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Abstract: Emerging technologies such as edge computing, Internet of Things
(IoT), 5G networks, big data, Artificial Intelligence (AI), and Unmanned
Aerial Vehicles (UAVs) empower, Industry 4.0, with a progressive production
methodology that shows attention to the interaction between machine and
human beings. In the literature, various authors have focused on resolving
security problems in UAV communication to provide safety for vital applica-
tions. The current research article presents a Circle Search Optimization with
Deep Learning Enabled Secure UAV Classification (CSODL-SUAVC) model
for Industry 4.0 environment. The suggested CSODL-SUAVC methodology
is aimed at accomplishing two core objectives such as secure communication
via image steganography and image classification. Primarily, the proposed
CSODL-SUAVC method involves the following methods such as Multi-
Level Discrete Wavelet Transformation (ML-DWT), CSO-related Optimal
Pixel Selection (CSO-OPS), and signcryption-based encryption. The proposed
model deploys the CSO-OPS technique to select the optimal pixel points in
cover images. The secret images, encrypted by signcryption technique, are
embedded into cover images. Besides, the image classification process includes
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three components namely, Super-Resolution using Convolution Neural Net-
work (SRCNN), Adam optimizer, and softmax classifier. The integration
of the CSO-OPS algorithm and Adam optimizer helps in achieving the
maximum performance upon UAV communication. The proposed CSODL-
SUAVC model was experimentally validated using benchmark datasets and
the outcomes were evaluated under distinct aspects. The simulation outcomes
established the supreme better performance of the CSODL-SUAVC model
over recent approaches.

Keywords: Unmanned Aerial Vehicles; Artificial Intelligence; emerging
technologies; Deep Learning; Industry 4.0; image steganography

1 Introduction

Recent technological advancements such as Artificial Intelligence (AI), Edge Computing, 5G,
Internet of Things (IoT), and big data analytics are incorporated in industries with innovation and
cognitive skills. These cutting-edge technologies might be helpful for industries to rapidly escalate their
manufacturing and delivery processes and customization of their goods [1]. Such enabling technologies
empower Industry 4.0 with advanced production models that enable communication between humans
and machines. In the smart machinery concept, both humans and machines co-work together and
this phenomenon improves the capabilities of human beings effectively. Further, smart machinery was
innovated to automate processes, persons, and industries at a given time [2]. According to Industry
4.0, the automation processes and the launch of edge computing occur in a dispersed and intellectual
manner. The primary goal is to enhance the potentiality of the processes, thereby unintentionally
avoiding the human cost incurred upon the maximization of the processes [3]. Fig. 1 showcases the
types of industrial versions.

Figure 1: Types of industrial versions



CMC, 2023, vol.74, no.3 5351

On the other hand, avoiding or reducing manpower in industries will become a huge issue in the
upcoming years, when Industry 4.0 becomes fully operative. Further, it would also face opposition
from politicians and labor unions to compromise on the advantages of Industry 4.0 to improve
employment opportunities [4,5]. But there is no need to reverse the evolution of the Industry 4.0
concept since process effectiveness should be improved by launching modern technology continuously.
It can be suggested that Industry 4.0 can be considered to be a viable solution and it is required after the
backward push commences [6]. Industry 4.0 can be expected to put forward a complete structure for
automated and linked systems that range from individual cars to Unmanned Aerial Vehicles (UAV),
with different necessities in terms of reliability, latency, energy efficiency, and data rate. Drones, on the
other hand, serve a significant portion in wide scenarios that might surpass 6G and 5G too [7].

Owing to their adaptability, automation abilities, and less cost, drones have been extensively
applied to meet civilian needs in the past few years [8]. Some of the instances include precision
agriculture, power line inspection, building inspection, and wildlife conservation [9]. But, drones have
a set of restrictions in terms of weight, size, energy utilization of the payload, restricted range of
operations, and endurance. Such limits should not be ignored, especially when Deep Learning (DL)
systems are required to be run on board [10]. Aerial imagery classification of scenes classifies the
aerial images, captured using drones, to sub-areas, by masking several ground matters and types of
land covers, to numerous semantic forms. In many real-time implications such as urban planning,
computer cartography, and the management of remote sensing sources, aerial image classifier plays
a significant role [11,12]. This approach is highly efficient in most domains, especially in educational
and industrial settings, than the standard processes [13]. DL method endeavors to extract some of the
commonly available hierarchies of Feature Learning (FL) concerning numerous abstraction stages.
Deep Convolutional Neural Network (CNN) is the most commonly applied DL technique [14]. This
method has become familiar and successful in countless detection and recognition tasks, receiving
superior outcomes over a count of standard datasets.

The current research article presents a Circle Search Optimization with Deep Learning Enabled
Secure UAV Classification (CSODL-SUAVC) model for Industry 4.0 environment. The proposed
CSODL-SUAVC technique consists of Multi-Level Discrete Wavelet Transformation (ML-DWT),
CSO-related Optimal Pixel Selection (CSO-OPS), and signcryption-based encryption. Besides, the
image classification process includes three components such as Super-Resolution using Convolution
Neural Network (SRCNN), Adam optimizer, and softmax classifier. The proposed CSODL-SUAVC
method was experimentally validated using benchmark datasets and the outcomes were assessed under
distinct aspects.

2 Literature Review

The aim of the study conducted earlier [15] was to provide a survey-related tutorial on potential
applications and support technologies for Industry 4.0. At first, the researchers presented a new
concept and defined Industry 4.0 from the perspectives of industrial practitioners and researchers.
Next, the research scholars elaborated on the potential applications of Industry 4.0 such as cloud
manufacturing, intellectual healthcare, manufacturing production, and supply chain management. In
the literature [16], the authors continuously monitored the harmful gas to alert the people, in case of
any leakage, and to save them from accidents. Further, the study also discussed Industry 4.0 from the
perspective of leveraging UAV’s longer-range transmission.
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Bhat et al. [17] proposed Agri-SCM-BIoT (Agriculture Supply Chain Management utilizing
Blockchain and IoT) structure and deliberated the classification of security threats with IoT archi-
tecture and the existing blockchain-related defense mechanisms. In the study conducted earlier [18],
the researchers presented a Machine Learning (ML)-based architecture for rapid identification and
detection of UAE over encrypted Wi-Fi traffic. The architecture was inspired by the observations made
when a consumer UAV uses a Wi-Fi link for controlling and video streaming purposes [19]. In this
study, the significance of a secure drone network was emphasized in terms of preventing intrusion and
interception. A hybrid ML method was developed, combining Logistic Regression (LR) and Random
Forest (RF) methods, to categorize the data instances for maximum effectiveness. By integrating the
sophisticated AI-stimulated approaches with NoD architecture, the presented method mitigated the
cybersecurity vulnerabilities with the creation of secure NoD security and its protection.

In literature [20], the authors proposed an autonomous Intrusion Detection System (IDS) that
can effectively recognize the malicious threats which invade UAVs with Deeper Convolution Neural
Network (UAV-IDS-ConvNet). Especially, the presented method considered the encryption of the Wi-
Fi traffic dataset collected from three different kinds of widely-employed UAVs. Kumar et al. [21]
presented a Secured Privacy-Preserving Framework (SP2F) for smart agriculture UAVs. The presented
SP2F architecture had two major engines such as a two-level privacy engine and a DL-related anomaly
detection engine. In this method, SAE was employed to transform the information into a novel
encoded format to prevent inference attacks.

3 The Proposed Model

In this article, a novel CSODL-SUAVC algorithm has been developed to accomplish secure
UAV classification and communication in the Industry 4.0environment. The presented CSODL-
SUAVC technique performs image steganography via ML-DWT, CSO-related optimal pixel selection,
and signcryption base- encryption technique. At the same time, the image classification module
encompasses SRCNN-based feature extraction, Adam optimizer, and softmax classifier. Fig. 2 depicts
the block diagram of the proposed CSODL-SUAVC approach.

3.1 Secure UAV Communication Module

To accomplish secure UAV communication, the proposed model deploys the CSO-OPS technique
to select the optimal pixel points in a cover image. Then, the secret image, encrypted by the signcryption
technique, is embedded onto the cover image.

3.1.1 Image Decomposition

RGB cover images are classified based on Low High (LH), High Low (HL), Low Low (LL),
and High High (HH) frequency bands to find the location of a pixel. Here, 2D-DWT is the prominent
spatial applied in the frequency domain conversion model [22]. When an image is partitioned, it follows
horizontal and vertical processes. The vertical function decomposes the images to HH1, LL1, LH1, and
HL1 frequency bands. Then, the horizontal function decomposes the images into High (H) and Low
(L) bands. To follow the decomposition process, LL1 the band gets decomposed into LL2, LH2, HL2,
and HH2. Here, the image size indicates ‘M∗N’. At first, to filter and down-sample the images, the



CMC, 2023, vol.74, no.3 5353

horizontal one reduces the size of the image to M × N
2

. The vertical decomposition reduces the down-

sampling of the image size to
M
2

× N
2

. A single-level decomposition outcome is achieved using the

following equation.

[C1C2C3C4] = DWT (C) (1)

Figure 2: Block diagram of CSODL-SUAVC approach

In Eq. (1), ‘C1’, ‘C2’, ‘C3’, and ‘C4’ represent the co-efficient values of the decomposing frequency
band. ‘C1’ represents the low frequency band that gets decomposed to create further sub-bands as
given herewith.[

CLL1
1 CLH1

1 CHL1
1 CHH1

1

] = DWT (C1) (2)

The co-efficient in the lower level band CLL1
1 gets completely decomposed, because it generates the

texture as well as the edge details of the images. The subsequent decomposition, as expressed in Eq. (3)
is implemented on the low band, LL1.[

CLL2
1 CLH2

1 CHL2
1 CHH2

1

] = DWT (LL1) (3)

In Eq. (3), CLL2
1 indicates the low-frequency band of the following decomposition.
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3.1.2 Optimal Pixel Selection Process

CSO algorithm is applied in this stage to select the optimal pixels of the images. The geometrical
circle is an underlying closed curve that has a similar distance from the center to every point [23]. The
diameter is calculated as a line, connecting two points on a curve that intersect at the (xc) center. Radius
(R) refers to the line that connects some points in a circle, towards the center. As per the Pythagorean
equation, the orthogonal function (Tan) of the right triangle has a ratio between the perpendicular
tangent line segment and the radius. The radius can be determined only through the distance between
xt and xC. The tangent line segment can be determined as a measure of distance between xt and xp

points whereas the orthogonal function (Tan) can be formulated using the subsequent expression:

Tan (θ) = χt − Xc

xp − xt

(4)

xt − xc = (
xp − xt

) × Tan (θ) (5)

xt = xc + (
xp − xt

) × Tan (θ) (6)

CSO seeks an optimal answer inside a random circle to widen the possibilities of the searching
region. By utilizing the center of the circle as a target point, the circumference of the circle and
the angle of contacting points of the tangent line reduce gradually, until it approaches the center of
the circle. Owing to the probability that this circle gets stuck with the local solution, the angle, where
the tangent line touches the point, is randomly changed. The Xt touching point considers the searching
agent of the CSO whereas Xc denotes that the center point is regarded as the optimum location. CSO
upgrades the searching agent for the movement of the touching point towards the center. Nonetheless,
to avoid CSO from getting trapped in a local solution, the contact point is randomly upgraded by
altering its angle. The key steps of the CSO optimizer are shown herewith.

Step 1: Initialization: This is a crucial phase in CSO in which the overall set of the dimensions
of the searching agent must be randomized equally, as demonstrated in Algorithm 1. The majority
of the existing codes randomize the dimension unequally. This phenomenon occasionally makes the
algorithm achieve a better outcome unexpectedly. Next, the searching agent is initialized between the
(UB) and (LB) upper and lower limits of the searching region as given below.

Xt = LB + r × (UB − LB) (7)

In Eq. (7), the random vector is represented by r and its value lies in the range of 0 and 1.

Step 2: Upgrade the location of the searching agent; the location of the searching agent Xt is
upgraded based on the assessed optimal position Xc as follows.

Xt = Xc + (Xc − Xt) × tan (θ) (8)

In Eq. (8), angle θ plays an essential role in both the exploitation and exploration phases of CSO
and is evaluated using the following expression

θ =
{

w × rand Iter > (c × Maχ iter)(escape from local stagnation)

w × p otherwise (9)

w = w × rand − w (10)
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a = π − π ×
(

Iter
Max iter

)2

(11)

p = 1 − 0.9 ×
(

Iter
Max iter

)0.5

(12)

In this expression, the random number is represented by rand that lies in the range of 0 and 1.
Iter refers to the iteration count, Maxiter indicates the maximal iteration amount, and c denotes a
constant that lies within the interval of [0,1] and characterizes the percentage of maximal iteration.
Eq. (10) demonstrates that w variable varies from [−π , 0] with an increasing number of iterations. The
parameter a differs from [π , 0], based on Eq. (11). The parameters p varies between [1,0] as shown in
Eq. (12). Consequently, the angle θ differs between [−π , 0].

Algorithm 1: Initialization of CSO
Input LB and UB.
Do for every searching agent
r =random value from [0, 1].
Utilize Eq. (4) for initializingXt the searching agent.
End Do
Algorithm 2 Pseudocode of CSO
Initializes the searching agent Xt by utilizing Algorithm 1
Input the constant value, Iter = 0, and Maxi
Whereas Iter is lesser than Maxiter
Use Eq. (11) for finding the value of a
Do for each searching agent
Utilize Eq. (10) for finding the value of w
Utilize Eq. (12) for finding the value of p
Utilize Eq. (9) for finding the value of angle θ

Utilize Eq. (8) for updating the search agent Xt

Once the upgrade searching agent is out of the boundary, the set searching agent is equivalent to the
boundary defining the fitness function f (Xt)

End Do
Estimate the f (Xt) with the storing optimal solutions f (Xc) Upgrade f (Xc) and Xc

Iter = Iter + 1

End While
Output f (Xc) and Xc

Fitness Function is used to evaluate the objective function. The primary intention is to design a
steganography model that must maximize PSNR and minimize the error rate (MSE) and is achieved
using the following equation.

F = {min(MSE), max(PSNR)} (13)

Both maximized and minimized values can be acquired by leveraging the CSO system.
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3.1.3 Encryption Process

The proposed model enables an encryption approach to encrypt secret images. Signcryption is
a public key cryptosystem that provides sufficient privacy to private images, by producing digital
signatures and following the encryption process. The parameter, utilized in the Signcryption technique,
is denoted by standard ‘cp’ while ‘xs’ denotes the private key of the sender, ‘S’ denotes the sender, ‘ys’
denotes the sender and receiver public key, and the public key of the receiver is denoted by ‘yr’. While
‘yr’ is fed as input in the form of ‘binfo’ to the Signcryption system. The variable ‘binfo’ is fundamental
to secure the Signcryption process and is composed of strings that exclusively recognize the receiver
and the sender or the hash value of the public key. The steps that are used to signcrypt the private
images are discussed below.

Step 1: Choose any value for ‘x’ in the range of 1 to Ln − 1.

Step 2: The hash function is evaluated to receive the public key and ‘N’ with K = as(ybx mod p).
This creates 128-bit strings.

Step 3: Then, it is segregated into two 64-bit strings such as K1 and K2 (key pairs).

Step 4: The message ‘m’ is encrypted, through the sender, using a public key encryption system ‘E’
in which key K1 is used to achieve the cipher text ‘c’; here, c = EK1(m).

Step 5: K2 is utilized in a one-way keyed hash ‘KH’ to retrieve the hash of messages. Here, ‘r’
represents the hash value of 128 bits for the message r = KHK2(m).

Step 6: Next, the value of ‘s’ is calculated based on the ‘x’ value and the private key, ‘xa’ while a
large prime value Ln and ‘r’ are used in s = x/(r + xa) mod Ln

Step 7: c, s, and r values are transferred to the receivers at once via signcryptext ‘C’ to complete
the secured communication.

At last, the encrypted cover image is embedded as an optimal designated pixel point of the
cover images. This guarantees the privacy of the stego images, due to the encryption process and the
embedding of private images.

3.2 UAV Image Classification Module

To perform UAV image classification, the CSODL-SUAVC model carries out three sub-processes
namely, SRCNN-based feature extraction, Adam optimizer, and softmax classifier. There has been
some research conducted on utilizing the DL technique for high image resolution [24]. To be specific,
SRCNN directly learns end-to-end mappings between higher and lower-resolution images. Mapping
signifies a deep-CNN model that comprises non-linear mapping, reconstruction, extraction of the
patches, and representation. At the beginning of describing all the operations, only a single low-
resolution image is considered. The selected image is then up-scaled towards the preferred size with the
help of bi-cubic interpolation; later the image is represented as an interpolated image i.e., y ∈ R

m×m×c; at
last, it is expected to recover an image f (y) from y viz. same as high-resolution images, x ∈ R

m×m×c. Here,
y denotes the low-resolution image and x represents the high-resolution image and these notations are
used to keep the subsequent representation, simple and understandable.

At first, patch extraction and representation are formulated as given herewith.

f1 (y) = max (0, W1 ⊗ y + b1) (14)
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In Eq. (14), W1 and b1 represent the filter and bias correspondingly. Specially, W1 corresponds to
n1 filter of the support p1 × p1 × c, while c denotes the channel count in input low-resolution image,
y ∈ R

m×m×c and p1 indicates the spatial size of the filter. The bias b1 ∈ R
n1 . After using the ReLU function

(max (O, ·)) on filter response, the output f1(y) is attained from n1 feature map, viz., f1(y) ∈ R
m×m×n1 .

Next, the nonlinear mapping is expressed as follows.

f2 (y) = max (0, W2 ⊗ f1 (y) + b2) (15)

In Eq. (15), W2 comprises of an n2 filter sized at p2 × p2 × n1 and b2 ∈ R
n2 . Without losing the

generalization norm, it has the potential to add further convolution layers to increase the nonlinearity.
The same procedure is repeated with the preceding operation, viz., f2(y) ∈ R

m×m×n2 . Then, for the
reconstruction procedure, the last high-resolution image is equated as follows,

f3 (y) = W3 ⊗ f2 (y) + b3 (16)

In Eq. (16), W3 contains a c filter sized at p3 × p3 × n2 and b3 ∈ R
c. The procedure is repeated with

the preceding operation, viz, f3(y) ∈ R
m×m×c. Even though the abovementioned operation is inspired

by diverse intuitions, it produces a similar result in the form of a convolution layer. Furthermore, the
filtering weight and bias are enhanced with the help of the subsequent loss function,

L (�) = 1
N

∑N

n=1
‖F (yn, Θ) − xn‖2

2 (17)

In Eq. (17), the number of trained instances is represented by N and parameter � =
{W1, W2, W3, b1, b2, b3}. We have (y, �)

�= f3(y).

SM classifier is used to allocate the class labels to the input UAV images.

It multiplies every value obtained irrespective of its nature and converts it to an entire number
that is continuously between zero and one. It can be a probabilistic function too that adapts a vector
distribution of numbers, probability distributing to real distribution. It is a classification that is utilized
to validate the accuracy of the model. Here, softmax is determined using the formula given below.

σ(�z)i = ezi∑K

j=1 ezj
(18)

whereas, σ = soft max

�z = input vector (19)

ezi refers to the standard exponential function of input vector K that signifies the number of classes
from multi-class classification

ezj implies the standard exponential function of the resultant vector ezj which implies the standard
exponential function to the resultant vector.

To improve the performance of the SRCNN algorithm, the Adam optimizer is employed. Adam
is an optimized approach that is utilized for iteratively upgrading the network weight with the help
of trained data, instead of the standard Stochastic Gradient Descent (SGD) process. This method is
the most effective technique in overcoming difficult issues with a huge number of variables or data.
It is effectual and economical in terms of memory. It performs a mix of Gradient Descent (GD) with
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momentum and Root Mean Square propagation techniques [25]. Two GD techniques are integrated
into the Adam optimizer. Adam optimizer includes the strength of two preceding methods to further
effectual GD. When the formulas are utilized in the two preceding manners, the following equation is
obtained.

mt = β1mt−1 + (1 − β1)

[
δL
δwt

]
vt = β2vt−1 + (1 − β2)

[
δL
δwt

]2

(20)

After all the iterations are over, it is instinctively altered to GD thereby remaining constant and
impartial across the procedure, and is given the name, Adam. At this point, rather than the normal
weighted parameters, m−t and v−t, it can proceed as the bias-corrected weighted parameter. When this
information is used as a common formula, the following Eq. (21) can be obtained.

wt+1 = wt − m̂t

(
α√

v̂t + ε

)
(21)

During every technique, this optimization is utilized due to its maximal efficacy and less memory
utilization requirement.

4 Result and Discussion

In this section, the proposed CSODL-SUAVC approach was experimentally validated utilizing
UCM [26] and AID datasets. A few sample images are shown in Fig. 3. UCM dataset comprises 21
scene types like oil tanks, residential areas, farmland, forest, and so on. There are 100 images present
for every scene type and are sized at 256 × 256 pixels. Altogether, this dataset has 2,100 RGB images
with a spatial resolution of ∼0.3 m. AID dataset covers 30 scene types with finely classified scene types.
The number of RGB images in every category varies in the range of ∼220 to 440 RGB images. So, the
total amount of images in this dataset is 10,000. The image size is 600 × 600 pixels and its resolution
is ∼0.5–8 m.

Table 1 provides the analytical results of the proposed CSODL-SUAVC system and other existing
models in terms of MSE and PSNR [27]. Fig. 4 portrays the Mean Square Error (MSE) scrutinization,
performed by the CSODL-SUAVC system and other recent models under a distinct number of samples.
The figure indicates that the proposed CSODL-SUAVC method gained effectual outcomes with
minimal values of MSE. For example, in sample 1, the CSODL-SUAVC model offered a low MSE
of 0.049, but other techniques such as AI-based UAV (AIUAV), Cuckoo Search (CS), and Grey
Wolf Optimization (GWO) techniques attained high MSE values such as 0.069, 0.108, and 0.164
correspondingly. In addition, in sample 5, the proposed CSODL-SUAVC approach obtained a low
MSE of 0.121, where AIUAV, CS, and GWO techniques obtained high MSE values such as 0.138,
0.206, and 0.253 correspondingly.
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Figure 3: Sample images

Table 1: Results of the analysis of the CSODL-SUAVC approach on distinct test samples under
different measures

Test
samples

CSODL-SUAVC AIUAV model Cuckoo search algo-
rithm

Grey wolf algorithm

MSE PSNR MSE PSNR MSE PSNR MSE PSNR

Sample 1 0.049 61.229 0.069 60.807 0.108 57.80 0.164 55.98
Sample 2 0.062 60.207 0.081 59.380 0.136 56.80 0.188 55.39
Sample 3 0.037 62.449 0.054 61.796 0.104 57.96 0.151 56.34
Sample 4 0.119 57.375 0.132 57.162 0.192 55.30 0.238 54.37
Sample 5 0.121 57.303 0.138 57.059 0.206 54.99 0.253 54.10
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Figure 4: MSE analysis results of CSODL-SUAVC approach (a) Sample 1, (b) Sample 2, (c) Sample
3, (d) Sample 4, and (e) Sample 5
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A comparative Peak Signal to Noise Ratio (PSNR) study was conducted on the CSODL-
SUAVC model and other existing models and the results are shown in Fig. 5. The results portray
that the proposed CSODL-SUAVC model achieved enhanced results with maximum PSNR values
for every sample. For instance, in sample 1, the proposed CSODL-SUAVC model demonstrated a
maximum PSNR value of 61.229 dB, while AIUAV, CS, and GWO approach produced the least
PSNR values such as 60.807, 57.80, and 55.98 dB respectively. Besides, in sample 5, the presented
CSODL-SUAVC technique accomplished a maximum PSNR of 57.303 dB, whereas AIUAV, CS,
and GWO methodologies produced the minimum PSNR values such as 57.059, 54.99, and 54.10 dB
correspondingly.

Figure 5: (Continued)
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Figure 5: PSNR analysis results of CSODL-SUAVC approach (a) Sampl1, (b) Sample 2, (c) Sample3,
(d) Sample4, and (e) Sample5

A comparative CC analysis was conducted between the CSODL-SUAVC approach and other
existing methodologies and the results are illustrated in Table 2 and Fig. 6. The outcomes represent
that the proposed CSODL-SUAVC approach achieved excellent results with maximal CC values for
all the samples. For instance, in sample 1, the proposed CSODL-SUAVC technique demonstrated a
maximum CC of 99.95, whereas AIUAV, CS, and GWO algorithms resulted in minimal CC values such
as 99.68, 99.46, and 99.29 correspondingly. In addition, in sample 5, the proposed CSODL-SUAVC
system exhibited a superior CC of 99.95, whereas AIUAV, CS, and GWO algorithms accomplished
less CC values such as 99.79, 99.61, and 99.51 correspondingly.

Table 2: Correlation Coefficient (CC) analysis results of CSODL-SUAVC approach and other existing
methodology under distinct test samples

Test samples CSODL-SUAVC AIUAV model Cuckoo search
algorithm

Grey wolf
algorithm

Sample 1 99.95 99.68 99.46 99.29
Sample 2 99.93 99.73 99.59 99.45
Sample 3 99.94 99.80 99.58 99.32
Sample 4 99.95 99.72 99.45 99.18
Sample 5 99.95 99.79 99.61 99.51
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Figure 6: CC analysis results of CSODL-SUAVC approach and other methodologies with distinct test
samples

Table 3 and Fig. 7 portray the CT investigation results achieved by the proposed CSODL-SUAVC
approach and other recent models under different samples. The figure implies that the proposed
CSODL-SUAVC system attained effective outcomes with minimal CT values. For instance, in sample
1, the proposed CSODL-SUAVC algorithm obtained a low CT of 1.115 s, whereas AIUAV, CS,
and GWO algorithms achieved high CT values such as 1.735, 2.145, and 2.465 s correspondingly.
Eventually, in sample 5, the presented CSODL-SUAVC model offered a low CT of 1.271 s, whereas
AIUAV, CS, and GWO algorithms attained maximal CT values such as 1.621, 2.001, and 2.321 s
correspondingly.

Table 3: Computational Time (CT) analysis results of CSODL-SUAVC approach and other techniques
under distinct test samples

Test Samples CSODL-SUAVC AIUAV Model Cuckoo Search
Algorithm

Grey Wolf
Algorithm

Sample 1 1.115 1.735 2.145 2.465
Sample 2 1.231 1.731 2.191 2.581
Sample 3 1.448 1.878 2.178 2.578
Sample 4 1.218 1.798 2.258 2.668
Sample 5 1.271 1.621 2.001 2.321
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Figure 7: CT analysis results of CSODL-SUAVC approach and other techniques under distinct test
samples

Table 4 and Fig. 8 provide an overview of the comparative analysis results accomplished by
the proposed CSODL-SUAVC system on the test UCM dataset [28,29]. The results infer that the
CSODL-SUAVC model can attain maximum classification results under different measures. For
precn, the proposed CSODL-SUAVC algorithm obtained a high precn of 95.66%, whereas BO-
SqueezeNet, VGGNet, GoogleNet, ResNetv2, Convolutive Transfer Function based Convolutional
Neural Network (CTF-CNN), MobileNetv2, and ResNet models achieved low precn values such as
94.59%, 92.73%, 91.58%, 89.69%, 87.77%, 85.88%, and 84.05% respectively.

Table 4: Comparative analysis results of CSODL-SUAVC approach with existing methods under UCM
dataset

Methods Precision Recall F1-Score F2-Score

CSODL-SUAVC 95.66 94.43 95.12 95.68
BO-SqueezzeNet 94.59 93.14 93.43 94.42
VGGNet 92.73 92.73 91.90 92.86
GoogleNet 91.58 91.68 91.09 91.57
ResNetv2 89.69 91.12 89.98 90.67
CTF-CNN 87.77 90.03 88.58 90.16
MobileNetv2 85.88 88.20 86.76 88.69
ResNet 84.05 86.23 85.85 87.79
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Figure 8: Comparative analysis results of CSODL-SUAVC approach under UCM dataset (a) Precn,
(b) Recal, (c) F1score, and (d) F2score

Besides, concerning F2score, the proposed CSODL-SUAVC method obtained an improved F2score

of 95.68%, whereas BO-SqueezeNet, VGGNet, GoogleNet, ResNetv2, CTF-CNN, MobileNetv2, and
ResNet systems achieved low F2score values such as 94.42%, 92.86%, 91.57%, 90.67%, 90.16%, 88.69%,
and 87.79% correspondingly.

5 Conclusion

In this study, a new CSODL-SUAVC model has been developed to accomplish secure UAV com-
munication and classification in Industry 4.0 environment. The presented CSODL-SUAVC technique
performs image steganography via ML-DWT, CSO-based optimal pixel selection, and signcryption-
based encryption technique. At the same time, the image classification module encompasses SRCNN-
based feature extraction, Adam optimizer, and softmax classifier. The integration of the CSO-OPS
algorithm and Adam optimizer helps in achieving the maximum performance on UAV commu-
nication. The proposed CSODL-SUAVC method was experimentally validated using benchmark
datasets and the outcomes were measured under distinct aspects. The simulation outcomes infer the
better efficiency of the proposed CSODL-SUAVC model over recent approaches. Thus, the presented
CSODL-SUAVC model can be applied to enable secure communication and classification in a UAV
environment. In the future, hybrid DL methodologies can be applied to improve the classification
performance of the proposed CSODL-SUAVC model.
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