be selected using the validation
set or set to 0.5. This is true for many networks and the task is almost efficient. On the other hand,
the ideal retention probability of an input unit is usually closer to 1 than 0.5. Without dropout, the
network overfits with training data and is less efficient with test data. Dropout technique should be
used to avoid overfitting and improve accuracy. On the other hand, due to the reduced number of
parameters, the impact of dropout on the convolution layer is smaller than the fully connected layer.
Therefore, the ratios of dropout rate applied to the layer fully connected to the convolution layer are
different.

Figure 3: Impact of dropout on standard neural network

The batch size indicates how many samples we can sent to network at once. The model will
achieve each epoch faster during training if the batch size is large. This is because, depending on your
computing power, the system may be able to process more samples at one time. For training with large
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amounts of data such as MNIST, researchers prefer to use batch size to avoid computer overload and
speed up training [37]. It is chosen for this study to see if the batch size seems to affect your training.

The purpose of weight initialization is to prevent the layer activation output from exploding or
vanishing during the training of the deep learning model [38]. If any of these events occur, the loss
gradient is too high or too small to move forward and the network will take longer to converge or even
show an inability to converge. The process of weight initialization is depicts in Fig. 4.

W=        . .               .
. . .

W1j

W21 W22   ... W2j 

Wn1 Wn2   ... Wnj

W11 W12    ...

Figure 4: Weight initialization process

All zeros, random, LeCun, Xavier, and He are perhaps the most often employed weight initializa-
tion techniques. The detailed comparison of mentioned techniques are presented in Table 2.

Table 2: Comparison between main weight initialization techniques

Initialization
method

Pros Cons

All Zeros Convenience The symmetrical condition caused neurons to acquire the
same features.

Random Facilitates the
efficiency of
symmetrical
breaking procedure.

- That’s conceivable for saturation will arise, resulting in a
diminishing gradient.
- Since the slope or gradient is minimal, the gradient
decline might be extremely slow.

LeCun Solves challenges
with rising
unpredictability
and gradient

- In continual networks, it’s worthless.
- It is important to review the forward propagation of the
input transmitter.
- This strategy is useless when the activation function is
non-differentiable.

Xavier Decreases the
possibility of the
gradient vanishing
issue happening.

- This strategy is useless when the activation function is
non-differentiable.
- During learning, there had been a problem with dying
neurons.

(Continued)
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Table 2: Continued
Initialization
method

Pros Cons

He Show great support
in dying neuron
problem

This technique is ineffective for layers with differentiable
activation functions, such as ReLU or Leaky ReLU.

3.3 Create Initial Population

Five genes are to be part of one chromosome. The five genes selected for one chromosomes are
learning rate, dropout, batch size, layer and weight initialization. To perform non-dominated sorted
genetic algorithm (NSGA) each gene was encoded in a binary format associated with a specific number
of bits. The learning rate was observed at 8 bits and ranged from 0.0001 to 0.1. This indicates that there
are 28 (= 256) values in the range 0.0001 to 0.1. The drop rate for convolutional levels is drop rate 1
and the drop rate for fully connected levels is drop rate 2. These two values have been classified as 4
bits on a scale of 0 to 0.5. Between 0 and 0.5, there seem to be 24 (= 16) possible values. The batch size
is represented by 3 bits and is set to the numbers 50, 100, 200, 250, 400, 500, 1000 and 1250. Similarly,
to show this the number of convolution layers has been set to 1, 2, 3 and 4 and represented by 2 bits.
A 21-bit chromosome was created by combining these five genes. The chromosomal arrangement is
demonstrated in Fig. 5 and Table 3.

Figure 5: Chromosome arrangement

Table 3: Arrangement of chromosomes

Parameter Range Bits representation

Learning rate 0.0001–0.1 8
Drop out 1 0–0.5 4
Drop out 2 0–0.5 4
Batch size 50, 100, 200, 250, 400, 500, 1000, 1250 3
Layer 1, 2, 3, 4 2

The initial population is made up of 50 chromosomes produced by chosen at random values.
Table 3 is depicting arrangement of chromosome for obtaining better results using NSGA algorithm.
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3.4 Fitness Evaluation

Fitness should be analysed to assess the generated chromosomes. The accuracy of the test data is
used to evaluate fitness in this experiment. The number of valid identified data out of 10,000 testing
data is the ratio of accuracy.

Fitness = Number of correctly categorized data
Test data

3.5 Parent Chromosome for Generation

After the successful calculation of fitness value the next generation is generated by selecting the
parent chromosomes. Roulette wheel selection method is preferred in this study for selecting parent
chromosomes. This became one of the most widely used selection operators, and it is predicated on
the proportionality principle. The surface of the roulette wheel proportions corresponds to the fitness
value of each individual or potential solution in a population. After the roulette wheel has been spun,
the roulette wheel pointer is used to choose a solution. The higher the fitness value and the greater the
region, the more probable you are to be chosen. All through the selection phase, the segment size and
selection probability remain stationary. This technique’s benefit is that it generates no bias and has an
endless spread. This is designed so that if fitness is high, the chances of selection are correspondingly
high, and even if fitness is minimal, there is a possibility of still being chosen.

3.6 Offspring Chromosome Generation

By crossing parental chromosome that have been chosen using the roulette wheel selection process,
new offspring genes were produced.

As demonstrated in Fig. 6, the centre of each genome are chosen as crossover regions. The
crossovers likelihood was set to 0.6. With a likelihood of 0.05, the mutation procedure is conducted
to the newly generated offspring. The contents of the randomly selected bit are reversed during the
mutation process.

Figure 6: Chromosome crossover

Mutations affect the fourth element of the learning rate, the first element of dropout 1 and dropout
2, the second element of batch size, and the last element of the layer, as shown in Fig. 7.
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Figure 7: Chromosome mutation

The number of generation is set to 25 to obtain optimal result, as shown in Table 4. The fitness
are presented in Table 5.

Table 4: Value representation

Value

Population 30
Crossover rate 0.6
Mutation rate 0.05

Table 5: Finalised value of fitness

Value

1 0.997
2 0.9947
3 0.97

4 Experimental Result and Analysis

Three experiments were conducted in order to test the effectiveness of this parameter optimization
technique. All of the three experiments were tested on 100 generations but we found the desired optimal
value at and after 25 generations. We performed a 2-step process to choose the most desired initial
value: 1) We sorted the population based on the non-domination, 2) and assign each solution a fitness
equal to its non-domination level (minimization of fitness is assumed in this case). The parameters
with the highest fitness value were determined for each generation at 25 generations.

Fig. 8, illustrates the variation in fitness of the test data across 25 generations of Genetic
Algorithm. It can be observed that the fitness of each generation increases. Three experiments have an
accuracy of 0.994 to 0.996.

Figs. 9–13 presents the values from each hyper-parameter used to determine fitness in Table 6.
Each hyper-parameter value changes as the generation grows up, and fitness increases.

The learning rate range was selected between 0.0001 and 0.1, as indicated in Fig. 9, however the
optimal learning rate remains relatively low. When the number of generations reaches roughly 18, it is
obvious that the learning rate does not fluctuate and remains constant.



CMC, 2023, vol.74, no.3 5653

Figure 8: Fitness by generation (3 Experiments)

Figure 9: Learning rate by generation
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Figure 10: Dropout by generation

Figure 11: Batch size by generation
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Figure 12: Epoch on MNIST, Ciphar-10 and Ciphar-100 dataset

The dropout ration to convolutional layer can be seen in Fig. 10. The range difference for each
trial is an optimal dropout.

The variation in batch size is seen in Fig. 11. Each experiment has a varied optimal batch size. It
has a limited range of possible values. The accuracy of the test data did not enhance by training more
data in one go.
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Figure 13: Accuracy and time complexity on datasets (Ciphar-10, Ciphar-100 and MNIST). Part (a)
shows 50% training and testing, Part (b) shows accuracy results on 70% training and 30% testing data,
part (c) shows time complexity for standard and proposd approach

Table 6: Optimized hyperparameter values

Experiments Parameter Optimized value

Experiment 1 Fitness 0.97
Learning rate 0.003
Drop out 0.25
Batch size 350
No. of convolutional layers 4

(Continued)
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Table 6: Continued
Experiments Parameter Optimized value

Experiment 2 Fitness 0.97
Learning rate 0.004
Drop out 0.4
Batch size 400
No. of convolutional layers 4

Experiment 3 Fitness 0.97
Learning rate 0.003
Drop out 0.3
Batch size 350
No. of convolutional layers 3

5 Comparative Analysis

This section shows the rate of convergence of the competition model established based on the
dataset selected from the experiment. The NSGA-II algorithm includes improvements in model
accuracy and convergence speed during the training phase for the MNIST, Ciphar-10, and Ciphar-
100 datasets, Fig. 12, show the training convergence of all models. All rates of convergence remain the
same for each of the 50 iterations. However, after 50 iterations, the error rates for all models remained
the same.

With minor changes, the developed model and some competition models work the same for
convergence on MNIST datasets. The rates of convergence of all models differed to some extent, and
the Ciphar-10 data was much more complex than the MNIST dataset, but proposed NSGA-CNN
was able to maintain convergence after 50 iterations. Consistent with the evidence of convergence, the
proposed model is superior to other comparable methods in terms of fast convergence speed using
NSGA techniques for hyperparameter optimization.

The evaluation of the proposed CNN-NSGA model based on training accuracy. It also shows the
definitive finding that the proposed method improves as the complexity and amount of data increases,
as shown in Table 7.

Table 7: Training accuracy of different models

Dataset CIFAR-10 CIFAR-100 MNIST

Training/Testing 50/50 70/30 50/50 70/30 50/50 70/30
AlexNet 79.62 84.3 74.96 79.85 89.52 91.2
ResNet 84.96 89.96 79.65 84.3 86.85 90.7
LeNet 82.65 88.65 77.85 81.6 87.9 89.54
ANN 70.82 73.82 68.9 71.95 85.98 90.45
NSGA-CNN 87.9 90.85 83.24 88.16 94.62 95.5

The goal of time complexity analysis is to estimate an upper bound on the effort required to
evaluate the effectiveness of a proposed algorithm. Comparing various standard algorithms is another



5658 CMC, 2023, vol.74, no.3

target of time complexity analysis for making the most appropriate implementation decisions. The
work done provided by the algorithm is used as the basis for time complexity analysis. It will explain
the relationship between input size and algorithm execution time to predict constraints.

6 Discussion

The NSGA-II algorithm has been used to approximate solutions to the conventional manual
hyperparameter selection problem. This paper studies the multi objective optimization algorithm
NSGA-II and optimize the process of hyperparameter selection for standard CNN algorithm.
In summary, three experiments were conducted to verify the performance of the hyperparameter
optimization method. All of the experiments was tested on 100 generation but the optimal results
have been found by after 25 generations. The learning rate was selected between 0.001 and 0.1.
Table 6 is representing hyperparameter optimized value. Modelling the CNN by using the achieved
mentioned value given in the table has significant accuracy. Three standard datasets were used to
evaluate the proposed approach with standard approaches named Cipher 10, Ciphar-100 and MNIST.
We can clearly see from Fig. 13 the proposed approach performs better than standard comparative
approaches. In order to evaluate our approach we divided data into 50% training and 50% testing
(50/50) similarly 70% training and 30% testing (70/30) ratio to see how proposed algorithm effect the
accuracy.on both of 50/50 and 70/30 the NSGA-CNN greater accuracy with minmum training time.
It depicts that the proposd algorithm will also perform up to the mark on smaller data and optimize
hyperparameter efficiently. Time complexity also measured and Table 8 depicts proposed approach
reduced training time which would be great advantage for recent advancements.

Table 8: Time complexity of proposed and comparative approaches on benchmark dataset

Dataset CIFAR-10 CIFAR-100 MNIST

AlexNet 1 h 05 m 1 h 18 m 1 h 02 m
ResNet 59 m 1 h 25 m 54 m
LeNet 1 h 12 m 1 h 16 m 55 m
ANN 56 m 1 h 12 m 54 m
NSGA-CNN 53 m 1 h 05 m 52 m

7 Conclusion

Determining the best architectural design for a machine learning model is difficult as each dataset
is different and needs to be tailored to each. Most datasets only need a few hyperparameters. Therefore,
different hyperparameters are important for different datasets. There is no mathematical way to
determine the appropriate hyperparameters for a given dataset, so trial and error is the only option.
Optimization strategies should be adjusted to reduce search space and reduce training time. In this
paper, we discover optimal values of CNN hyperparameters for classifying MNIST, Cifar-10 and
Cifar-100 data using NSGA algorithm. The learning rate ranges from 0.0004 to 0.0012. You can see
that the learning rate of the backpropagation network is decreasing. The loss shows consistent results
around 0.2. However, since it uses black and white data, the dropout value is low.

Additionally, training with less than 250 variables at a time guarantees high accuracy. Using a
lot of data at once does not lead to high accuracy. With only one or two layers, the structure is
too simple to train effectively. The evaluation and selection of the optimal generation in this study
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took approximately 3990 s. Since the experiment contains a lot of information, estimating the global
optimum takes a long time. In the future, we should investigate using NSGA to identify hybrids of
global and local optimal search algorithms to find specific optimal values for faster optimization and
better results.
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