
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited.

echT PressScienceComputers, Materials & Continua
DOI: 10.32604/cmc.2023.032849

Article

A Coprocessor Architecture for 80/112-bit Security Related Applications

Muhammad Rashid* and Majid Alotaibi

Department of Computer Engineering, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
*Corresponding Author: Muhammad Rashid. Email: mfelahi@uqu.edu.sa

Received: 31 May 2022; Accepted: 09 September 2022

Abstract: We have proposed a flexible coprocessor key-authentication
architecture for 80/112-bit security-related applications over GF (2m) field
by employing Elliptic-curve Diffie Hellman (ECDH) protocol. Towards
flexibility, a serial input/output interface is used to load/produce secret,
public, and shared keys sequentially. Moreover, to reduce the hardware
resources and to achieve a reasonable time for cryptographic computations,
we have proposed a finite field digit-serial multiplier architecture using
combined shift and accumulate techniques. Furthermore, two finite-state-
machine controllers are used to perform efficient control functionalities.
The proposed coprocessor architecture over GF

(
2163

)
and GF

(
2233

)
is

programmed using Verilog and then implemented on Xilinx Virtex-7 FPGA
(field-programmable-gate-array) device. For GF

(
2163

)
and GF

(
2233

)
, the

proposed flexible coprocessor use 1351 and 1789 slices, the achieved clock
frequency is 250 and 235 MHz, time for one public key computation is 40.50
and 79.20 μs and time for one shared key generation is 81.00 and 158.40 μs.
Similarly, the consumed power over GF

(
2163

)
and GF

(
2233

)
is 0.91 and

1.37 mW , respectively. The proposed coprocessor architecture outperforms
state-of-the-art ECDH designs in terms of hardware resources.

Keywords: Coprocessor; design; key-authentication; wireless sensor nodes;
RFID; ECDH; FPGA

1 Introduction

Due to the exponential growth in technology, millions of users want to interact with the internet
through IoT devices, and the requirement for this enormous connectivity raises security threats [1–3].
Therefore, several security services can be achieved either by employing symmetric or asymmetric (or
public-key) cryptographic algorithms. Comparatively, the latter offers more increased security as two
distinct keys are involved in cryptographic computation(s) [2]. On the other hand, a single key is needed
in the case of symmetric algorithms/protocols. Moreover, each cryptographic algorithm (either related
to symmetric or public-key) contains different messages and key lengths for a certain level of security
achievement [4,5]. For 80-bit symmetric-key security achievement, Rivest-Shamir-Adleman (RSA)
and Elliptic Curve Cryptography (ECC) require 1024-bit and 160-bit key lengths [4,5]. Similarly, for
identical security to 112-bits, the RSA and ECC require 2048-bit and 224-bit key lengths. For security

https://www.techscience.com/
https://www.techscience.com/journal/cmc
http://dx.doi.org/10.32604/cmc.2023.032849
https://www.techscience.com/doi/10.32604/cmc.2023.032849
mailto:mfelahi@uqu.edu.sa

6850 CMC, 2023, vol.74, no.3

equivalent to AES-128, the RSA and ECC need 3072-bit and 256-bit lengths. Consequently, for a
similar security level, ECC is an attractive option as it offers several additional benefits in terms of
lower bandwidth, lower computational/processing efforts, lower power consumption, and lower area
cost [6].

The ECC contains a four-layer model. The uppermost layer, known as the protocol layer,
determines the execution of (i) encryption/decryption, (ii) signature-generation/verification, (iii) key-
authentication, etc. For the computation of these operations, the most frequently used protocols
are Elliptic-curve Diffie Hellman (ECDH) [7], Elliptic-curve Digital Signature Algorithm (ECDSA)
[8] and Elliptic-curve Menezes Qu–Vanstone (ECMQV) [9]. The ECMQV, ECDSA and ECDH
protocols are responsible to compute encryption/decryption, signature-generation/verification and
key-authentication, respectively. To implement these protocols (ECDSA, ECDH and ECMQV), point
multiplication (PM) is essential to execute (third layer of ECC model). Moreover, in Elliptic curves,
the PM is the considerable computationally intensive operation [6,10–13]. The implementation of PM
depends on the computation of layer two operations, i.e., point addition (PA), and doubling (PD).
These operations (PA and PD) depend on layer one. The corresponding layer one operations are finite
field (FF) addition, multiplication, squaring, inversion and reduction.

In addition to the ECC layer model, the prime, i.e., GF (P), and binary, i.e., GF (2m), fields are
available choices for implementations, where m shows the field size or supported-key length. Com-
paratively, the prime field is more appealing for software implementations (e.g., on microcontrollers)
while binary fields have a preference due to its accelerations on hardware platforms such as field-
programmable-gate-array (FPGA) and application-specific-integrated-circuits (ASICs) [6,11–15]. Due
to reconfigurability, ease of availability in the market, low development cost, etc, we have selected the
GF (2m) field for implementations on FPGA in this work.

Over GF (2m) field, the National Institute of Standards and Technology (NIST) [16] has defined
various key lengths, i.e., 163, 233, 283, 409, and 571, for implementations. The NIST is an American
organization that is responsible for standardized new cryptographic primitives to ensure secure
communications. The 163 and 233-bit key lengths are sufficient to secure applications that require
an 80 or 112-bit security [4,17]. Therefore, the objective of this work is to protect the cryptographic
applications that require 80/112-bit security by designing and implementing an Elliptic-curve processor
for key-authentication using ECDH over GF (2m) with m = 163 and 233 on FPGA.

Several applications demand higher security. One of the examples includes the fourth industrial
revolution (also named industry 4.0) which brings rapid growth in technology, industries and societal
patterns due to the demand for increasing interconnectivity of several devices over the unsecured inter-
net. Moreover, industry 4.0 emphasizes the notion of automation of numerous applications to facilitate
human daily life [14]. More specifically, in the case of digitalization, automation requires higher
security, e.g., key authentication or key agreement. For example, for radio-frequency-identification-
network (RFID) applications, key authentication is essential when scanning the bar codes on different
products in shopping malls [18–22]. Automotive mobile vehicles are another application where
authentication is critical to start secure communication [23]. Generally, these include intra or inter-
mobile communications with several devices, e.g., vehicle-to-phone, vehicle-to-vehicle, phone-to-
phone, etc. The term intra determines the wired/wireless communication inside the sensing network
while inter means the communication with embedded devices outside the sensing network. We have
provided intra-mobile connectivity of the several devices in Fig. 1 where the Node1, Node2 and Node3
are the wireless sensor nodes (WSN) that determine the connectivity of several embedded devices with
the gateway.

CMC, 2023, vol.74, no.3 6851

Figure 1: Intra-mobile connectivity of several devices [23]

To achieve higher security hardware-based implementations are more suitable when compared
to software-based implementations. Therefore, an ECC design is described in [17] where an FPGA-
based sensor node has been presented. They have targeted prime and binary fields with supported
key lengths of 192 and 163. Moreover, their design is compliant with the IEEE802.15.4 standard. To
reduce the hardware resources, they have reused the embedded resources of the utilized FPGA, i.e.,
Xilinx Artix-7.

Some ASIC and FPGA designs of ECC for RFID applications are described in [18,21]. In [18], an
efficient architecture of ECC over GF

(
2163

)
for RFID applications is discussed. The synthesis results

are reported for UMC 0.13 μm Complementary Metal Oxide Semiconductor (CMOS) technology.
Different optimization techniques have been used for different purposes: (i) a new finite field inversion
method is adopted with an intent to minimize the hardware resources, (ii) a technique for coordinate
changing is discussed to minimize the complexity and decrease the computational time, (iii) a shift
register design is used to minimize the area of employed register files, and (iv) the clock gating is used
to reduce the power consumption. Recently in [21], an ECC-based processor over GF

(
2163

)
for RFID

applications with aid to acquire low latency and the low area is presented. Additionally, flexibility is
the beauty of their design. They have used three shift buffers to serially load the input parameters for
two purposes: initially for acquiring low latency and then for flexibility. Moreover, the area is further
optimized by reusing the hardware in inversion computation. The synthesis results are reported on
various 7-series FPGA devices.

The ECC-based hardware accelerators specific to wireless sensor nodes on ASIC and FPGA
platforms are described in [24–28]. In [24], a new ECC-based protocol followed with a coprocessor
hardware design for key distribution in wireless sensor nodes is presented over GF

(
2163

)
. Moreover,

an 8-bit serial interface is discussed to load/collect the inputs/outputs to/from the coprocessor design.
On Spartan-6 FPGA device, their coprocessor architecture takes 33.6 μs for one PM computation
running on 33.3 MHz frequency. Similarly, a flexible design for several NIST recommended curves

6852 CMC, 2023, vol.74, no.3

(substituting the reduction unit) is proposed in [25]. This partial reconfiguration determines the
flexibility of their design and is accomplished on a Spartan-3 FPGA device over GF

(
2163

)
and

GF
(
2571

)
fields. They have connected standard motes with the FPGA for visualization purposes while

performing the actual cryptographic computations on the standard motes. An ECC-based integrated
hardware architecture for wireless sensor nodes is presented in [26] over GF

(
2163

)
on Kintex-7 FPGA.

Apart from the use of a Secure Hash Algorithm (SHA) or Advance Encryption Standard (AES) for
authentication purposes, their design implements an Elliptic-curve based message authentication code
(MAC) for efficient reuse of FPGA resources. Similarly, a PM implementation of ECC over GF

(
2112

)
and GF

(
2163

)
on different FPGA devices is provided in [27] where a Montgomery PM algorithm is

employed for securing WSN. Recently in [28], an Ed25519 (Edwards curve a specialized form of Elliptic
curves) curve is utilized to implement the ECDH operation for secure key-agreement over GF (P) with
P = 160 on two distinct nodes of MoTE-ECC.

The most recent ECC published designs for securing several other cryptographic applications
are described in [11,13,29,30]. In [11], a two-stage pipelined design is reported over GF

(
2163

)
and

GF
(
2233

)
for PM execution to secure cryptographic applications that require an optimal throughput

and low-area for implementations such as smart cards, etc. Here, the optimal throughput determines
the execution of the cryptographic operation in a reasonable time. The pipeline registers are employed
to shorten the critical path of their design and ultimately improve the operational frequency which
results in lower computational time. A reduced-area ECC design using the Lopez Dahab algorithm
over GF

(
2163

)
on various FPGA devices is described in [13]. Recently, in [29], a Number Theoretic

Transform (NTT) is utilized to enhance the performance of the PM process. A highly efficient design
for 8-bit AVR-based sensor nodes is presented in [30].

The hardware accelerators of ECC are specifically concentrating on the hardware resource
optimizations and decreasing the power consumption for wireless sensor nodes and RFID applications
[13,18,21,24–28]. A schoolbook multiplication method is frequently employed in the literature as it
reduces the hardware resources and achieves lower power consumption. With minimum hardware
resources and low power consumptions, the computational time (latency or throughput) is also
important to exchange the cryptographic keys in a reasonable time. It is essential to provide that the
performance of polynomial multiplier determines the performance of the entire ECDH protocol as it
requires frequent polynomial multiplications for computation. In literature, the most commonly used
Karatsuba multiplier, as employed in [13], results in higher resources and is not feasible for wireless
sensor nodes and RFID applications. The schoolbook multiplication method of [21] is expensive
in terms of computational time. Therefore, an optimal multiplier is needed to achieve the low-area
and high-performance footprints for meeting standards for wireless sensor nodes and RFID-related
applications. Consequently, to address these issues our contributions are as follows:

• Coprocessor architecture: We have proposed a key-authentication coprocessor architecture for
80/112-bit security-related applications over GF

(
2163

)
and GF

(
2233

)
using the ECDH protocol.

• Flexibility: In our proposed coprocessor architecture, the flexibility is offered using a serial
interface by placing input/output buffers to load/produce x and y coordinates of secret, public,
and shared keys sequentially (bit-by-bit).

• Polynomial multiplication architecture: To reduce the hardware resources and to achieve a
reasonable time for cryptographic computations, we have proposed a finite field digit-serial
multiplier architecture over GF (2m) field using a shift and accumulate technique. Our digit-
serial multiplication operates on a digit length of 24-bits.

CMC, 2023, vol.74, no.3 6853

• Control blocks: Finally, two finite-state-machines (FSM) are implemented to efficiently com-
pute the public and shared keys.

The proposed coprocessor architecture is programmed using Verilog and then implemented on
Xilinx Virtex-7 FPGA. Over GF

(
2163

)
and GF

(
2233

)
, the proposed coprocessor architecture use 1351

and 1789 slices and the maximum operational frequency is 250 and 235 MHz. Similarly, the time
required to compute one public key is 40.50 and 79.20 μs and time for one shared key generation
is 81.00 and 158.40 μs. The power consumption of our architecture over GF

(
2163

)
and GF

(
2233

)
is

0.91 and 1.37 mW , respectively. The achieved results show that the proposed architecture is suitable
to secure the applications that require 80/112-bits protection.

The rest of this article is organized as: Section 2 presents the relevant background. The proposed
coprocessor architecture is presented in Section 3. The achieved results and performance comparison
are discussed in Section 4. The article is concluded in Section 5.

2 Related Background

This section describes the essential mathematical background required for the computation of
operations of ECC.

Key-authentication protocol (ECDH): As discussed earlier in Section 1, the ECDH protocol
(associated with the uppermost layer model of ECC) is required to perform key agreement or key-
authentication between two sensor nodes. Let us make an example to describe the key agreement
mechanism of the ECDH protocol. We have shown three nodes (Node1, Node2 and Node3) in Fig. 1.
If Node1 wants to communicate with Node2 then the ECDH steps include: (i) Node1 and Node2
use the same ECC configurations to prompt the required setup, (ii) computation of PM at each node
(Node1 and Node2) for public key generation, (iii) exchange of generated public keys between two
nodes (Node1 and Node2 in this demonstration example), and (iv) computation of PM on Node1 and
Node2 for shared key generation. For mathematical structures and additional descriptions of ECDH
protocol, we refer readers/designers to follow [6,14].

Point multiplication over GF (2m): It is important to highlight that each layer in ECC requires
different algorithms for implementation. Therefore, the addition of k copies of PA and PD determines
the PM calculation where k shows the key length. Several PM algorithms are available in the literature.
According to [14,15,28,30,31], the Double and Add algorithm is more convenient for unified models
of ECC, e.g., Edwards, Huff, Twisted Edwards, etc. The Lopez Dahab PM algorithm is an attractive
choice for achieving instruction-level parallelism for performance improvement. The similar finite field
operations for computation of PA and PD make the Montgomery PM algorithm suitable for side-
channel resistant implementation of ECC. A comparison over various PM algorithms is presented in
[2]. In short, we have preferred the Montgomery (Algorithm 1) PM algorithm to target the side-channel
attack-protected hardware implementation of ECC for wireless sensor nodes and RFID applications.

Algorithm 1: Montgomery ECPM Algorithm [11]

Input: k = (kn−1, . . . , k1, k0) with kn−1 = 1, P = (
xp, yp

) ∈ GF (2m) Output: Q
(
xq, yq

) = k.P
X1 = xp, Z1 = 1, X2 = xp4 + b, Z2 = x2

p → (affine to projective coordinate conversion)
for (i from m − 2 down to 0) do → (point multiplication in projective coordinates)

(Continued)

6854 CMC, 2023, vol.74, no.3

Algorithm 1: Continued
if (ki = 1)

PADD = (X1, Z1) = (X1, Z1, X2, Z2)

PDBL = (X2, Z2) = (X2, Z2)

else
PADD = (X2, Z2) = (X2, Z2, X1, Z1)

PDBL = (X1, Z1) = (X1, Z1)

end if
end for

xq = X1

Z1

, yq =
(

xp + X1

Z1

) [(
X1 + xp × Z1

) (
X2 + xp × Z2

) + (
x2

p + yp

)
(Z1 × Z2)

] (
xp × Z1 × Z2

) −
1 + yp → (reconversion)

The inputs to Algorithm 1 are (i) an initial point P with x and y coordinates, i.e., xp and yp and
(ii) a scalar multiplier k. A sequence kn−1, . . . , k1, k0 shows the bits stream. The outputs are x and y
coordinates. The PADD() and PDBL() methods represent the PA and PD instructions. For if and else
statements, the sequence of instructions is shown in Table 1.

Table 1: Number of instructions for PADD() and PDBL() functions of Algorithm 1

Insti PADD() Insti PDBL() Cost of finite field operations

Inst1 Z1 = X2 × Z1 Inst1 Z2 = Z2
2

Total instructions = 14 (7 for PA and 7 for
PD) 3, 5 and 6 instructions are for finite
field addition, squaring and multiplication
operations

Inst2 X1 = X1 × Z2 Inst2 T1 = Z2
2

Inst3 T1 = X1 +Z1 Inst3 T1 = b × T1

Inst4 X1 = X1 ×Z1 Inst4 X2 = X 2
2

Inst5 Z1 = T 2
1 Inst5 Z2 = X2 × Z2

Inst6 T1 = xp × Z1 Inst6 X2 = X 2
2

Inst7 X1 = X1 + T1 Inst7 X2 = X2 + T1

Columns one and two give the PA information in terms of sequence of instructions (i.e., Insti)
and the corresponding operations, respectively. Similarly, columns three and four show the number of
instructions and the respective finite field operations for PD computations. The last column presents
the cost of finite field operations in PA and PD instructions.

3 Proposed Architecture

Our proposed design is presented in Fig. 2. It contains (i) a control unit, (ii) input and output
buffers and (iii) an ECC unit. The related details of these blocks are as follows.

3.1 Control Unit

It generates the corresponding control signals for input/output buffers and the ECC unit. It
contains three states: (i) LIP, (ii) SKG and (iii) LOP. The corresponding details of these states (LIP,
SKG and LOP) are as follows.

LIP: It is responsible to load the input parameters, i.e., x and y coordinates of an input point P,
and x and y coordinates of a public key of another node. The objective is the generation of a shared

CMC, 2023, vol.74, no.3 6855

key for ECC unit. After loading the input parameters, it puts a loaddone signal (not shown in Fig. 2) as
1 for the ECC unit to start generating either public or shared keys depending on the ECDH protocol.

SKG: The ECDH protocol requires PM operation twice. The initial PM is for the generation of
x and y coordinates of the public key. The second PM computation is required for the generation
of x and y coordinates of a shared key. Therefore, the objective of an SKG state is to wait until the
generation of x and y coordinates of either the public or shared keys. After generating the required
public or shared keys, the control unit sets a KGdone signal (not presented in Fig. 2) as 1.

LOP: The purpose of the LOP states is to load the x and y coordinates of the public or shared
keys on the output pins (i.e., k.Px and k.Py) of the proposed processor architecture.

Figure 2: Proposed elliptic curve processor architecture

3.2 Input/Output Buffers

The input buffer block comprises three m-bit buffers (not given in Fig. 2) to load x and y
coordinates of a secret, public and shared keys sequentially (one-by-one-bit). It takes serial inputs
and concatenates them to generate m-bit outputs. Similarly, two m-bit buffers (not shown in Fig. 2)
are used in the output buffer block to serially produce the x and y coordinates of generated public or
shared keys as output. For input and output buffers, m clock cycles are required for m-bit data and
key lengths to load and produce output. It is essential to mention that the proposed architecture is
flexible as it offers data loading (including a private and the coordinates of public & shared keys) from
the outside of ECC unit, as shown in Fig. 2.

3.3 ECC Unit

The ECC unit contains (i) a storage system, (ii) an arithmetic and logic unit (ALU) and (iii) a
controller (ECC CNTRL), as shown in Fig. 2. Moreover, for routing purposes, a 4 × 1 multiplexer
is used between the storage system and ALU. As we have presented in Fig. 2, it selects an operand

6856 CMC, 2023, vol.74, no.3

from the storage system and ECC parameters, i.e., Px, Py, and b, to provide input to the ALU. The
architectural details of the used storage system, ALU and ECC controller blocks are given as follows.

3.3.1 Storage System (RegFile)

A 6 × m size register file is used as memory to store the initial, intermediate and final outputs of
the ECC unit. It contains two 6 × 1 sizes of multiplexers and one 1 × 6 size of a demultiplexer. The
intent of routing multiplexers is to read two m-bit operands. Similarly, a demultiplexer is incorporated
to update the memory contents. The related control signals (not given in Fig. 2) are generated by the
ECC controller.

3.3.2 Arithmetic and Logic Unit (ALU)

The pink color in Fig. 2 shows the ALU that contains an adder (ADD), squarer (SQR), multiplier
(MULT) and two reduction (RED) blocks (connected one after each SQR and MULT). Moreover, for
routing purposes, a 3 × 1 multiplexer is used to select the corresponding data for writing on a storage
system. Therefore, in GF (2m) field, the addition is performed by employing bitwise Exclusive-OR
operations. The SQR unit in Fig. 2 is implemented by putting a ‘0’ bit after every successive data bit,
as implemented in hardware accelerators of [11,13,19].

The polynomial multiplication computation specifies the performance of the PM architecture
[2,11,17–19,21,27,28,30–32]. For multiplying two m-bit polynomial multiplications, several architec-
tures have been presented in the literature [11,17–19,21,27,28,30]. These includes (i) bit-serial, (ii)
bit-parallel, (iii) digit-serial and (iv) digit-parallel approaches. Moreover, some systolic polynomial
multiplication designs are also described in [33–35]. In this context, the bit-serial designs are more
appropriate for achieving the low-area and power-efficient architectures. But, on the other hand,
the computational cost of bit-serial designs is the overhead as it utilizes m clock cycles for the
multiplication of two m-bit operands. For high-speed cryptographic applications such as network
servers, bit parallel and digit parallel multipliers are more attractive choices as they consume a
single clock cycle for a polynomial multiplication [11,36,37]. Higher hardware resource utilization
and larger power consumptions limit the use of bit and digit parallel multipliers for wireless sensor
nodes and RFID applications. The digit-serial multipliers consider both area and computational cost

(throughput) simultaneously for polynomial multiplication. It takes a = b
c

cycles for one polynomial

multiplication, where a is the total digits, b is the operand length and c is digit size. Therefore, the
digit-serial polynomial multipliers are the more attractive alternative for multiplying two polynomials.
Consequently, our MULT contains a digit-serial architecture.

Proposed digit-serial multiplier architecture: Our proposed digit-serial polynomial multiplication
architecture (24-bits) is shown with the green color in Fig. 2. The reason to select a 24-bits digit size is
to obtain an optimal computational cost with minimum hardware resource utilization. The longer
digit length reduces clock cycles requirement but utilizes more hardware resources and consumes
more power which is not feasible for wireless sensor nodes and RFID applications [19,21]. With this
compliance, we have employed a 24-bit digit size in our multiplication architecture of Fig. 2 where
two m-bit polynomials, i.e., A, and B, are input to the proposed multiplier. We have stored an m-bit
polynomial B in an m-bit buffer. Then, to initiate a polynomial multiplication in the first cycle, we
have loaded 24-bits of polynomial B from LSB (least-significant-side) into buffer B0 for polynomial
multiplications using M0 multiplier. The size of B0 is also 24-bits. In the next cycle, the next 24-bits
of polynomial B are loaded into B0 for multiplication. After the second multiplication of 24-bits of
polynomial B with an m-bit polynomial A, we have accumulated the current generated result with the

CMC, 2023, vol.74, no.3 6857

previous result to acquire the resultant polynomial. This process will continue until all the 24-bit digits
of polynomial B are multiplied with an m-bit input polynomial A. Finally, the resultant polynomial

contains a 2 × m − 1 bit length. The computational cost of our multiplier is a = b
c

+ 1 cycles, where

a is the total digits, b is the operand length (163 and 233 in this work) and c is the digit length (24-bits
in this work). An additional clock cycle is needed to load an m-bit polynomial B into a buffer.

For the computation of one m-bit polynomial squaring or two m-bit polynomial multiplications,
the proposed SQR and MULT units result in 2×m−1 bit polynomials length, respectively. Therefore,
a reduction is needed to obtain an m-bit polynomials. The RED block in Fig. 2 is implemented using
NIST defined reduction algorithms. For the corresponding reduction algorithms over GF

(
2163

)
and

GF
(
2233

)
, we refer readers to [6,37]. Moreover, in Algorithm 1, the reconversion from projective to

affine shows that a finite field inversion operation is needed. The inversion block is not shown in Fig. 2.
However, we have used an Itoh-Tsujii inversion algorithm which is initially proposed in 1988 and the
corresponding mathematical formulations are completely described in [38]. For implementations, it
requires frequent squaring and multiplication operations [11,13,21]. Over GF

(
2163

)
and GF

(
2233

)
, the

corresponding Itoh-Tsujii inversion algorithms are represented in [39,5], respectively. The Itoh-Tsujii
algorithm in our design of Fig. 2 is implemented by sharing hardware resources of SQR and MULT
blocks as implemented in [5,39]. This (also) allow us to save the hardware cost of our proposed design.

3.3.3 Dedicated Controller (ECC CNTRL) and Clock Cycles Calculation

The ECC CNTRL unit is responsible to generate the corresponding control signals for the routing
multiplexers (i.e., M (4 × 1) and M (3 × 1)) and MULT unit. Moreover, it corresponds with the control
unit block after the computation of x and y coordinates of public and shared keys. It consists of 88
states. State 0 is an idle state. However, the details for other states are as follows.

• Affine to projective coordinates conversion: Affine to projective conversions is performed
from state 1 to state 6. Each state requires one clock cycle. So a total of six clock cycles
are needed to compute affine to projective conversions.

• PM in projective coordinates: Columns two and four of Table 1 shows that each PADD() and
PDBL() functions involve seven instructions (i.e., Inst1 to Inst7). Hence, a total of fourteen
instructions are needed to compute each PA and PD operation. State seven is a conditional
state which is responsible to check the value of key. If the ki in Algorithm 1 becomes 1 then
the PA and PD operations of the if part will be computed (during states eight to twenty-one)
otherwise the else part will be executed (during states twenty two to thirty-five). The last column
in Table 1 shows that the six, three and five instructions are required for the computation
of finite field multiplication, addition and squaring, respectively. The addition and squaring
operations require only one clock cycle for computations. On the other hand, each finite field

multiplication takes
b
c
+1 clock cycles. Therefore, six multiplications take 6× b

c
+1 clock cycles.

• Reconversion from projective to affine coordinates: When the processor executes the for loop
statement in Algorithm 1 then the reconversions will be computed during states thirty-six to
eighty-eight. Moreover, the reconversion portion of Algorithm 1 also incorporates the finite
field inversion operation. Hence, over GF

(
2163

)
field, each finite field inversion requires m

squares and nine multiplications. So the computational cost will be 9 ×
(

b
c

+ 1
)

+ m clock

6858 CMC, 2023, vol.74, no.3

cycles. Similarly, over GF
(
2233

)
field, each finite field inversion demands m squares and ten

multiplications. In this case the computational cost will be 10 ×
(

b
c

+ 1
)

+ m clock cycles.

3.4 Total Clock Cycle Calculations

The total clock cycles of our proposed processor architecture over GF
(
2163

)
and GF

(
2233

)
is

calculated using Eqs. (1) and (2), respectively.

Total cycles = 6 + m ×
[
6 ×

{(m
c

)
+ 1

}
+ 8

]
+ 2 ×

[
9 ×

{(m
c

)
+ 1

}
+ m

]
+ 360 (1)

Total cycles = 6 + m ×
[
6 ×

{(m
c

)
+ 1

}
+ 8

]
+ 2 ×

[
10 ×

{(m
c

)
+ 1

}
+ m

]
+ 450 (2)

In Eqs. (1) and (2), m shows the targeted field length (i.e., 163 and 233) and c determines the digit
length of 24-bits. The additional details are given below.

• Affine to projective coordinates conversion: A numerical value of 6 before the square brackets
determine the clock cycles for affine to projective conversions.

• PM in projective coordinates: In Eqs. (1) and (2), 6 ×
{(m

c

)
+ 1

}
+ 8 determines the clock

cycles for PM computation in projective coordinates. If we substitute m = 163 and c = 24
in Eq. (1) then the 48 clock cycles are required to compute six multiplication instructions of
PADD() and PDBL() functions of Algorithm 1. The additional 8 clock cycles are needed to
compute the addition and squares computations. Similarly, if we use m = 233 and c = 24
in Eq. (2) then the 66 clock cycles are needed to compute six multiplication instructions of
PADD() and PDBL() functions and 8 shows the additional clock cycles for addition and
squares computations. Therefore, over GF

(
2163

)
and GF

(
2233

)
, the total cycles for one iteration

of a loop statement of Algorithm 1 is 56 and 74, respectively. Then, the required cycles for m
field operations is 9128 (163 × 56) and 17242 (233 × 74).

• Reconversion from projective to affine coordinates: As shown in reconversion part of Algo-
rithm 1, two finite field inversions are involved to execute the reconversion step. Therefore,

over GF
(
2163

)
and GF

(
2233

)
, the 2 ×

[
9 ×

{(m
c

)
+ 1

}
+ m

]
and 2 ×

[
10 ×

{(m
c

)
+ 1

}
+ m

]
portions of Eqs. (1) and (2) determines the inversion computation. If we use the corresponding
values of m and c, the clock cycle computation becomes 468 and 682. The additional 360
and 450 cycles are needed to compute the remaining instructions of reconversion portion of
Algorithm 1. Therefore, over GF

(
2163

)
and GF

(
2233

)
, the total clock cycle requirements for

reconversion is 828 and 1132, respectively.

In summary, for one PM execution, the clock cycles requirement of our proposed architecture over
GF

(
2163

)
and GF

(
2233

)
is 10125 and 18613, respectively. As the ECDH protocol requires two time PM

computation then the clock cycles for shared key generation are 20250 and 37226, respectively.

4 Results and Comparisons
4.1 Results

To describe the implementation results, we have first provided the simulation waveform in Section
4.1.1. After that, the implementation results are reported in Section 4.1.2. Finally, the schematic
waveform after the circuit place and route is shown in Section 4.1.3.

CMC, 2023, vol.74, no.3 6859

4.1.1 Simulation Waveform

The simulation waveform over GF
(
2163

)
is shown in Fig. 3. It ensures that the proposed copro-

cessor architecture successfully generates the shared key value when the public and private/secret keys
are input to the system. The generated shared key value could be used to perform key authentication
or encryption and decryption between two wireless sensor nodes.

Figure 3: RTL simulation waveform (captured on Vivado 2019.2)

4.1.2 Implementation Results

Our proposed coprocessor architecture over GF
(
2163

)
and GF

(
2233

)
is implemented in Verilog,

using Vivado IDE (Integrated Design Environment) tool. The implementation results is performed
for a 28 nm technology on Virtex-7 (xc7vx485tffg1157-1) FPGA. The input parameters have been
selected from NIST standardized document [16]. Consequently, the results are provided after place-
and-route in Table 2. The field length (m) is presented in column one. Columns two, three and four
present the slices, LUTs and FFs respectively. The clock frequency is presented in column five. The total
number of required clock cycles (CCs) and latency (in μs) figures are given in columns six and seven,
respectively. Similarly, the clock cycles (CCs) and latency (in μs) values for shared key generation are
given in columns eight and nine, respectively. Finally, the consumed power (in mW) is provided in the
last column. The area and frequency values are obtained from the Vivado IDE tool. The clock cycles
are calculated using Eqs. (1) and (2), the details are already described in Section 3.4. The latency values
are calculated using Eq. (3). To obtain power values, we have used a Vivado Power Analysis tool [40].

Latency (μs) = Clock Cycles (CCs)
Frequency (MHz)

(3)

Table 2: Results of our proposed architecture over GF
(
2163

)
and GF

(
2233

)
on Virtex-7 FPGA

m Area Utilizations Freq.
(MHz)

Public Key Shared Key Power
(mW)

Slices LUTs FFs CCs Lat. (μs) CCs Lat. (μs)

GF
(
2163

)
1351 5403 1306 250 10125 40.50 20250 81.00 0.91

GF
(
2233

)
1789 7156 1864 235 18613 79.20 37226 158.40 1.37

Note: Lat: is the computational time. CCs: shows the clock cycles.

Due to different field lengths (i.e., 163 and 233), the proposed architecture over GF
(
2163

)
utilizes

1351, 5403 and 1306 FPGA slices, LUTs and FFs that are comparatively 0.75 (ratio of 1351 over

6860 CMC, 2023, vol.74, no.3

1789), 0.75 (ratio of 5403 over 7156) and 0.70 (ratio of 1306 over 1864) times lower than the design
implemented over GF

(
2233

)
field. The use of a coprocessor implementation style and a digit-serial finite

field multiplier results in a maximum frequency of 250 and 235 MHz over GF
(
2163

)
and GF

(
2233

)
,

respectively. By employing different optimization techniques such as pipelining, parallelism and
scheduling for PA and PD instructions of columns two and four of Table 1, the clock frequency of
our architecture could be improved for high-speed cryptographic applications.

Despite the hardware resources and operational frequency, our design requires 10125 and 20250
cycles for one public and shared keys computation over GF

(
2163

)
. Similarly, for public and shared key

generations, the clock cycle cost of our architecture over GF
(
2233

)
is 18613 and 37226, respectively.

With some area (hardware resources) overhead, the clock cycles could be improved by employing bit-
parallel or digit-parallel finite field multipliers inside the ALU of our coprocessor architecture. The
computational cost in terms of latency is 40.50 and 81.00 μs over GF

(
2163

)
for one public key and

shared key generation, respectively. For similar operations, the latency values over GF
(
2233

)
is 79.20

and 158.40 μs. As expected, the computational cost (in terms of both CCs and latency) increases with
the increase in the binary field length (i.e., from 163 to 233). The latency of the proposed design could
be improved by (i) reducing the clock cycles and (ii) maximizing the clock frequency.

Utilization of a digit-serial multiplier with a smaller digit size of 24-bit results in lower power
consumption of 0.91 and 1.37 mW over GF

(
2163

)
and GF

(
2233

)
, respectively. The use of smaller digit

length results in a lower computational power with clock cycles overhead [11,41]. The hardware
resources and power consumption of our proposed design could be improved further by employing a
bit-serial multiplication architecture as used in [21].

4.1.3 Schematic Layout

The circuit layout of our proposed coprocessor architecture over GF
(
2163

)
is shown in

Fig. 4. It shows that the proposed coprocessor architecture is routable on our selected Virtex-7
(xc7vx485tffg1157-1) FPGA without the DRC (design rule check) and timing violations.

Figure 4: Circuit layout of the proposed coprocessor architecture over GF(2163)

4.2 Comparisons

The comparison with state-of-the-art is shown in Table 3. The reference design and publication
years are displayed in column one. The implemented binary field length along with cryptographic
operation is given in column two. Column three presents the targeted FPGA device. The values
presented before the parenthesis in column four are the FPGA slices while a value inside the
parenthesis is the FPGA LUTs. The operational frequency (in MHz) and latency (in μs) values are
presented in columns five and six, respectively. Moreover, we have used a symbol of ‘–’ in Table 3
where the relevant information is not given.

CMC, 2023, vol.74, no.3 6861

Table 3: Comparison to most relevant state-of-the-art architectures over GF (2m)

Ref #./Year GF (2m)/Op Device Slices/(LUTs) Freq. (MHz) Lat. (μs)

[11]/2019 GF
(
2233

)
/ECPM Virtex-7 5120/(–) 357 15.78

[21]/2021 GF
(
2163

)
/ECPM Virtex-5 –/(1786) 909 2.88

[32]/2021 GF
(
2163

)
/EiGamal Stratix-II –/(–) 187 4.91

[39]/2017 GF
(
2163

)
/ECPM Virtex-7 3657/(–) 135 25.31

This work GF
(
2163

)
/ECPM Virtex-7 1351/(5403) 250 40.50

GF
(
2233

)
/ECPM Virtex-7 1789/(7156) 235 79.20

[14]/2022 GF
(
2233

)
/ECDH Virtex-7 5102/(–) 318 31.08

[17]/2013 GF
(
2163

)
/ECDH Artix-7 603/(–) 10 167.60

[24]/2015 GF
(
2163

)
/ECGDH-1 Spartan-6 –/(13663) 33 33.60

[27]/2016 GF
(
2163

)
/Enc/Dec Artix-7 8847/(–) 229 2.49 & 2.50 ms

This work GF
(
2163

)
/ECDH Artix-7 1389/(5556) 247 81.98

GF
(
2163

)
/ECDH Spartan-6 1413/(5652) 231 87.66

GF
(
2233

)
/ECDH Virtex-7 1789/(7156) 235 158.40

Note: Op: determines the elliptic curve operation. Freq: is the frequency. Lat: is the latency. The design of [17] uses 2 and 21 sizes of 36 and
18 kb BRAMs. Additionally, it uses 38 DSP48A1 slices. ECGDH-1: is the elliptic curve group Diffie Hellman key exchange mechanism.

4.2.1 Comparison with ECPM Designs

On Virtex-7 over GF
(
2233

)
, the proposed architecture consumes 2.86 (ratio of 5120 with 1789)

times lesser slices with respect to [11]. The reason is the use of a digit-serial multiplier (24-bits). On the
other hand, a 32-bit digit size is used in a parallel way in [11]. Moreover, this comparison shows that
the longer digits result in higher hardware resources. Additionally, the digit-parallel multiplication
approach with a digit length of 32-bits results in lower clock cycles which ultimately improves the
latency value in [11]. The use of 2-stage pipelining improves the clock frequency in [17].

As shown in Table 3, the architecture of [21] over GF
(
2163

)
on Virtex-7 utilizes lower FPGA LUTs

and takes less time for computation with respect to the proposed design. The reason is the computation
of only the PM operation of ECC while our design considers the ECDH protocol implementation for
key authentication. As the objective of our work is to generate the shared key for wireless sensor nodes
and RFID applications, the proposed architecture can operate up to a maximum of 250 MHz while
the architecture of [21] can operate on 909 MHz frequency as the intent is to optimize only the PM
operation.

Apart from the hardware resources and timing results, the power consumption of [21] is 0.73 mW
for one PM execution. In our work, a 0.91 mW is consumed for one shared key generation using
ECDH protocol. Furthermore, our design utilizes Montgomery PM algorithm for the implementation
of the ECDH protocol of ECC as it is inherently secure against timing and power analysis attacks.
On the other hand, the Lopez Dahab PM algorithm is used in [21]. In Lopez Dahab PM algorithm,
swapping between the PA and PD computations is needed whenever the inspected value of the key-bit
becomes 1. The need for swapping requires additional clock cycles which shows that the architecture
of [21] is not secure against the timing and power analysis attacks. To summarize, our architecture

6862 CMC, 2023, vol.74, no.3

is protected against timing and power analysis attacks and consumes a comparable power than the
power consumption of [21].

The Stratix-II design of [32] achieves an operational frequency of 187 MHz that is comparatively
1.33 (ratio of 250 with 187) times lower than our Virtex-7 implementation over GF

(
2163

)
. In other

words, our work is 1.33 times faster in terms of frequency. However, our architecture requires more
computational time as we have described a flexible design while a dedicated architecture of PM is
discussed in [32]. The comparison to area and power values are not possible to provide as the relevant
information is not presented in the reference design. On Virtex-7 over GF

(
2163

)
, our architecture

utilizes 2.70 (ratio of 3657 with 1351) times lower FPGA slices than [39]. The reason is the use of a
digit-serial multiplier with a digit size of 24-bits in our work while a bit-parallel Karatsuba multiplier
is considered for implementation in [39]. The use of bit-parallel multiplier results in lower clock cycles
which eventually improves the latency value in [39]. Moreover, our design is 1.85 (ratio of 250 with 135)
times faster in terms of operational frequency. Similar to [32], the power comparison is not possible
because the corresponding information is not described in the reference design.

4.2.2 Comparison to Key-Authentication Architectures

The most recent design of [14] for key-authentication using ECDH protocol over GF
(
2233

)
on

Virtex-7 FPGA results in 2.85 (ratio of 5102 with 1789) times higher slices as compared to our work.
On the other hand, the design of [14] is 5.09 (ratio of 158.40 with 31.08) times faster in terms of
computational time as compared to our architecture. The reason is the use of bit-parallel Karatsuba
multiplier in the datapath of [14] while in our design, we employed a digit-serial multiplication
approach. Another reason is the use of 2-stage pipelining to shorten the critical path which eventually
increases the clock frequency with an area overhead. Power comparison is not possible as the
corresponding information is not given in [14].

The efficient implementation of [17] for key authentication using ECDH protocol over GF
(
2163

)
on Artix-7 results in 603 slices that is comparatively lower than our work (1389). On the other hand,
the architecture of [17] uses 2 and 21 sizes of 36 and 18 kb BRAMs. In addition, it utilizes 38 DSP48A1
FPGA slices. In our design, we are not using the BRAMs as we implemented a RegFile as an array
of registers to accommodate the initial, intermediate and final results. Therefore, a fair comparison
to area is challenging. Despite the hardware resources, our architecture is 24 (ratio of 247 with 10)
times faster in terms of clock frequency. Moreover, our architecture requires 2.40 (ratio of 167.70
with 81.98) times lower computational time (latency). Whenever, the power consumption of [17] is
concerned for comparison, our architecture is 29.62 (ratio of 40 mW with 1.35 mW times efficient.
The potential reason for higher power consumption and computational time in [17] is the support for
various cryptographic algorithms such as SHA (Secure Hash Algorithm) for secure hashing while our
design is specific to the ECDH protocol.

On similar Spartan-6 device, the design of [24] over GF
(
2163

)
for ECDH implementation is 2.41

(ratio of 13663 with 5652) times less area efficient as compared to our work. It is due to the employment
of several finite field multipliers in their architecture. O the other hand, we have utilized a single serial
multiplier. Moreover, the proposed design provides a speedup of 7 (ratio of 231 with 33), as far as
the operational frequency is concerned. In terms of latency, the proposed design requires 2.60 (ratio
of 87.66 with 33.60) times the higher computational cost. The cause is the parallelism using multiple
finite field multipliers in [24]. The dynamic power in [24] at 33 MHz is 571 mW which is comparatively
435.8 (ratio of 571 mW with 1.31 mW) times higher than this work. The Artix-7 design of [27] over
GF

(
2163

)
results in higher slices (i.e., 8847) as compared to our design whereas we have used only 1389.

CMC, 2023, vol.74, no.3 6863

The reason is the additional encryption and decryption operations along with the ECDH protocol
implementation while we have considered only the ECDH protocol for shared key computation.
Due to the simpler datapath in our design, the operational frequency is 1.07 (ratio of 247 with 229)
times higher. The comparison to latency is not possible as their architecture results in encryption
and decryption time while we have computed a shared key generation without the encryption and
decryption operations.

5 Conclusions

This article has proposed a flexible coprocessor key-authentication architecture for 80/112-bit
security-related applications over GF (2m) with m = 163 and 233 using an ECDH protocol. The
flexibility is achieved by using a serial input/output interface to load/produce secret, public, and
shared keys. Moreover, a finite field digit-serial multiplier architecture with a digit size of 24-bits
is proposed using shift and accumulate methods. Two FSM controllers have been implemented to
efficiently generate the control signals. The implementation results are reported on Xilinx Virtex-7
FPGA. Over GF

(
2163

)
and GF

(
2233

)
, the utilized hardware resources in terms of FPGA slices are 1351

and 1789. For similar key lengths, the operational clock frequency is 250 and 235 MHz. The time
required to compute one public key over GF

(
2163

)
and GF

(
2233

)
is 40.50 and 79.20 μs, respectively.

Similarly, the time for one shared key generation is 81.00 and 158.40 μs. The consumed power over
GF

(
2163

)
and GF

(
2233

)
is 0.91 and 1.37 mW , respectively. Consequently, the proposed architecture

outperforms state-of-the-art ECDH designs in terms of hardware resources.

Funding Statement: This project has received funding by the NSTIP Strategic Technologies program
under Grant Number 14-415 ELE1448-10, King Abdul Aziz City of Science and Technology of the
Kingdom of Saudi Arabia.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] M. Rana, Q. Mamun and R. Islam, “Lightweight cryptography in IoT networks: A survey,” Future

Generation Computer Systems, vol. 129, pp. 77–89, 2022.
[2] M. Rashid, M. Imran, A. R. Jafri and T. F. Al-Somani, “Flexible architectures for cryptographic algo-

rithms: A systematic literature review,” Journal of Circuits Systems and Computers (JCSC), vol. 28, no. 3,
pp. 35, 2019.

[3] E. Anaya, J. Patel, P. Shah, V. Shah and Y. Cheng, “A performance study on cryptographic algorithms for
IoT devices,” in Proc. of the Tenth ACM Conf. on Data and Application Security and Privacy, New York,
USA, pp. 159–161, 2020.

[4] A. Miri, “Advanced Security and Privacy for RFID Technologies,” Hershey, PA: IGI Global, pp. 1–342,
2013. [Online]. Available: https://www.igi-global.com/gateway/book/72161.

[5] M. Imran and F. Shehzad, “FPGA based crypto processor for elliptic curve point multiplication (ECPM)
over GF

(
2233

)
,” International Journal for Information Security Research (IJISR), vol. 7, pp. 706–713, 2017.

[6] D. Hankerson, A. J. Menezes and S. Vanstone, “Guide to Elliptic Curve Cryptography,” Henderson, NV,
USA: Springer, pp. 1–311, 2004. [Online]. Available: https://link.springer.com/book/10.1007/b97644.

[7] R. Housley, “Use of the Elliptic Curve Diffie-Hellman Key Agreement Algorithm with x25519 and x448 in
the Cryptographic Message Syntax (CMS),” RFC 8418, pp. 1–18, 2018. [Online]. Available: https://www.
rfc-editor.org/info/rfc8418.

https://www.igi-global.com/gateway/book/72161
https://link.springer.com/book/10.1007/b97644
https://www.rfc-editor.org/info/rfc8418
https://www.rfc-editor.org/info/rfc8418

6864 CMC, 2023, vol.74, no.3

[8] T. Pornin, “Deterministic Usage of the Digital Signature Algorithm (DSA) and Elliptic Curve Digital
Signature Algorithm (ECDSA),” RFC 6979, pp. 1–79, 2013. [Online]. Available: https://www.rfc-editor.
org/info/rfc6979.

[9] S. Turner, D. Brown, K. Yiu, R. Housley and T. Polk, “Elliptic Curve Cryptography Subject Public Key
Information,” RFC 5480, pp. 1–20, 2009. [Online]. Available: https://www.rfc-editor.org/info/rfc5480.

[10] N. Pirotte, J. Vliegen, L. Batina and N. Mentens, “Design of a fully balanced ASIC coprocessor implement-
ing complete addition formulas on weierstrass elliptic curves,” in 21st Euromicro Conf. on Digital System
Design (DSD), Prague, Czech Republic, pp. 545–552, 2018.

[11] M. Imran, M. Rashid, A. R. Jafri and M. Kashif, “Throughput/area optimised pipelined architecture for
elliptic curve crypto processor,” IET Computers & Digital Techniques, vol. 13, no. 5, pp. 361–368, 2019.

[12] B. Rashidi, “Low-cost and fast hardware implementations of point multiplication on binary edwards
curves,” in Electrical Engineering (ICEE), Iranian Conf. on, Mashhad, Iran, pp. 17–22, 2018.

[13] M. Imran, M. Rashid and I. Shafi, “Lopez dahab based elliptic crypto processor (ECP) over GF
(
2163

)
for

low-area applications on FPGA,” in 2018 Int. Conf. on Engineering and Emerging Technologies (ICEET),
Lahore, Pakistan, pp. 1–6, 2018.

[14] M. Rashid, H. Kumar, S. Z. Khan, I. Bahkali, A. Alhomoud et al., “Throughput/area optimized architec-
ture for elliptic-curve diffie-hellman protocol,” Applied Sciences, vol. 12, no. 8, pp. 1–18, 2022.

[15] J. Vliegen, N. Mentens, J. Genoe, A. Braeken, S. Kubera et al., “A compact FPGA-based architecture
for elliptic curve cryptography over prime fields,” in 21st IEEE Int. Conf. on Application-Specific Systems,
Architectures and Processors, Rennes, France, pp. 313–316, 2010.

[16] NIST. “Recommended Elliptic Curves for Federal Government Use,” FIPS PUB 1862–2: USA, pp. 1–
70, 1999. [Online]. Available: https://csrc.nist.gov/csrc/media/publications/fips/186/2/archive/2000-01-27/
documents/fips186-2.pdf.

[17] A. De la Piedra, A. Braeken and A. Touhafi, “Extending the IEEE 802.15.4 security suite with a compact
implementation of the NIST P-192/B-163 elliptic curves,” Sensors, vol. 13, no. 8, pp. 9704–9728, 2013.

[18] Z. Liu, D. Liu, X. Zou, H. Lin and J. Cheng, “Design of an elliptic curve cryptography processor for RFID
tag chips,” Sensors, vol. 14, no. 10, pp. 17883–17904, 2014.

[19] S. Khan, W. K. Lee and S. O. Hwang, “A flexible gimli hardware implementation in FPGA and its
application to RFID authentication protocols,” IEEE Access, vol. 9, pp. 105327–105340, 2021.

[20] A. S. R. Oliveira, N. B. Carvalho, J. Santos, A. Boaventura, R. F. Cordeiro et al., “All-digital RFID readers:
An RFID reader implemented on an FPGA chip and/or embedded processor,” IEEE Microwave Magazine,
vol. 22, no. 3, pp. 18–24, 2021.

[21] M. Rashid, S. S. Jamal, S. Z. Khan, A. R. Alharbi, A. Aljaedi et al., “Elliptic-curve crypto processor for
RFID applications,” Applied Sciences, vol. 11, no. 15, pp. 1–16, 2021.

[22] T. D. P. Bai, K. M. Raj and S. A. Rabara, “Elliptic curve cryptography based security framework for internet
of things (IoT) enabled smart card,” in 2017 World Congress on Computing and Communication Technologies
(WCCCT), Tiruchirappalli, India, pp. 43–46, 2017.

[23] C. Ankita, “Wireless Sensor Networks,” electroSome, 2013. [Online]. Available: https://electrosome.com/
wireless-sensor-networks/#google_vignette.

[24] L. Parrilla, D. P. Morales, J. A. López-Villanueva, J. A. López-Ramos and J. A. Álvarez-Bermejo,
“Hardware implementation of a new ECC key distribution protocol for securing wireless sensor networks,”
in 2015 Conf. on Design of Circuits and Integrated Systems (DCIS), Estoril, Portugal, pp. 1–6, 2015.

[25] S. Peter, O. Stecklina, J. Portilla, E. de la Torre, P. Langendoerfer et al., “Reconfiguring crypto hardware
accelerators on wireless sensor nodes,” in 6th IEEE Annual Communications Society Conf. on Sensor, Mesh
and Ad Hoc Communications and Networks Workshops, Rome, Italy, pp. 1–3, 2009.

[26] P. Jilna, P. P. Deepthi and U. K. Jayaraj, “Optimized hardware design and implementation of EC based
key management scheme for WSN,” in 10th Int. Conf. for Internet Technology and Secured Transactions
(ICITST), London, UK, pp. 164–169, 2015.

https://www.rfc-editor.org/info/rfc6979
https://www.rfc-editor.org/info/rfc6979
https://www.rfc-editor.org/info/rfc5480
https://csrc.nist.gov/csrc/media/publications/fips/186/2/archive/2000-01-27/documents/fips186-2.pdf
https://csrc.nist.gov/csrc/media/publications/fips/186/2/archive/2000-01-27/documents/fips186-2.pdf
https://electrosome.com/wireless-sensor-networks/#google_vignette
https://electrosome.com/wireless-sensor-networks/#google_vignette

CMC, 2023, vol.74, no.3 6865

[27] G. Leelavathi, K. Shaila and K. R. Venugopal, “Elliptic curve cryptography implementation on FPGA
using montgomery multiplication for equal key and data size over GF (2m) for wireless sensor networks,”
in IEEE Region 10 Conf. (TENCON), Singapore, pp. 468–471, 2016.

[28] M. Das and Z. Wang, “ED25519: A new secure compatible elliptic curve for mobile wireless networks
security,” Jordanian Journal of Computers and Information Technology (JJCIT), vol. 8, no. 1, pp. 57–71,
2022.

[29] U. Gulen and S. Baktir, “Elliptic curve cryptography for wireless sensor networks using the number
theoretic transform,” Sensors, vol. 20, no. 5, pp. 1–16, 2020.

[30] S. C. Seo and H. Seo, “Highly efficient implementation of NIST-compliant koblitz curve for 8-bit AVR-
based sensor nodes,” IEEE Access, vol. 6, pp. 67637–67652, 2018.

[31] Z. Razali, N. Muslim, S. Kahar, F. Yunos and K. Mohamed, “Improved point 5P formula for twisted
edwards curve in projective coordinate over prime field,” in Int. Conf. on Decision Aid Sciences and
Applications (DASA), Chiangrai, Thailand, pp. 498–502, 2022.

[32] R. Amiri and O. Elkeelany, “FPGA design of elliptic curve cryptosystem (ECC) for isomorphic transfor-
mation and EC ElGamal encryption,” IEEE Embedded Systems Letters, vol. 13, no. 2, pp. 65–68, 2021.

[33] S. Devi, R. Mahajan and D. Bagai, “A low complexity bit parallel polynomial basis systolic multiplier for
general irreducible polynomials and trinomials,” Microelectronics Journal, vol. 115, pp. 105163, 2021.

[34] S. Devi, R. Mahajan and D. Bagai, “Low complexity design of bit parallel polynomial basis systolic
multiplier using irreducible polynomials,” Egyptian Informatics Journal, vol. 23, no. 1, pp. 105–112, 2022.

[35] S. E. Mathe and L. Boppana, “Bit-parallel systolic multiplier over GF (2m) for irreducible trinomials with
ASIC and FPGA implementations,” IET Circuits, Devices & Systems, vol. 12, no. 4, pp. 315–325, 2018.

[36] M. Thirumoorthi, M. Heidarpur, M. Mirhassani and M. Khalid, “An optimized m-term karatsuba-like
binary polynomial multiplier for finite field arithmetic,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 30, no. 5, pp. 603–614, 2022.

[37] H. Kumar, M. Rashid, A. Alhomoud, S. Z. Khan, I. Bahkali et al., “A scalable digit-parallel polynomial
multiplier architecture for NIST-standardized binary elliptic curves,” Applied Sciences, vol. 12, no. 9, pp.
1–18, 2022.

[38] T. Itoh and S. Tsujii, “A fast algorithm for computing multiplicative inverses in GF (2m) using normal
bases,” Information and Computation, vol. 78, no. 3, pp. 171–177, 1988.

[39] M. Imran, I. Shafi, A. R. Jafri and M. Rashid, “Hardware design and implementation of ECC based
crypto processor for low-area-applications on FPGA,” in Int. Conf. on Open Source Systems & Technologies
(ICOSST), Lahore, Pakistan, pp. 54–59, 2017.

[40] Xilinx, “Power Analysis and Optimization,” AMD Xilinx, UG907: USA, pp. 1–112. 2016. [Online].
Available: https://docs.xilinx.com/v/u/2016.2-English/ug907-vivado-power-analysis-optimization.

[41] M. Imran, Z. U. Abideen and S. Pagliarini, “An open-source library of large integer polynomial multi-
pliers,” in 24th Int. Symp. on Design and Diagnostics of Electronic Circuits & Systems (DDECS), Vienna,
Austria, pp. 145–150, 2021.

https://docs.xilinx.com/v/u/2016.2-English/ug907-vivado-power-analysis-optimization

	A Coprocessor Architecture for 80/112-bit Security Related Applications
	1 Introduction
	2 Related Background
	3 Proposed Architecture
	4 Results and Comparisons
	5 Conclusions

