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Abstract: This article focuses on the relationship between mathematical
morphology operations and rough sets, mainly based on the context of
image retrieval and the basic image correspondence problem. Mathematical
morphological procedures and set approximations in rough set theory have
some clear parallels. Numerous initiatives have been made to connect rough
sets with mathematical morphology. Numerous significant publications have
been written in this field. Others attempt to show a direct connection between
mathematical morphology and rough sets through relations, a pair of dual
operations, and neighborhood systems. Rough sets are used to suggest a strat-
egy to approximate mathematical morphology within the general paradigm of
soft computing. A single framework is defined using a different technique that
incorporates the key ideas of both rough sets and mathematical morphology.
This paper examines rough set theory from the viewpoint of mathematical
morphology to derive rough forms of the morphological structures of dilation,
erosion, opening, and closing. These newly defined structures are applied to
develop algorithm for the differential analysis of chest X-ray images from a
COVID-19 patient with acute pneumonia and a health subject. The algorithm
and rough morphological operations show promise for the delineation of
lung occlusion in COVID-19 patients from chest X-rays. The foundations
of mathematical morphology are covered in this article. After that, rough
set theory ideas are taken into account, and their connections are examined.
Finally, a suggested image retrieval application of the concepts from these two
fields is provided.
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Nomenclature
Abbreviations

RS Rough Sets
SE Structure Element
RD Rough Dilation
RE Rough Erosion
RC Rough Closing
RO Rough Opening

Symbols

Z Positive integers
Z2 Discrete topological space
Ed D-dimensional product of E
X,Y Images as sets of pixels
B Structure element
τ Topological space
CL(X) Closure of X
Int(X) Interior of X

1 Introduction and Preliminaries

Pawlak’s rough set theory [1] is a mathematical tool that is useful for studying uncertain or
incomplete data in information systems and is based on the classification of data into Objects [2].
However, Pawlak’s definition of equivalence classes of an equivalence relation for the universe set is
not valid for all incomplete data, particularly various real-life problems. By studying Pawlak’s rough set
theory from a topological point of view, Lashin et al. [3] and Salama et al. [4] derived a general relation
and observed that most of Pawlak’s properties are not held in a general sense. This led to the study
of new kinds of rough sets and their applications by many researchers [5–7]. Neighborhood systems
and rough sets have recently been used to represent structures, such as self-similar fractals [8] and the
human heart [9], with potential applications in physics and medicine, respectively. One of the most
important achievements in rough set theory is knowledge reduction in information systems, by which
a membership function is used to reduce the data. Pawlak et al. [10] expanded the membership function
into an initial rough membership function, while El Atik et al. [11] used this similarity as a membership
function. Allam et al. [12] and Salama [13] presented new approaches for basic rough set concepts. In
[14], Yao et al. address the problem of overlapping classes in rough sets and introduce object class
membership, and in [15] Yu et al. introduce approximations to measure accuracy. Polkowski et al.
introduced some of important mechanisms for rough sets in [16,17].

Differential equations and diffusion equations may both be used to simulate many real-world
issues in the fields of science and engineering [18]. Recently, four novel mutant SARS-COV-2 strains
that are thought to be 70% more lethal than the currently circulating COVID-19 virus were found
in several locations [19]. By using a mathematical model, it is crucial to understand the SARS-
CoV-2 dynamics in the context of immune surveillance [20]. In the COVID-19 outbreak investigation,
asymptomatic transmission of the coronavirus illness and the prediction of infected individuals have
become crucial [21]. For biomathematicians and medical professionals, controlling these acute illnesses
has been a major priority in recent years [22].
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The main aim of the present paper is to study rough set theory from another angle, that is, from the
viewpoint of mathematical morphology. Mathematical morphology provides a range of techniques for
image processing and analysis based on basic algebraic and geometric principles. Matheron [23] and
Serra [24] first introduced the concepts of mathematical morphology, in application to petrography
and mineralogy where they studied the physical properties of certain types of rocks. Mathematical
morphology has since been explored in some detail (see, e.g., [25–30]) and has been applied in
engineering and medicine [31–34]. A new method for scene classification from the remote sensing
images is investigated in [35], but diagnosis and testing of COVID-19 chest are investigated in [36,37].

Here we propose new forms of rough morphological structures: rough dilation, rough erosion,
rough closing, and rough opening. These forms are defined for application in topological and digital
image processing and applied specifically for the delineation of lung occlusion from a chest x-ray of a
patient with acute COVID-19 pneumonia.

This article is organized as follows; Section 2 for morphological definitions of roughness and
Section 3 introduces the basic properties of rough dilation and rough erosion. Section 4 presents the
application of rough morphological structures for differential analysis of chest x-ray images. Finally,
Section 5 presents the conclusion and future work.

Throughout this paper Z2 denotes a discrete topological space, where Z is the set of positive
integers and M, B ⊆ Z2. Also, U is a nonempty finite universe set, R is an equivalence relation on
U and W ⊆ U .

Definition 1. [30] Mathematical morphology allows the extraction and analysis of discrete quantal
image structures. There are two essential components: the image as a set of objects and a structure
element (SE). Each object is represented by binary digits, e.g., (0 = black, 1 = white). Objects are also
represented by a coordinate (x, y) in Z2. The SE in Z2 is a small set to define the image under study.
For each structure element, we define the original shape and size based on the geometric properties of
the objects. Examples of SEs are shown in Fig. 1.

Figure 1: Some examples of structure elements

Definition 2. [30] For any two images, E1 and E2 in the d-dimensional product Ed of E, Minkowski
addition (subtraction) is defined by

E1 ⊕ E2 = {e1 + e2: e1 ∈ E1 and e2 ∈ E2};
E1 � E2 = {h: e2 + h ∈ E1 ∀ e2 ∈ E2}.

Note that ⊕ is commutative and � is not. Any fixed set A in Ed is said to be a structural element.

Definition 3. [30] The dilation of image called X by structure element called A is given by δA (X) =
X ⊕ A and the erosion of X by A is εA (X) = X � A.

Definition 4. [1] Let (U , R) be a Pawlak’s approximation space. A lower approximation, upper
approximation, and boundary region of X by R is defined by

LR (X) = ∪
x∈U

{R(x) : R (x) ⊆ X} ,
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UR (X) = ∪
x∈U

{R(x) : R (x) ∩ X 	= Φ} ,

BR (X) = UR (X) − LR (X) .

where R (x) is the equivalence class for x according to relation R.

2 Morphological Definitions of Roughness

Dilation and erosion are basic concepts in mathematical morphology and image processing, where
any image set X can be dilated (eroded) by a structure element B. Here, we consider rough set theory
by scanning Z2 through a structure element with the image set, affording new definitions of rough
dilation, rough erosion, rough closing, and rough opening. Below and red pixels are denoted by scan
cells, and yellow pixels are denoted by the neighborhoods of red pixels.

Definition 5. A rough dilation (RD) and rough erosion (RE) are defined by

RD (X ; B) = {x ∈ Z2: B ∩ X 	= Φ}, and

RE (X ; B) = {x ∈ Z2: B ⊂ X}, for X , B ⊂ Z2.

It is clear that X ⊆ RD (X ; B) and RE (X ; B) ⊆ X .

Example 1. Move and scan B1 in Z2 (see Fig. 2b) through its red pixel. By applying Definition 5,
we have a rough dilation set as in Fig. 2c.

Figure 2: (a) Original image X1, (b) The SE B1, and (c) the result of processing

Example 2. Move and scan B2 in Z2 (see Fig. 3b) through its red pixel. By applying Definition 5,
we have a rough erosion set in Fig. 3c.

Definition 6. Let X and B be subsets of a discrete space Z2. The rough closing (RC) and rough
opening (RO) of X by B are given by

RC (X ; B) = RE (RD (X ; B) ; B) = ∪ {
p ∈ Z2: B ⊆ (RD (X ; B))

}
, and

RO (X ; B) = RD (RE (X ; B) ; B) = ∪ {
p ∈ Z2: B ∩ (RE (X ; B)) 	= Φ

}
.
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Figure 3: (a) Original image X2, (b) The SE B2, and (c) the result of processing

Example 3. Move and scan B1 in Z2 (see Fig. 4b) through its red pixel. By applying Definition 6,
we have a rough closing set in Fig. 4d.

Figure 4: (a) Original image X1, (b) B1 is SE, (c) RD(X1; B1) and (d) RC(X1; B1)

Example 4. Move and scan B2 in Z2 (see Fig. 5b) through its red pixel, by applying Definition 6,
we have a rough opening set in Fig. 5d.

Figure 5: (a) Original image X2, (b) The SE B2, (c) RE(X2; B2) and (d) RO(X2; B2)

3 Basic Properties of Rough Dilation and Rough Erosion

In this section, we consider some topological properties based on rough dilations and rough
erosions. In a topological space Z2, the closure Cl of X (ClRD (X ; B)) is the smallest rough dilation
of X by B containing X . The interior Int of X (IntRD (X ; B)) is the largest rough erosion of X by
B contains X . Cl and Int denote the closure and interior, respectively, with respect to a topological
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space
(
Z2, τ

)
. In Lemma 1 below, it is easier to prove the relationship between RD (X ; B), RD (Y ; B),

RE (X ; B) and RE (Y ; B), and so the proof is omitted.

Lemma 1. Let X and Y be image sets in Z2 such that X ⊆ Y , and let B be a structure element.
Then, the following hold:

RD (X ; B) ⊆ RD (Y ; B) .

RE (X ; B) ⊆ RE (Y ; B) .

Proposition 1. Let X be an image set and B1, B2 be structure elements such that B1 ⊆ B2. Then,
RD (X ; B1) ⊆ RD (X ; B2).

Proof. Let x ∈ RD (X ; B1). Then, x ∈ Z2: B1 ∩ X 	= Φ, while B1 ⊆ B2. Therefore, B2 ∩ X 	= Φ,
and so x ∈ RD (X ; B2). Hence, RD (X ; B1) ⊆ RD (X ; B2).

Proposition 2. Let X ⊆ Z2 and B1, B2 be structure elements. Then, the following hold:

X ⊆ RD (X ; B1) .

RD (X ; B1) ⊆ RD (RD (X ; B1)) .

RD (X ; B1 ∪ B2) = RD (X ; B1) ∪ RD (X ; B2) .

RD (X ; B1 ∩ B2) ⊆ RD (X ; B1) ∩ RD (X ; B2) .

Proof. From Proposition 1, it is easy to prove (i) and (ii).

Let x ∈ (X ; B1 ∪ B2) ⇒ x ∈ Z2: X ∩ (B1 ∪ B2) 	= Φ ⇒ ((X ∩ B1) ∪ (X ∩ B2)) 	= Φ ⇒
X ∩ B1 	= Φ or X ∩ B2 	= Φ ⇒ x ∈ ((RD (X ; B1) ∪ RD (X ; B2)). Then, RD (X ; B1 ∪ B2) ⊆
(RD (X ; B1) ∪ RD (X ; B2)). Conversely, let x ∈ (RD (X ; B1) ∪ RD (X ; B2)). Then, x ∈ (RD (X ; B1)

or x ∈ (RD (X ; B1) ⇒ (X ∩ B1) 	= Φ ∪ (X ∩ B1) 	= Φ ⇒ (X ∩ (B1 ∪ B2)) 	= Φ ⇒ x ∈
RD (X ; B1 ∪ B2). So, (RD (X ; B1) ∪ RD (X ; B2)) ⊆ RD (X ; B1 ∪ B2). Therefore, RD (X ; B1 ∪ B2) =
RD (X ; B1) ∪ RD (X ; B2).

Let x ∈ RD (X ; B1 ∩ B2) ⇒ x ∈ Z2: X ∩ (B1 ∩ B2) 	= Φ ⇒ (X ∩ B1) 	= Φ and (X ∩ B2) 	= Φ ⇒
x ∈ RD (X ; B1) and x ∈ RD (X ; B2). Therefore, RD (X ; B1 ∩ B2) ⊆ RD (X ; B1) ∩ RD (X ; B2).

Proposition 3. Let X be an image set and B1, B2 be structures such that B1 ⊆ B2. Then,
RE (X ; B2) ⊆ RE (X ; B1).

Proof. Let x ∈ RE (X ; B2). Then, x ∈ Z2: B2 ⊆ X , while B1 ⊆ B2 ⇒ B1 ⊆ X ⇒ x ∈ RE (X ; B1).
Therefore, RE (X ; B2) ⊆ RE (X ; B1).

Proposition 4. Let X ⊆ Z2 and B1, B2 be structure elements. Then, the following statements hold:

RE (X ; B1) ⊆ X .

RE (RE (X ; B1)) ⊆ RE (X ; B1) .

RE (X ; B1) ∪ RE (X ; B2) ⊆ RE (X ; B1 ∪ B2) .

Proof . From Proposition 3, it is easy to prove (i) and (ii).

Let x ∈ (RE (X ; B1) ∪ RE (X ; B2). Then, x ∈ RE (X ; B1)) or x ∈ RE (X ; B2) ⇒ x ∈ Z2: B1 ⊆ X
or B2 ⊆ X ⇒ x ∈ Z2: (B1 ∪ B2) ⊆ X ⇒ x ∈ RE (X ; B1 ∪ B2). Therefore, RE (X ; B1) ∪ RE (X ; B2) ⊆
RE (X ; B1 ∪ B2).
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Remark 1. One can easily note that RE (X ; B1) ∩ RE (X ; B2) ⊆ RE (X ; B1 ∩ B2), while
RE (X ; B1 ∩ B2) � RE (X ; B1) ∩ RE (X ; B2). This can be illustrated as in Example 5.

Example 5. Move and scan B1 in Z2 through its red pixel (see Fig. 6b). Then, we have RE (X ; B1)

in Fig. 6c. In the same manner, by using Fig. 6d, we obtain RE (X ; B2) in Fig. 6e. Similarly, move and
scan B1 ∩ B2 through its red pixel (see Fig. 6f), we get RE (X ; B1 ∩ B2) in Fig. 6g. By the moving and
scanning of RE (X ; B1) in Figs. 6c and 6e RE (X ; B2), we obtain RE (X ; B1 ∩ RE (X ; B2)) in Fig. 6h.

Figure 6: (a) The original image, (b) Structure element B1, (c) RE(X; B1), (d) Structure element B2, (e)
RE(X; B2), (f) Structure element (B1 ∩ B2), (g) RE(X; B1 ∩ B2) and (h) RE(X; B1) ∩ RE(X; B2)

Proposition 5. The following properties hold ∀X1, X2 ∈ Z2:

If X = X1 ∪ X2 , then RD (X ; B) = RD (X1; B) ∪ RD (X2; B) .

If X = X1 ∩ X2, RD (X ; B) = RD (X1; B) ∩ RD (X2; B) .

Proof. It is sufficient to prove only (i), as (ii) holds by similarity. As x ∈ RD (X ; B), then
x ∈ Z2: X ∩ B 	= Φ, while X = X1 ∪ X2. Hence, (X1 ∩ B) 	= Φ or (X2 ∩ B) 	= Φ ⇔ x ∈
(RD (X1; B) ∪ RD (X2; B)). So, RD (X ; B) = RD (X1; B) ∪ RD (X2; B). On the other hand, with
x ∈ RD (X ; B) ⇔ x ∈ Z2: X ∩ B 	= Φ, and X = X1 ∩ X2, we obtain (X1 ∩ B) 	= Φ and
(X2 ∩ B) 	= Φ ⇔ x ∈ (RD (X1; B) ∩ RD (X2; B)). Therefore, RD (X ; B) = RD (X1; B) ∩ RD (X2; B).

Corollary 1. The following properties are held, ∀X1, X2, . . . , Xn ∈ Z2

If X = X1 ∪ X2 ∪ · · · ∪ Xn, then RD (X ; B) = RD (X1; B) ∪ RD (X2; B) ∪ · · · ∪ RD (Xn; B).

If X = X1 ∩ X2 ∩ X3 ∩ · · · ∩ Xn, then RD (X ; B) = RD (X1; B) ∩ RD (X2; B) ∩ RD (X3; B) ∩ · · · ∩
RD (Xn; B).

Proposition 6. The following properties hold ∀X1, X2 ∈ Z2:

If X = X1 ∪ X2, then RE (X ; B) = RE (X1; B) ∪ RE (X2; B).

If X = X1 ∩ X2, then RE (X ; B) = RE (X1; B) ∩ RE (X2; B).

Proof . As x ∈ RE (X ; B), then x ∈ Z2: B ⊆ X , while X = X1 ∪ X2. So, B ⊆ X1 or B ⊆ X2 ⇔ x ∈
(RE (X1; B) ∪ RE (X2; B)). Then, RE (X ; B) = RE (X1; B) ∪ RE (X2; B). Similarly, as x ∈ RE (X ; B),
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then x ∈ Z2: B ⊆ X . But X = X1 ∩ X2. Hence, B ⊆ X1 and B ⊆ X2 ⇔ x ∈ (RE (X1; B) ∩ RE (X2; B)).
Therefore, RE (X ; B) = RE (X1; B) ∩ RE (X2; B).

Corollary 2. The following properties hold ∀X1, X2, . . . , Xn ∈ Z2:

If X = X1 ∪ X2 ∪ X3 ∪ · · · ∪ Xn, then RE (X ; B) = RE (X1; B) ∪ RE (X2; B) ∪ RE (X3; B) ∪ · · · ∪
RE (Xn; B).

If X = X1 ∩ X2 ∩ X3 ∩ · · · ∩ Xn, then RE (X ; B) = RE (X1; B) ∩ RE (X2; B) ∩ RE (X3; B) ∩ · · · ∩
RE (Xn; B).

Proposition 7. Let X and Y be image sets. The following hold:

RE (X) ⊆ X ⊆ RD (X) .

RE (Φ) = RD (Φ) = Φ.

RD (X ∪ Y) = RD (X) ∪ RD (Y) .

RE (X ∩ Y) = RE (X) ∩ RE (Y) .

RE (X ∪ Y) ⊃ RE (X) ∩ RE (Y) .

X ⊆ Y ⇒ RD (X) ⊆ RD (Y) .

X ⊆ Y ⇒ RE (X) ⊆ RE (Y) .

Proof . By Propositions 1 and 3, proofs of (i) and (ii) are obvious.

Since X ⊆ (X ∪ Y) ⇒ RD (X) ⊆ RD (X ∪ Y) and Y ⊆ (X ∪ Y), then RD (Y) ⊆ RD (X ∪ Y),
and so RD (X) ∪ RD (Y) ⊆ RD (X ∪ Y). On the other hand, let x ∈ RD (X ∪ Y). Then, by rough
dilation, x ∈ Z2: B ∩ (X ∪ Y) 	= Φ and so (B ∩ X) ∪ (B ∩ Y) 	= Φ. Hence, (B ∩ X) 	= Φ or
(B ∩ Y) 	= Φ and so x ∈ RD (X) ∪ RD (Y). Then, RD (X ∪ Y) ⊆ RD (X) ∪ RD (Y). Therefore,
RD (X ∪ Y) = RD (X) ∪ RD (Y).

Since X ∩ Y ⊆ X , then RE (X ∩ Y) ⊆ RE (X) and X ∩ Y ⊆ Y , and so RE (X ∩ Y) ⊆ RE (Y).
Hence, RE (X ∩ Y) ⊆ RE (X) ∩ RE (Y). Conversely, let x ∈ RE (X) ∩ RE (Y). By rough erosion,
x ∈ Z2: B ⊆ X ∩ Y and so x ∈ RE (X) and x ∈ RE (Y) , x ∈ Z2: B ⊆ X and x ∈ Z2: B ⊆
Y ⇒ x ∈ Z2: B ⊆ X ∩ Y → x ∈ RE (X ∩ Y), giving RE (X) ∩ RE (Y) ⊆ RE (X ∩ Y). Thus,
RE (X ∩ Y) = RE (X) ∩ RE (Y).

Since X ⊂ X ∪ Y , then RE (X) ⊂ RE (X ∪ Y) and Y ⊂ X ∪ Y ⇒ RE (Y) ⊂ RE (X ∪ Y), giving
RE (X ∪ Y) ⊃ RE (X) ∩ RE (Y).

Let x ∈ RD (X). Then, B ∩ X 	= Φ. Since X ⊆ Y ⇒ B ∩ X 	= Φ, then x ∈ RD (Y), and so
RD (X) ⊆ RD (Y).

Let x ∈ RE (X). Then, B ⊆ X . Since X ⊆ Y , then B ⊆ Y , and so x ∈ RE (Y). Therefore,
RE (X) ⊆ RE (Y).

Remark 2 shows that the equalities do not hold in general. This can be seen from Examples:
example 6, example 7 and example 8.
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Remark 2. Let X and Y be image sets in Z2. Then

(i) RE
(
Z2

) 	= RD
(
Z2

) 	= Z2.
(ii) RD (X ∪ Y) � RD (X) ∩ RD (Y).

(iii) RE (X c) 	= (RD (X))
c.

(iv) RD (X c) 	= (RE (X))
c.

(v) RE (RE (X)) 	= RD (RE (X)) 	= RE (X).
(vi) RD (RD (X)) 	= RE (RD (X)) 	= RD (X).

Example 6. Let B in Fig. 7b move and scan in Z2 through its red pixel. From Remark 2 (ii), we
have Fig. 7c. Also, from Fig. 7d we have RD (X ∪ Y) � RD (X) ∩ RD (Y).

Figure 7: (a) The original images X and Y, (b) Structure element, (c) RD(X ∪ Y), and (d) RD(X) ∩
RD(Y)

Example 7. Let B in Fig. 8b move and scan in Z2 through its red pixel. From Remark 2 (iii) and
(iv), we have Fig. 8d. Also, from Fig. 8f we have RE (X c) 	= (RD (X))

c.

Figure 8: (a) The original image X, (b) Structure element, (c) RD(X), (d) (RD(X))C, (e) Xc, and (f)
RE(XC)
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The property (iv) in Remark 2 can also be seen to be satisfied in Example 8.

Example 8. Let B in Fig. 9b be a move and scan in Z2 through its red pixel. By Remark 2 (v) and
(vi), we have Figs. 9c–9e. Hence, RE (RE (X)) 	= RD (RE (X)) 	= RE (X).

Figure 9: (a) The original image X, (b) Structure element, (c) RE(X), (d) RD(RE(X)), and (e)
RE(RE(x))

Proposition 8. Let X and Y be images in Z2. Then, RE (X) ∪ RE (Y) ⊆ RE (X ∪ Y).

Proof . Since X ⊆ (X ∪ Y), then RE (X) ⊆ RE (X ∪ Y) and Y ⊆ (X ∪ Y). Hence, RE (Y) ⊆
RE (X ∪ Y) and so RE (X) ∪ RE (Y) ⊆ RE (X ∪ Y).

Proposition 9. Let X and Y be images in Z2. Then, RD (X ∩ Y) ⊆ RD (X) ∪ RD (Y).

Proof . Since (X ∩ Y) ⊆ X , then RD (X ∩ Y) ⊆ RD (X) and (X ∩ Y) ⊆ Y . Hence, RD (X ∩ Y) ⊆
RD (Y) and so RD (X ∩ Y) ⊆ RD (X) ∪ RD (Y).

4 Application of Rough Morphological Structures for Differential Analysis of Chest X-ray Images

One of the symptoms of severe SARS-CoV-2 coronavirus diseases [38] is the development of
pneumonia and acute respiratory distress syndrome (ARDS) [39]. Admitted patients suspected of such
severe COVID-19 disease typically undergo a radiological examination of the lungs for ARDS. While
computed tomography offers the most sensitive and accurate imaging of lung condition [40,41], chest
X-rays are often the front-line approach employed by many hospitals and can be performed using
portable equipment [42], which can reduce patient movements and thereby lower the risk of infection
[43–45]. The importance of chest X-ray imaging for the diagnosis of ARDS in COVID-19 pneumonia
prompted us to examine whether rough morphological structures could be used to aid differential
diagnostics.

Figs. 10 and 11 show two typical chest X-ray images, one from a health subject and another from
a COVID-19 patient with ARDS.
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Figure 10: A chest X-ray of a COVID-19 patient with ARDS and the corresponding binary
image in Z2

Figure 11: A chest X-ray of a healthy subject and corresponding binary image in Z2

Now we consider the rough boundary (rough opening and rough closing) using the original-rough
opening and rough closing–original transforms, as shown in Figs. 12 and 13.
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Figure 12: (a) Original-rough opening transform for the chest X-ray of a COVID-19 patient in Z2

(b) Rough closing-original transform for chest X-ray of a COVID-19 patient in Z2

Figure 13: (a) Original-rough opening transform for the chest X-ray of a healthy subject in Z2

(b) Rough closing-original transform for chest X-ray of a healthy subject in Z2

An algorithm for differential analysis of these two images is provided below: algorithm 1. Here,
RD and RE are operators. The input image is the binary image of the chest X-ray (image 1; IM1) with
size p (xmax, ymax), and we use square 3 ∗ 3 pixels as structural elements (B). The algorithm stores
the result in image 2 (IM2) for rough dilation and image 3 (IM3) for rough erosion.

Algorithm 1: Rough dilation (RD) and rough erosion (RE) on chest x-ray images
Input: Chest X-ray image as a binary image (IM1), structure element B = square of 3 ∗ 3 pixels
Output: RD and RE of IM1 as IM2 and IM3, respectively.
Step 1: IM1 = imread(’chest X-ray.png’); //Read chest X-ray image as binary image IM1.
Step 2: P = size(IM1); //Calculate the size of IM1.
Step 3: B = [1 1 1;1 1 1;1 1 1]; // Put B = square of 3 ∗ 3 pixels.
Step 4:

For x = 2: 1: P(1) − 1 do
For y = 2: 1: P(2) − 1 do

T1 = [B(1) ∗ IM1(x − 1, y − 1) B(2) ∗ IM1(x − 1, y) B(3) ∗ IM1(x − 1, y + 1);
B(4) ∗ IM1(x, y − 1) B(5) ∗ IM1(x, y) B(6) ∗ IM1(x, y + 1);
B(7) ∗ IM1(x + 1, y − 1) B(8) ∗ IM1(x + 1, y) B(9) ∗ IM1(x + 1, y + 1)]

(Continued)
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Algorithm 1: Continued
IM2(x, y) = max(T1);//Rough dilation
IM3(x, y) = min(T1);//Rough erosion

End
End

Step 5: Display figure(1), imshow(IM2); //Display the rough dilation of image IM1.
Step 6: Display figure(2), imshow(IM3); //Display the rough erosion of image IM1.

The main steps for finding the rough opening (RO) and rough closing (RC) of the chest X-ray
images are shown in the following flowchart at Fig. 14.

Figure 14: Flowchart of (a) rough opening and (b) rough closing on chest X-ray images

5 Conclusion and Future Work

Although mathematical morphology and rough set theory are two different fields in terms of
their initial domains and implementations, there are relations between the two systems as shown in
this article. Specifically, we have shown that the lower and upper approximations of rough set theory
are similar to opening/erosion and closing/dilation in mathematical morphology. This principle can
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be used to find similarity among images with a lower approximation. The topology of the partition
can be defined in images as part of the universe set using four features defined using color and image
indices. Subspace topologies can also be used to model each image type. We proposed an algorithm
using these rough morphological operations that could be used to delineate lung occlusion (ARDS)
in COVID-19 patients from chest X-ray images. In future work, we will add the detection accuracy
measured.
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