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Abstract: Amoebiasis is a parasitic intestinal infection caused by the highly
pathogenic amoeba Entamoeba histolytica. It is spread through person-to-
person contact or by eating or drinking food or water contaminated with
feces. Its transmission rate depends on the number of cysts present in the
environment. The traditional models assumed a homogeneous and contra-
dictory transmission with reality. The heterogeneity of its transmission rate
is a significant factor when modeling disease dynamics. The heterogeneity of
disease transmission can be described mathematically by introducing fuzzy
theory. In this context, a fuzzy SEIR Amoebiasis disease model is consid-
ered in this study. The equilibrium analysis and reproductive number are
studied with fuzziness. Two numerical schemes forward Euler method and
a nonstandard finite difference (NSFD) approach, are developed for the
learned model, and the results of numerical simulations are presented. The
numerical and simulation results reveal that the proposed NSFD method
provides an adequate representation of the dynamics of the disease despite
the uncertainty and heterogeneity. Moreover, the obtained method generates
plausible predictions that regulators can use to support decision-making to
design and develop control strategies.
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1 Introduction

The protozoan Entamoeba histolytica causes amoebiasis disease, and it is the second leading cause
of protozoan death in the world after malaria [1]. About 50 million people worldwide are infected
with this disease, and 0.1 million die yearly [2]. It is a severe public health problem in China and some
regions of Latin America, Asia, and Africa. Schaudinn introduced the name Entamoeba histolytica
in 1903 for the ability of the parasite to cause tissue lysis [3]. Amoebiasis transfers directly through
human-to-human contact or indirectly by eating or drinking food or water contaminated with feces.
Its transmission through sexual contact, particularly among homosexual men, may also occur [4,5].
Mature cysts of the Entamoeba histolytica can survive a few weeks in soil, 12 days in a relaxed, moist
environment, and 30 days in water for reinfection. They can be kept alive at temperatures below 50°C
and above 400°C [6]. The cyst is the infectious, nonmotile form of the parasite that is excised as it
progresses through the gastrointestinal tract. Generally, the incubation period is 2 to 4 weeks, but it
can last a few months or a few years [7]. Amoebiasis remains a severe health problem in developing
countries where health infrastructure and health education are inadequate. Immigration and increased
international population movements have had an impact on the occurrence of the disease.

Mathematical modeling has played a vital role in better understanding the behavior of infectious
diseases. Chitnis et al. proposed a mathematical model of malaria spread in human and mosquito
populations [8]. Niger et al. also studied the malaria model involving three stages of immunity and a
backward bifurcation [9]. Many other researchers also studied a malaria model to describe its spread
[10–14]. Arif et al. studied a stochastic epidemic model [15]. A stochastic dengue model was checked
by Shatanawi et al. [16]. Noor et al. developed a stochastic model to study the Covid 19 dynamics
[17]. Yu et al. looked at Covid 19 with a delay factor [18]. Fahmy formulated a boundary element
method (BEM) to solve a nonlinear space-time problem of dual-phase-lag fractional bioheat transfer
during electromagnetic radiation [19]. Abodayeh et al. studied a vector-borne plant disease model in
deterministic and stochastic senses [20].

Most existing mathematical models of disease dynamics are crisp and precise, while many real-
world situations are neither crisp nor deterministic. Therefore, these models cannot accurately describe
conditions. The idea of the fuzzy set was introduced by Zadeh [21], who assigns each set member a value
representing its degree of membership. Considering a fuzzy set representing recovery from infection, we
can assign values from 0 to 1. That statement need not be accurate or false when someone says someone
is recovering from a disease. The degree to which this recovered person belongs to that population
group may be valid. The membership level of 0 indicates low recovery, 0.5 medium recoveries, and one
high recovery after infection.

Fuzzy sets and fuzzy logic have been widely used to solve real-world problems in engineering,
medicine, economics, and many other fields where human decision-making is critical through evalua-
tion and reasoning [22–26]. Researchers have also used the theory in epidemiology. Barros et al. pre-
sented an SI model using fuzzy theory [27]. Torres et al. proposed multiresolution and fuzzy systems
to represent cases of dengue and severe dengue, respectively, in Colombia [28]. The obtained results
were compared with traditional fuzzy methods. Mondal et al. proposed an SIS model with a treatment
control in fuzzy transmission [29]. Li et al. proposed a fuzzy SEIR model and confidence index theory
to describe the dynamics of coronavirus disease [30]. Chen et al. proposed a new approach to handle
the high-dimensional uncertain SIR model [31]. Abdy et al. presented a SIR model having fuzzy
parameters to describe the COVID-19 dynamics [32]. Allehiany et al. studied a fuzzy SIR model by
developing Euler, RK-4, and NSFD methods, respectively [33].
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Fuzzy reproduction number (FRN) was also studied. The idea of the NSFD scheme was proposed
by Mickens [34]. Many researchers have used the theory to solve the system of differential equations
[35–38], to mention a few. Dayan et al. constructed an NSFD scheme to solve a SEIQR model
describing COVID-19 [39]. Adak et al. studied an SIS model with treatment control using fuzzy
numbers [40]. For example, many other researchers also used fuzzy theory to study disease dynamics.
Reliable solutions are needed when it comes to issues related to human health. Uncertainties arise due
to the variable nature of the parameters used in the mathematical models, as these parameters depend
on the virus load of the disease. The virus load is not the same for all individuals in the population for
many reasons, such as different age groups, levels of resistance, other habits, customs, etc. Due to these
differences, models capable of dealing with these problems are needed. Fuzzy theory is a valuable tool
for studying issues that contain uncertainties. With this in mind, the Euler and NSFD schemes for the
studied model are developed in a fuzzy way to gain a broader understanding of the disease.

The development, accomplishment, and numerical analysis of the first-order explicit numerical
technique with NSFD in a fuzzy environment, especially with fuzzy parameters, is the novelty of the
current work. To our knowledge, the model under study has not been analyzed before in NSFD and
fuzzy senses in the literature, and this is the first study of this model in this sense.

The remaining paper is designed as we started with a fuzzy SEIR model, and mathematical
analysis of the model is presented. The following section contains the formulation of the forward
Euler and NSFD mathematical techniques and their simulation results. The final section of the article
concludes it.

2 Fuzzy SEIR Model of Amoebiasis Disease

We considered the fuzzy SEIR model describing the dynamics of Amoebiasis disease as follows.

S′ = � − βIS − μS, (1)

E ′ = βIS − εE − μE, (2)

I ′ = εE − (μ + d + γ ) I , (3)

R′ = γ I − μR. (4)

The corresponding fuzzy SEIR model can be written as

S′ = � − β (ω) IS − μS, (5)

E ′ = βIS − εE − μE, (6)

I ′ = εE − (μ + d (ω) + γ (ω)) I , (7)

R′ = γ (ω) I − μR. (8)

where β (ω), d (ω) and γ (ω) are fuzzy numbers. Firstly, β (ω) can be defined as [41],

β (ω) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, ω ≤ ωmin,
ω − ωmin

ωM − ωmin

, ωmin < ω ≤ ωM ,

1, ωM < ω.

(9)
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The death rate d (ω) is defined as [42],

d (ω) =
⎧⎨
⎩

(1 − ξ) − ε0

ωmin

ω + ε0, 0 ≤ ω ≤ ωmin,

1 − ξ , ωmin < ω.
(10)

1 − ξ with ξ ≥ 0 is the maximum death.

The recovery rate γ (ω) is given by,

γ (ω) = (γ0 − 1)
ω

ωM

, 0 ≤ ω ≤ ωM , (11)

where γ0 > 0 is the lowest rate of recovery.

2.1 Equilibrium Analysis

Case 1: When ω < ωmin, then β (ω) = 0, and we get the point E∗ ( S∗, E∗, I ∗, R∗) =
(

�

μ
, 0, 0, 0

)
,

where the human population has no Amoebiasis disease, and this is called DFE (Disease Free
Equilibrium). From a biological point of view, the Amoebiasis disease is eradicated when the amount
of the cyst is lesser than the least required amount in the population for the spread of the disease.

Case 2: When ωmin < ω ≤ ωM , then β (ω) = ω − ωmin

ωM − ωmin

and we obtain E∗∗ ( S∗∗, E∗∗, I ∗∗, R∗∗), where

S∗∗ = (μ + ε) (μ + d + γ (ω))

εβ (ω)
,

E∗∗ = εβ (ω)� − μ (μ + ε) (μ + d + γ (ω))

εβ (ω) (μ + ε)
,

I ∗∗ = εβ (ω)� − μ (μ + ε) (μ + d + γ (ω))

β (ω) (μ + ε) (μ + d + γ (ω))
,

R∗∗ = γ (ω)

μ

[
εβ (ω) � − μ (μ + ε) (μ + d + γ (ω))

β (ω) (μ + ε) (μ + d + γ (ω))

]
.

Case 3: When ωM < ω < ωmax, then β (ω) = 1 and the point E∗∗∗ ( S∗∗∗, E∗∗∗, I ∗∗∗, R∗∗∗) is obtained,
where

S∗∗∗ = (μ + ε) (μ + d + γ (ω))

ε
,

E∗∗∗ = ε� − μ (μ + ε) (μ + d + γ (ω))

ε (μ + ε)
,

I ∗∗∗ = ε� − μ (μ + ε) (μ + d + γ (ω))

(μ + ε) (μ + d + γ (ω))
,

R∗∗∗ = γ (ω)

μ

[
ε� − μ (μ + ε) (μ + d + γ (ω))

(μ + ε) (μ + d + γ (ω))

]
.
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The points E∗∗ and E∗∗∗ are the situations where the Amoebiasis disease virus is higher than
the least required amount for Amoebiasis disease spread and the infection persists in the human
population.

2.2 The Fuzzy Basic Reproductive Number Ra
f

The reproductive number Ra is calculated using the next-generation matrix method [41] as

Ra = εβ (ω) �

μ (μ + ε) (μ + d + γ (ω))
. (12)

Ra being a function of the Amoebiasis disease can be analyzed for different amounts of the cysts as

Case 1: When ω < ωmin, then β (ω) = 0, and we obtain,

Ra = 0. (13)

Case 2: When ωmin < ω ≤ ωM , then β (ω) = ω − ωmin

ωM − ωmin

and we obtain,

Ra (ω) = ε�β (ω)

μ (μ + ε) (μ + d + γ (ω))
. (14)

Case 3: When ωM < ω < ωmax, then β (ω) = 1 and we obtain,

Ra (ω) = ε�

μ (μ + ε) (μ + d + γ (ω))
. (15)

The basic reproduction number Ra (ω) can be written as a TFN as:

Ra (ω) =
(

0,
ε�β (ω)

μ (μ + ε) (μ + d + γ (ω))
,

ε�

μ (μ + ε) (μ + d + γ (ω))

)
. (16)

The expected value of a TFN A = (a1, a2, a3) is defined as [42]

E [A (ω)] = a1 + 2a2 + a3

4
. (17)

Ra
f can be estimated as

Ra
f = E [Ra (ω)] . (18)

Now by using Eqs. (17) and (18), we find Ra
f as follows:

= ε� (2β (ω) + 1)

4μ (μ + ε) (μ + d + γ (ω))
. (19)



6376 CMC, 2023, vol.74, no.3

2.3 Sensitivity of Ra
f

The sensitivity of a variable is defined as [43]

ϕ (χ) = χ

Ra

∂Ra

∂χ
.

We find sensitivity of the Ra
f below.

ϕ (�) = �

Ra

∂Ra

∂�
= �

εβ (ω)�

μ (μ + ε) (μ + d + γ (ω))

∂

∂�

εβ (ω) �

μ (μ + ε) (μ + d + γ (ω))
= 1.

ϕ (β (ω)) = β (ω)

Ra

∂Ra

∂β (ω)
= β (ω)

εβ (ω) �

μ (μ + ε) (μ + d + γ (ω))

∂

∂β (ω)

εβ (ω)�

μ (μ + ε) (μ + d + γ (ω))
= 1.

ϕ (ε) = ε

Ra

∂Ra

∂ε
= ε

εβ (ω)�

μ (μ + ε) (μ + d + γ (ω))

∂

∂ε

εβ (ω)�

μ (μ + ε) (μ + d + γ (ω))
= 1.

ϕ (μ) = μ

Ra

∂Ra

∂μ
= μ

εβ (ω) �

μ (μ + ε) (μ + d + γ (ω))

∂

∂μ

εβ (ω) �

μ (μ + ε) (μ + d + γ (ω))
,

= −
(
3μ2 + 2εμ + 2dμ + 2μγ (ω) + εd + εγ (ω)

)
(μ + ε) (μ + d + γ (ω))

.

ϕ (d) = d
Ra

∂Ra

∂d
= d

εβ (ω) �

μ (μ + ε) (μ + d + γ (ω))

∂

∂d
εβ (ω) �

μ (μ + ε) (μ + d + γ (ω))
= − d

(μ + d + γ (ω))
.

ϕ (γ (ω)) = γ (ω)

Ra

∂Ra

∂γ (ω)
= γ (ω)

εβ (ω)�

μ (μ + ε) (μ + d + γ (ω))

∂

∂γ (ω)

εβ (ω)�

μ (μ + ε) (μ + d + γ (ω))

= − γ (ω)

(μ + d + γ (ω))
.

These results show that �, β (ω) and ε are the sensitive parameters while the parameters μ, d and
γ (ω) are insensitive.

3 Numerical Modeling
3.1 Forward Euler Scheme

Forward Euler scheme for the system (5)–(8) is

Sn+1 = Sn + h [� − μSn − β (ω) InSn] , (20)

En+1 = En + h [β (ω) InSn − (μ + ε) En] , (21)

In+1 = In + h [εEn − (μ + d + γ (ω)) In] , (22)
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Rn+1 = Rn + h [γ (ω) In − μRn] . (23)

Case 1: When ω < ωmin, then β (ω) = 0 and the above scheme becomes

Sn+1 = Sn + h (� − μSn) , (24)

En+1 = En − h (μ + ε) En, (25)

In+1 = In + h [εEn − (μ + d + γ (ω)) In] , (26)

Rn+1 = Rn + h [γ (ω) In − μRn] . (27)

Case 2: When ωmin < ω ≤ ωM , then β (ω) = ω − ωmin

ωM − ωmin

and the above scheme becomes

Sn+1 = Sn + h [� − μSn − β (ω) InSn] , (28)

En+1 = En + h [β (ω) InSn − (μ + ε) En] , (29)

In+1 = In + h [εEn − (μ + d + γ (ω)) In] , (30)

Rn+1 = Rn + h [γ (ω) In − μRn] . (31)

Case 3: When ωM < ω < ωmax, then β (ω) = 1 and the above scheme becomes

Sn+1 = Sn + h [� − μSn − InSn] , (32)

En+1 = En + h [InSn − (μ + ε) En] , (33)

In+1 = In + h [εEn − (μ + d + γ (ω)) In] , (34)

Rn+1 = Rn + h [γ (ω) In − μRn] . (35)

The numerical simulations for the forward Euler’s method are given below for a certain period
of time.

The subpopulations for case 1 at DFE are shown in Fig. 1. The results show a convergence at
h = 0.1, but at the time step value h = 10, the forward Euler method produces negative consequences
at the start, which is meaningless as any compartment’s negative value is impossible. Fig. 2 presents
the subpopulations at the EE for case 2. The method converges for a small matter of h and diverges at
h = 10. The results of case 3 of the EE are depicted in Fig. 3. Again, the method produces a convergent
solution at the start. Still, it diverges and generates nonpositive values for an immense weight of h.
From these results, we can conclude that the forward Euler method is unreliable in predicting the
Amoebiasis disease dynamics in fuzzy conditions.
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Figure 1: The portion of subpopulations for case 1 at different step sizes

Figure 2: The portion of subpopulations for case 2 at different step sizes

Figure 3: The portion of subpopulations for case 3 at different step sizes
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In the following sub-section, we will develop another numerical scheme to overcome these issues
and get stable solutions for the studied model.

3.2 Nonstandard Finite Difference (NSFD) Scheme

NSFD scheme for the system (5)–(8) is

Sn+1 = Sn + h�

1 + hβ (ω) In + hμ
, (36)

En+1 = En + hβ (ω) Sn+1In

1 + h (μ + ε)
, (37)

In+1 = In + hεEn+1

1 + h (μ + d + γ (ω))
, (38)

Rn+1 = Rn + hγ (ω) In+1

1 + hμ
. (39)

Case 1: When ω < ωmin, then β (ω) = 0 and the above scheme becomes

Sn+1 = Sn + h�

1 + hμ
, (40)

En+1 = En

1 + h (μ + ε)
, (41)

In+1 = In + hεEn+1

1 + h (μ + d + γ (ω))
, (42)

Rn+1 = Rn + hγ (ω) In+1

1 + hμ
. (43)

In Fig. 4, the compartment S is shown at minimal and considerable time step values, respectively,
at the DFE. In both cases, the results are positive and converge to the same equilibrium points.
Convergence and positivity are the core features of the epidemic models, and our proposed method
possesses both qualities in this case. Fig. 5 represents the second compartment of the studied model at
the DFE. The results are drawn for the time step sizes h = 0.1 and h = 10, respectively, which converge
to the same point. The results of compartments I and R at the DFE are presented in Figs. 6 and 7,
respectively. A convergence behavior is reflected in both cases. Fig. 8 illustrates all subpopulations of
the model at the DFE. From the above graphs, it can be concluded that the constructed method can
be considered a reliable tool for studying the disease of amoebiasis in the human population at DFE.

Case 2: When ωmin < ω ≤ ωM , then β (ω) = ω − ωmin

ωM − ωmin

and the above scheme becomes

Sn+1 = Sn + h�

1 + hβ (ω) In + hμ
, (44)

En+1 = En + hβ (ω) Sn+1In

1 + h (μ + ε)
, (45)
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In+1 = In + hεEn+1

1 + h (μ + d + γ (ω))
, (46)

Rn+1 = Rn + hγ (ω) In+1

1 + hμ
. (47)

Figure 4: The portion of susceptible populations for case 1 at different step sizes

Figure 5: The portion of exposed populations for case 1 at different step sizes
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Figure 6: The portion of infected populations for case 1 at different step sizes

Figure 7: The portion of recovered populations for case 1 at different step sizes

Figure 8: The portion of subpopulations for case 1 at different step sizes



6382 CMC, 2023, vol.74, no.3

Figs. 9 and 10 show the results of the exposed and infected compartments, respectively, at the EE for
case 2. The graphs reflect a converging behavior at a small and a significant time step size, respectively.
The subpopulations at EE for case 2 are shown in Fig. 11. Convergence to the same steady state points
is reflected in the above graphs. From this behavior, we conclude that the disease spread procedure at
the first EE point, i.e., case 2, can be studied using our proposed method.

Case 3: When ωM < ω < ωmax, then β (ω) = 1 and the above scheme becomes

Sn+1 = Sn + h�

1 + hIn + hμ
, (48)

En+1 = En + hSn+1In

1 + h (μ + ε)
, (49)

In+1 = In + hεEn+1

1 + h (μ + d + γ (ω))
, (50)

Rn+1 = Rn + hγ (ω) In+1

1 + hμ
. (51)

Figure 9: The portion of exposed populations for case 2 at different step sizes

The graphical behaviors of the exposed and infected compartments are shown in Figs. 12 and
13, respectively, for case 3 at the EE. Convergence to the actual equilibrium points can easily be
seen in these graphs. Fig. 14 shows the subpopulations at the EE for case 3. It can be seen that all
compartments are converging to the same steady state. From the above numerical experiments, it is
easy to conclude that the proposed numerical approach combines unconditionally even for large time
step values. Further, it can be supposed that the proposed scheme can be considered a suitable tool to
study the spread of amoebiasis in the human population.
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Figure 10: The portion of subpopulations for case 2 at different step sizes

Figure 11: The portion of subpopulations for case 2 at different step sizes

Figure 12: The portion of exposed populations for case 3 at different step sizes
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Figure 13: The portion of infected populations for case 3 at different step sizes

Figure 14: The portion of subpopulations for case 3 at different step sizes

3.3 Convergence of the NSFD Scheme

Let

C1 = S + h�

1 + hI + hμ
, (52)

C2 = E + hSI
1 + h (μ + ε)

, (53)

C3 = I + hεE
1 + h (μ + d + γ (ω))

, (54)

C4 = R + hγ (ω) I
1 + hμ

. (55)



CMC, 2023, vol.74, no.3 6385

The Jacobian matrix corresponding to the system (52)–(55) is

J =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂C1

∂S
∂C1

∂I
∂C1

∂E
∂C1

∂R
∂C2

∂S
∂C2

∂I
∂C2

∂E
∂C2

∂R
∂C3

∂S
∂C3

∂I
∂C3

∂E
∂C3

∂R
∂C4

∂S
∂C4

∂I
∂C4

∂E
∂C4

∂R

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Jacobian at the DFE is

J =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1 + hμ

0 0 0

0
1

1 + h (μ + ε)
0 0

0
hε

1 + h (μ + d + γ (ω))

1
1 + h (μ + d + γ (ω))

0

0 0
hγ (ω)

1 + hμ

1
1 + hμ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Eigenvalues of the above jacobian matrix are λ1 = 1
1 + hμ

< 1, λ2 = 1
1 + h (μ + ε)

< 1, λ3 =
1

1 + h (μ + d + γ (ω))
< 1 and λ1 = 1

1 + hμ
. All eigenvalues are less than unity which shows that the

system (36)–(39) converges at DFE.

4 Conclusion

This article studies a fuzzy-based model to investigate the dynamics of Amoebiasis infection
in humans. The principal objective of this study was to construct and execute a numerical and
mathematical model for a better understanding of the dynamics of the disease. We discussed the
model’s equilibrium analysis, reproductive number, and sensitivity. For the solution of the studied
model, firstly, we developed the forward Euler method and then focused on the formulation of
the NSFD scheme. The simulation results reveal that the forward Euler method cannot generate
convergent and non-harmful solutions for a considerable value of the time step size.

In contrast, the proposed method produces convergent and positive solutions and is consistent,
dynamically, and positively bounded. The exciting feature of the simulation results is the consistency
of the graphs’ overall step sizes since many classical methods like Euler, RK-4, Euler’s stochastic, and
RK-4 stochastic do not preserve them at large step sizes [44,45]. The fuzzy modeling approach is a
reliable and efficient technique to handle the uncertainty in the model. It can be used to study the
dynamics of amoebiasis diseases in the human population. The method developed in this work can
be extended to delayed, stochastic, and fractional models in fuzzy environments. The idea can also be
implemented in machine learning problems [47]. We analyzed the model of the spread of the amoebiasis
virus for a general class of parameters taken from the scientific literature in this study. The execution
of these findings on real-time data is our future research plan as presented in [47–49].
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