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Abstract: A fifth-order family of an iterative method for solving systems
of nonlinear equations and highly nonlinear boundary value problems has
been developed in this paper. Convergence analysis demonstrates that the local
order of convergence of the numerical method is five. The computer algebra
system CAS-Maple, Mathematica, or MATLAB was the primary tool for
dealing with difficult problems since it allows for the handling and manip-
ulation of complex mathematical equations and other mathematical objects.
Several numerical examples are provided to demonstrate the properties of
the proposed rapidly convergent algorithms. A dynamic evaluation of the
presented methods is also presented utilizing basins of attraction to analyze
their convergence behavior. Aside from visualizing iterative processes, this
methodology provides useful information on iterations, such as the number of
diverging-converging points and the average number of iterations as a function
of initial points. Solving numerous highly nonlinear boundary value problems
and large nonlinear systems of equations of higher dimensions demonstrate
the performance, efficiency, precision, and applicability of a newly presented
technique.
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1 Introduction

Determining the roots of polynomial equations is among the oldest problems in mathematics,
whereas polynomial equations have a wide range of applications in science and engineering. For
example, aerospace engineers may use polynomials to determine the acceleration of a rocket or jet,
and mechanical engineers use polynomials to research and design engines and machines. The search
for finding the roots of a system of polynomials and a system of linear or nonlinear equations is one of
the primal and difficult problems with wide applications in science, engineering, finance and particular
in differential equations. Iterative numerical schemes for solving nonlinear systems of equations
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associated with initial value problems or boundary value problems are very important because, in
general, obtaining a closed form solution using the analytical or exact technique is quite difficult.
Generally, nonlinear initial value problems or boundary value problems are solved in two main steps
i.e., first to discretize the problem using the difference method, finite difference method, finite element
method, Pseudo-Spectral collocation method to the obtained tridiagonal system of linear or nonlinear
equations, and in the second step, some numerical iterative numerical schemes are used to solve the
tridiagonal system of linear or nonlinear equations.

The first famous, effective and very simple scheme is Newton’s method to solve a nonlinear system
of equations is given as:

y(k) = x(k) − F′(x(k))−1F(x(k)), (1)

where F′(x) is the Jacobin matrix approximated at x(k) i.e.,

F′ (x) =
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= 0. (2)

Method (2), has quadratic convergence locally. A lot of modifications have been made in classical
Newton’s Raphson method in order to reduce the number of function and Jacobin evaluations in each
iteration step, and so accelerate the convergence order. The extension of the classical Newton method,
as described by Weerakoon et al. [1], Özban [2], Gerlach [3] and Young et al. [4], to the function of
serval variable has been developed in [5–7] and references therein.

An open closed quadrature-based iterative method was designed by Frontini et al. [8]. This method
was improved by Darvishi et al. [9] to obtain a fourth-order scheme. A number of methods, such as
the domain decomposition method [10,11], the weight function technique [12], and the replacement
of the higher derivative by an approximation [13–15], were used to develop iterative methods to solve
a system of nonlinear equation.

The fundamental goal of this study is to construct a higher-order iterative method for solving
nonlinear system of equations and highly nonlinear boundary value problems. Basins of attraction are
used to demonstrate the efficiency of our method in comparison to the literature’s existing method.

This article is organized as follows: Following the introduction in Section 1, Section 2 provides
a brief description of method construction and convergence analysis. The dynamical aspect of the
proposed technique’s attraction basins is discussed in Section 3. The numerical outcomes of the
proposed method and comparisons to other higher-order existing methods from the literature are
shown in Section 4. The paper concludes with Section 5.

2 Construction of Numerical Methods and Convergence Analysis

This section presents some well-known existing iterative schemes of fifth-order convergence.
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In 2020, Singh [16] proposed the following fifth-order technique (MSα1):

x(k+1) = w(k) −
(

F(w(k))

F′(x(k))

)
, (3)

where w(k) = z(k) −
(

F(z(k))

F′(x(k))

)
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)
and y(k) = x(k) −
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)
.

In 2013, Zhang et al. [17] presented the fifth-order iterative technique (MSα2) as below:

x(k+1) = z(k) −
(
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)
, (4)
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2
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Cordero et al. [18] developed the following fifth-order iterative scheme (MSα3) in 2007:

z(k) = x(k) − 3
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where y(k) = x(k) −
(

F(x(k))

F′(x(k))

)
.

Cordero et al. [18] also constructed the following fifth-order iterative scheme (MSα4):

z(k) = x(k) − 6
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where y(k) = x(k) −
(

F(x(k))

F′(x(k))

)
.

The following scheme (abbreviated as MSα∗) is proposed in the present study:

x(k+1) = y(k) −
(

8F′(y(k)) − 6F′(x(k))

10F′(y(k)) − 8F′(x(k))
− 15

4

(
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)2
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)
, (7)

where y(k) = x(k) −
(

F(x(k))

F′(x(k))

)
.

Convergence analysis

For the iteration schemes (7), we have the following convergence theorem by using the computer
algebra system CAS-Maple 18 and finding the error relation of the iterative schemes defined in (7).
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Theorem Let the function F : E ⊆ Rn → Rn be sufficiently Fréchet differentiable on an open set
E containing the root ζ of F(x(k)) = 0. If the initial estimation x(0) is close to ζ , the method’s MSα∗
convergence order is at least five and satisfies the following:

�e(k) = (−186C4
2 − C2

2C3

)
(e(k))5 +

∥∥∥O(e(k))
6
∥∥∥ , (8)

where Ci = 1
i!

F′(ζ (k))

F(i)(ζ (k))
, i = 2, 3, . . .

Proof: Let e(k) = x(k) − ζ , e∼(k) = y(k) − ζ and �e(k) = x(k+1) − ζ be the error in generating Taylor series
F(x(k)) in the region of ζ assuming that F′(r)−1 exists, we write:

F(x(k)) = Fζ (k)+F′(ζ (k))(x−x(k)) + 1
2!

F′′(ζ (k))(x−x(k))2 + 1
3!

F′′′(ζ (k))(x−x(k))3 + . . . (9)

and F(x) = 0,
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{
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∣∣∣∣ , (10)

Dividing Eq. (9) by [F′(x(k))]−1, we have:

[F′(x(k))]−1F(x(k)) = e(k) − C2(e(k))2 + (2(C2)
2 − 2C3)(e(k))3 + . . . (11)

e∼(k) = y(k) − ζ = C2 + (−2C2
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Expanding F′(y(k)) about ζ and using Eq. (12), we obtain:
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8
(
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2
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10
(
F′(y(k)) − 8F′(x(k))

) =2 − 16C2(e∼(k)) + (20C2
2 − 24C3)(e∼(k))2 + (−40C3

2

+ 40C2C3 − 32C4)(e∼(k))3 + . . . (15)

15
(
F′(y(k)) − F′(x(k))

)
]2 = 60C2

2(e
∼(k))2 + (−120C3

2 + 180C2C3)(e∼(k))3 + (300C4
2

− 420C2
2C3 + 240C2C4 + 125C2

3)(e
∼(k))4 + ∣∣∣∣O(e∼(k))5

∣∣∣∣ . (16)

4
(
F′(x(k))

)
]2 =4 + 162C(e∼(k)) + (16C2

2 + 24C3)(e∼(k))2 + (48C2C3 + 32C4)(e∼(k))3

+ (64C2C4 + 36C2
3 + 40C5) + ∣∣∣∣O(e∼(k))4

∣∣∣∣ . (17)



CMC, 2023, vol.74, no.3 5335

Using Eq. (13) and Eq. (15) in the second-step of Eq. (7), we get:(
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Hence, it proves the theorem

3 Dynamical Planes

The basins of attraction [19–22] is a graphical representation of how root-finding algorithms
respond to different initial estimate points. It is more than a graphical illustration of how a root-finding
approach works; it also enables the comparsion of qualitative issues. Visual analysis of dynamical
planes, i.e., basins of attraction, is another effective and profitable means of demonstrating the
usefulness of iterative methods for solving nonlinear equations with these advantageous properties.
A complex square |−3, 3 × −3, 3|2 ∈ C with its centre at the origin and a total of 490000 points is used
to generate the dynamical planes. The region on which the first hypotheses are predicted is analyzed in
order to locate the root of the nonlinear equation. The stopping criterion

∣∣xk+1 − xk
∣∣ < 10−3 is utilised

to terminate the computer program, and a maximum of 20 iterations are needed root to convergence
of the root. Dark black points are assigned, if the orbit of the iterative methods does not converge to
root after 20 iterations. Each root is assigned a unique color. In iterative techniques, distinct basins
of attraction are illustrated by different colours. Figs. 1–15 illustrate basins of attraction generated by
iterative methods for the following non-linear equations:

x5 + x3 − x − 1 = 0. (20)
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Figure 1: The program’s outcome—the basins of attraction for MSα∗ applied to Eq. (20)

Figure 2: The program’s outcome—the basins of attraction for MSα1 applied to Eq. (20)

Figure 3: The program’s outcome—the basins of attraction for MSα2 applied to Eq. (20)
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Figure 4: The program’s outcome—the basins of attraction for MSα3 applied to Eq. (20)

Figure 5: The program’s outcome—the basins of attraction for MSα4 applied to Eq. (20)

Figure 6: The program’s outcome—the basins of attraction for MSα∗ applied to Eq. (21)
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Figure 7: The program’s outcome—the basins of attraction for MSα1 applied to Eq. (21)

Figure 8: The program’s outcome—the basins of attraction for MSα2 applied to Eq. (21)

Figure 9: The program’s outcome—the basins of attraction for MSα3 Eq. (21)
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Figure 10: The program’s outcome—the basins of attraction for MSα4 applied Eq. (21)

Figure 11: The program’s outcome—the basins of attraction for MSα∗ applied to Eq. (22)

Figure 12: The program’s outcome—the basins of attraction for MSα1 applied to Eq. (22)
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Figure 13: The program’s outcome—the basins of attraction for MSα2 applied to Eq. (22)

Figure 14: The program’s outcome—the basins of attraction for MSα3 applied to Eq. (22)

Figure 15: The program’s outcome—the basins of attraction for MSα4 applied to Eq. (22)
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Eq. (20) has the following exact roots −0.62174−0.0440597i, −0.621744+0.440597i, 0.121744−
1.306621i, 0.121744 + 1.30662i, 1

cos
(
x5 + x3 − x − 1

) − ex
1
3 = 0. (21)

Eq. (21) has one real root i.e., 1.135001329.

x
3
5 − 1

x
3
4

+ 2i = 0. (22)

Eq. (22) has the following exact roots −2.15564 − 0.356601i, −0.0918328 − 0.630339i.

In Tables 1–3, CPU-Time refers to the elapsed time in seconds, Start-Points denote the number of
starting points, i.e., 490,000 in a square, Con-Points represent the number of converging points, and
Div-Points signify the number of divergent points for the creation of dynamical planes (Attractions’
basins). In terms of CPU-Time, Average-It, Start-Points, Con-Points, and Div-Points, Tables 1–3
clearly show that our newly developed technique MSα∗ outperforms the existing iterative methods
MSα1, MSα2, MSα3, MSα4.

Table 1: Computing time, average iterations, number of initial points, convergence points, and
diverging points when applying iterative methods to generate dynamical planes for Eq. (20)

Eq. (20) MSα∗ MSα1 MSα2 MSα3 MSα4

CPU-Time 0.01342 0.12345 0.15122 0.014714 0.15670
Average-It 4.50 5.73 5.91 5.01 6.78
Start-Points 490000 490000 490000 490000 490000
Con-Points 490000 488050 490000 490000 490000
Div-Points 0.00000 1950.00 0.00000 0.00000 0.00000

Table 2: Computing time, average iterations, number of initial points, convergence points, and
diverging points when applying iterative methods to generate dynamical planes for Eq. (21)

Eq. (21) MSα∗ MSα1 MSα2 MSα3 MSα4

CPU-Time 3.12341 6.14214 6.14215 7.12451 3.92451
Average-It 6.15 7.81 7.86 8.15 6.59
Start-Points 490000 490000 490000 490000 490000
Con-Points 471520 380150 410152 391542 376847
Div-Points 18480 109850 79848 98458 113153
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Table 3: Computing time, average iterations, number of initial points, convergence points, and
diverging points when applying iterative methods to generate dynamical planes for Eq. (22)

Eq. (22) MSα∗ MSα1 MSα2 MSα3 MSα4

CPU-Time 0.01251 0.12470 0.03451 0.01748 0.05602
Average-It 3.45 4.67 4.87 4.15 4.781
Start-Points 490000 490000 490000 490000 490000
Con-Points 490000 490000 485046 487501 490000
Div-Points 0.00000 0.00000 4954.00 2499.00 0.00000

4 Numerical Outcomes

The following iterative techniques are used to solve some extremely non-linear boundry value
problem BVP and a large system of non-linear equations:

1. The newly constructed method MSα∗ is of convergence order five
2. Singh et al.’s method MSα1 is of convergence order five
3. Zhang et al.’s method MSα2 is of convergence order five
4. Cordero et al.’s method MSα3 is of convergence order five
5. Cordero et al.’s method MSα4 is of convergence order five

All numerical computations are done using maple 18.0 with 75-digit floating point arithmetic in
a laptop having Processor Intel® Core™ i3-3310 m CPU@2.4 GHz with a 64-bit operating system on
Window 8. We terminate the computer program when the following stopping criterion is satisfied:

e = ∣∣∣∣x(k+1) − x(k)
∣∣∣∣ <∈= 10−15,

where e is the absolute error of the consecutive iterations. In Tables 4–8, D represents the dimension
of the non-linear system of equations.

Example 1: N-Demission Problem [23]

Consider

F1 : fi(xi) = ex2
i − 1, i = 1, 2, 3, .., m (23)

the exact solution of the system Eq. (23) is X∗ = [0, 0, 0, . . . , 0]T taking X0 = [0.5, 0.5, 0.5, . . . , 0.5] as
an initial estimate. Tables 4–5, indicates the numerical results of the system of non-linear equations
Eq. (23) used.

Table 4: Iterations-number, and computational time in seconds to solve a large system of non-linear
equations F1(x), F2(x) using MSα∗, MSα1, MSα2, MSα3and MSα4 respectively

Number of iterations of iterative methods for the large system used
in Example 1 and Example 2
Example 1 D MSα∗ MSα1 MSα2 MSα3 MSα4

F1(x) 50 4 4 4 6 4
F1(x) 75 4 4 4 6 4

(Continued)
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Table 4: Continued
Number of iterations of iterative methods for the large system used
in Example 1 and Example 2
Example 1 D MSα∗ MSα1 MSα2 MSα3 MSα4

F1(x) 100 4 4 4 6 4
F2(x) 50 4 4 4 6 4
F2(x) 75 4 4 4 6 4
F2(x) 100 4 4 4 6 4

Computational time in seconds of iterative methods for the large
system used in Example 1 and Example 2

F1(x) 50 0.141 0.329 0.593 0.437 0.312
F1(x) 75 0.203 0.656 0.891 0.969 0.344
F1(x) 100 1.113 1.984 1.313 1.484 0.543
F2(x) 50 0.132 0.671 0.651 1.001 0.751
F2(x) 75 0.320 0.761 0.766 1.047 0.961
F2(x) 100 1.008 1.561 1.078 1.574 1.675

Table 5: Accuracy and local computational order of convergence (LCOC) [24] of iterative methods to
solve a large system of non-linear equations F1(x) and F2(x) respectively

Accuracy of iterative methods for the large system used in Example 1 and Example 2
Example 2 D MSα∗ MSα1 MSα2 MSα3 MSα4

F1(x) 50 0.0 1.1511e-16 0.3512e-15 1.147e-16 1.1567e-15
F1(x) 75 0.0 1.120e-16 1.3125e-14 1.1130e-16 3.4417e-13
F1(x) 100 0.0 1.1102e-16 1.2751e-15 1.1102e-16 3.4417e-13
LCOC 100 5.431 5.014 4.916 4.967 5.015
F2(x) 50 0.0 0.0 0.0 0.0 0.0
F2(x) 75 0.0 0.0 0.0 0.0 6.7511e-16
F2(x) 100 0.0 0.0 1.5451e-12 1.9621e-17 6.6147e-16
LCOC 100 5.324 4.912 4.781 5.102 4.991

Example 2: N-Dimensional Problems [23]

Consider

F2 : fi(xi) = x2
i − cos(xi − 1), i = 1, 2, 3, .., m (24)

the exact solution of the system Eq. (24) is X∗ = [1, 1, 1, . . . , 1]T and taking X0 = [2, 2, 2, . . . , 2]T as
an initial estimate. Tables 4–5, indicates the numerical results of the system of non-linear equations
Eq. (24) used.
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Table 6: Number of iterations, to solve BVP-I using MSα∗, MSα1, MSα2, MSα3, MSα4

Number of iterations of iterative methods for BVP-I used in Example 3-respectively

BVP D MSα∗ MSα1 MSα2 MSα3 MSα4

BVP-I 22 3 3 3 3 3

Table 7: Computational time in seconds to solve BVP-I using MSα∗, MSα1, MSα2, MSα3, MSα4

Computational time in seconds of iterative methods for solving BVP-1 used in Example 3

BVP D MSα∗ MSα1 MSα2 MSα3 MSα4

BVP-I 22 0.8015 0.9134 0.8971 1.6151 0.8915

Table 8: Accuracy of iterative methods MSα∗, MSα1, MSα2, MSα3and MSα4 to solve BVP-I

Accuracy of iterative methods for solving BVP-I used in Example 3

BVP D MSα∗ MSα1 MSα2 MSα3 MSα4

BVP-I 22 3.3141e-16 2.2661e-15 5.5961e-16 1.5712e-16 1.0081e-15

Application in Differential Equation

Here, we solve some highly non-linear BVPs using the newly constructed iterative method and
existing methods in literature to show the dominance efficiency of our methods MSα∗ with comparison
to MSα1, MSα2, MSα3 and MSα4 respectively.

Example 3: [24,25]

Consider the non-linear boundary value problem (BVP-I):

y′′ = −β(ey), 0 ≤ x ≤ 1 (25)

y(0) = 0; y(1) = 0. The exact solution to the non-linear boundary value problem does not exist
therefore for graphical comparison we take the approximate solutions using the shooting method
Fig. 16.

By dividing the interval [0,1] into n = 22 equal subinterval as:

x0 = 0 < x1 < . . . < xn = 1; xi+1 = xi + h and h = 1
n

.

Assuming y0 = y(x0) = 0, y1 = y(x1), . . . , yn = y(xn) = 1. Using the procedure of finite-difference
central approximations of the derivatives i.e.,

y′′ (xi) = 1
h2

(y (xi+1) − 2y (xi) + y (xi−1)) − h2

12
y(iv)(ξ ), for some ξ ∈ (xi−1, xi+1) (26)

y′ (xi) = 1
2h

(y (xi+1) − y (xi−1)) − h2

6
y(iii)(ξ ), for some ξ ∈ (xi−1, xi+1) (27)
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Figure 16: Numerical solution of BVP-1 using shooting methods, MSα∗, MSα1 − MSα4.

In non-linear boundary value problem Eq. (25), we get the following non-linear system of
equations:

484yi+2 − 968yi+1 + 848yi + βeyi = 0, i = 1, 2, . . . , 22 (28)

We chose the following initial approximation

X0 = [0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5]T

The solution to this non-linear boundary value problem up to 5 decimal places is X∗ =⎡
⎢⎢⎢⎢⎢⎢⎣

0.00, 0.8363576950e−1, 0.1650251902, 0.2439777869,
0.3202933671, 0.3937628071, 0.4641691297, 0.5312888986,
0.5948939496, 0.6547534661, 0.7106363959, 0.7623141892,
0.8095638206, 0.8521710394, 0.8899337709, 0.9226655761,
0.9501990588, 0.9723891027, 0.9891158112, 1.000287032,
1.005840356, 1.005744498, 1.000000000

⎤
⎥⎥⎥⎥⎥⎥⎦

T

We solve the nonlinear system of equations Eq. (28) by taking β = 10.5, 10, 11. Tables 6–8,
indicates the numerical results of the BVP-1 used.

5 Conclusion

A precise approach was developed in this paper for constructing iterative schemes. Using Com-
puter Algebra System CAS-symbolic computation with strong speeding iterative numerical schemes,
we developed novel efficient numerical iterative methods for solving nonlinear systems of equations.
We were prompted to use symbolic computation via multiple programs written in the computer algebra
system CAS-Maple due to the fact that the newly derived technique required lengthy and complicated
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mathematical statements. Maple was used to perform numerical examples of higher-order nonlinear
systems of equations as well as to solve some highly nonlinear BVPs. These examples revealed that
the newly developed approaches’ theoretical order of convergence corresponds to the computational
outcomes. In addition to providing visual insight into the convergence behavior of iterative methods,
the generation of basins of attraction could also generate qualitative concerns for comparison. It is
evident from all Figs. 1–16 and Tables 1–8, that the iterative schemes MSα∗ are more effective than
MSα1, MSα2, MSα3, MSα4.
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