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Abstract: This research recognizes the limitation and challenges of adapt-
ing and applying Process Mining as a powerful tool and technique in the
Hypothetical Software Architecture (SA) Evaluation Framework with the
features and factors of lightweightness. Process mining deals with the large-
scale complexity of security and performance analysis, which are the goals
of SA evaluation frameworks. As a result of these conjectures, all Process
Mining researches in the realm of SA are thoroughly reviewed, and nine
challenges for Process Mining Adaption are recognized. Process mining is
embedded in the framework and to boost the quality of the SA model for
further analysis, the framework nominates architectural discovery algorithms
Flower, Alpha, Integer Linear Programming (ILP), Heuristic, and Inductive
and compares them vs. twelve quality criteria. Finally, the framework’s testing
on three case studies approves the feasibility of applying process mining to
architectural evaluation. The extraction of the SA model is also done by the
best model discovery algorithm, which is selected by intensive benchmarking
in this research. This research presents case studies of SA in service-oriented,
Pipe and Filter, and component-based styles, modeled and simulated by
Hierarchical Colored Petri Net techniques based on the cases’ documentation.
Process mining within this framework deals with the system’s log files obtained
from SA simulation. Applying process mining is challenging, especially for a
SA evaluation framework, as it has not been done yet. The research recog-
nizes the problems of process mining adaption to a hypothetical lightweight
SA evaluation framework and addresses these problems during the solution
development.
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1 Introduction

In industry, Software Architecture (SA) is considered one of the critical success factors in a project.
SA indicates a system’s components and how these components are communicating. A poor SA can
be a major source of errors for scalable and large systems. As a result, SAs are evaluated in the
industry to confirm they are robust enough. Although many SA evaluation frameworks have been
proposed, a few are used in the industry. Therefore, there is a need for proper tools and techniques to
form a framework with these features and factors. Indeed, the lack of proper tools and techniques to
integrate and adapt the addressed features and factors in an evaluation method hinders SA Evaluation
Framework’s success [1]. The current research tries to solve this issue. As a result, Process Mining
(PM) is suggested to be applied to the Hypothetical SA Evaluation Framework (HSAEF). HSAEF
represents a lightweight evaluation framework [1]. In section two and three, the research reviews PM
applications in the software engineering area to identify how PM can be applied to the SA evaluation,
then the limitations and challenges are recognized to adapt PM and elicit log files. In section four,
the methods, tools, and techniques for the adaption of PM in the HSAEF are discussed, and then the
best discovery technique is selected. As a result, five SA models are extracted from in-hand log files
and the best SA model is selected for further analysis in HSAEF. Five top discovery techniques are
benchmarked on three cases to select the best model. The cases are fit to HSAEF’s scope of analysis. In
section six and seven, the results are discussed along with the course of action to achieve research aims.

2 Previous Research Methods & Materials

Tools are essential to successful SA evaluation. A powerful tool can help architects show a
common blueprint of SA through code and visualization. The embedded tool in the SA evaluation
framework supports the evaluation’s activities toward the automation of analysis within a framework.
The tool and technology inside HSAEF is an intrinsic part that fits the framework’s functionalities,
and structures [1]. This research suggests PM tools and techniques to ingrate with HSAEF. PM is not
merely to discover the processes. It tries to make connections between the process model and event
logs, so some techniques are devised to analyze this connection [2,3]. Additional information from
different perspectives (Van Der Aalst 2011) may extend the discovered model. PM analyzes process
models with the aid of performance-oriented analysis and conformance-oriented analysis [4,5].

3 Challenges of Process Mining Integration and Adaption in Software Engineering

This research walked through the existing literature on process mining adaption in the software
system to identify the challenges of PM adaption. The reviewed papers are limited as process mining
is new and has not been explored completely. First, the keywords of “process mining” and “software”
in the title or abstract of papers in scientific databases (IEEE, ACM, Springer, Google scholar.) were
searched. Then some articles not in the realm of software engineering were excluded. According to
the systematic literature review, no research has been done in our proposed area to our knowledge so
far. Having looked at the studies, PM has been used in software engineering mainly in two application
categories, and there are necessary steps for the adaption.

3.1 First Category of PM for Software Development

The aim is to retrieve control-flow and structural aspects of software development cycles from
existing data sources and software repositories. As a result, Bug trackers, version control systems, and
mail archives are related to tracking software development events [6–13].
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3.2 Second Category of PM for Software Structure

It is concerned with reconstructing none concrete models of software systems by their executing
traces for analyzing software artifacts to support tasks such as debugging or validating [11,14–24].
In this research, the second category is mostly highlighted, and the research in reverse engineering is
considered under the second category.

3.3 Steps for Applying PM on Software

It needs four main steps: event logs extraction and integration, transformation and adding multi-
perspective of PM. The mining methods can be applied to discover, monitor, and improve actual
software procedures using the software’s information [25,26]. These steps initially necessitate the
preprocessing of the data from the software repositories for making a log [10,12,18,27].

There are three fundamental queries of “What”, “When” and “Who”, related to an event of
preprocess and extract event logs. Then an event log for a process modelling’s discovery algorithm
can work based on at least four fields: Case ID (or the Trace ID for the process instance), Timestamp,
Actor, and Activity [9]. There are certain questions for integration, transformation and adding multi-
perspectives to obtained process models such as “how do various process are working together?”,
“How” is Process Perspective. It emphasizes the activities control flow. By this controlling, it is
intended to expose a good characterization of all potential paths. The response of “Who”, Orga-
nizational Perspective, focuses on the user field and contains the company’s involved users and
programmers. Moreover, Case Perspective is the response of “What”; it emphasizes cases properties
[28,29]. As a result, the event log should be defined. Nonetheless, obtaining event logs is a challenging
job. There are four main challenges to obtaining a log file listed in Table 1.

Table 1: Main challenges to obtain a log file

Challenges Description

Events correlation Each case contains groups of events. It sounds simple that
requirements can relate to the events, but it is quite challenging.
It becomes even more challenging when dealing with
heterogeneous or legacy systems. In this case, further efforts
should be done to correlate events [30,31].

Events timestamp Events should be ordered in each case. It is not essential events
have timestamps for ordering. Timestamps should be recorded
on time, especially when a component has a local clock or is
prone to record the time with delay. In addition, timestamp’s
granularity is important.

Data cleaning (snapshots and
scoping)

Actually, an event log is a snapshot indicating long-run
processes. Case lifetime may exceed recorded period if it still
runs after recording stopped. The solution to this problem is
removing incomplete cases.

Granularity The events should be recorded at the proper level of granularity.
Sometimes information systems produce low-level events that
are detailed. The level of granularity depends on the Software
architect’s opinion [32].
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In this research, PM is suggested to integrate and adapt to HSAEF as a technique for addressing
the targeted quality attributes (security and performance) [33]; however, features and factors were
identified by [1]. Despite this progress, the PM’s applicability to software engineering has two problems.
First, the collected data cannot directly feed the process of SA behavior modeling. The above discussed
two problems raise Process Mining Adaption Challenges (PMAC). PMAC challenges are listed in
Table 2.

Table 2: PM adaption challenges (PMAC)

PMAC1 Logs record the occurrence of events but do not talk about what could not happen.
This means negative examples do not exist [34], assuming the nature of accessible
data; the weakness is that the PM algorithms only comprise cases that have occurred;
however, it does not include any example of processes that cannot occur. The absence
of negative examples is one of the disadvantages of these techniques [10].

PMAC2 There are problems in the preprocessing of event logs contaminated by noise or
incomplete [35,36].

PMAC3 As time goes by, processes change (concept drift) [37,38].
PMAC4 It is hard to specify attributes for event logs [35,36].
PMAC5 Choices, loops, and concurrency make a complex structure for the search space, as a

result, the log normally consists of all possible behaviors fractions [39].
PMAC6 There is not any significant relationship between the size and behavior of a model.

For example, more or fewer behaviors may be generated by a smaller model; however,
classical analysis and evaluation methods, in most cases, presume some monotonicity
properties [39].

PMAC7 How to balance quality criteria (Generalization, simplicity, fitness and precision) [35].
PMAC8 Need for usability and understandability improvement for non-professionals [40].
PMAC9 The process can be run in various resources which are separated. It is hard to collect

events and tailor the processes from a different resource [39].

In HSAEF, SA should be presented in Petri Net format. This presentation has two consequences.
First, the simulation is conducted and produced data for PM, and second, the comparison of SAs
models in Petri Net format. Technically, it means how the data should be transformed into Log files
and then the best PM discovery algorithm which produces Petri Net should be selected.

4 Proposed Approach
4.1 Tools

PM and Petri Net are the essential techniques that are used to implement HSAEF. Petri Net is
widely used in many research areas for modeling and simulation. Tools are developed sufficiently to
flexibly model complex and large systems tools [1]. Mostly, these tools facilitate programming by mean
of the Graphical User Interface (GUI) [41]. ‘Colored Petri net (CPN) tools’ is capable of modeling Petri
Nets along with programming languages. CPN Tools is developed based on Colored Petri Nets and
widely used for modeling and analyzing SA [42,43]. CPN Tools can uniquely produce a full state space
[44]. Process Mining framework (ProM) [45] is the de facto standard platform for PM in the academic
world. It mainly contains more than 600 plug-in boosts ProM capabilities [46,47]. This research uses
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the comprehensive and extensible benchmarking framework named Comprehensive Benchmarking
Framework for Conformance Checking (CoBeFra) [48]. It is integrated with ProM. It also enables us
to calculate the Quality Criteria metrics for the process conformance in a comparative, repeatable and
consistent way.

4.2 Process Mining Adaption

In this research, the experiments are conducted based on the play-in, play-out, and replay method
[49], as shown in Fig. 1, which enables PM techniques to discover, monitor, and improve SA. More
detailed information about SA behaviors is provided as more events are recorded. PM bridges between
the designed and implemented SA. It includes process discovery (i.e., extracting process models from
an event log), conformance checking (i.e., monitoring deviations by comparing model and log) [50],
and automated construction of simulation models and model extension.

Event logsModel

Play-in
discovery

Replay

Conformance

“world”
Requirements

Machines
Components

Services

Software 
system

Supports /controls

Model analyses

Records events

enhancement

Play-out

Figure 1: Maps the PM types to play-in, play-out, and replay

PM analysis starts with actual questions. Table 3 states the main use cases of PM and the questions
related to these use cases. The use case and its related question are categorized under the type of PM.

Table 3: PM use cases

Use case Questions Type of PM SA’s view

Detection of actual SA What is the SA that actually
describes current SA activities?

Discovery,
conformance

Late SA analysis [1]

Search bottlenecks in
SA

Where are places in the SA,
limiting the overall speed of its
implementation? What causes
these places?

Enhancement Performance analysis

Detection of deviations
in SA

Where the actual process deviates
from the expected (ideal) process?
Why are there such deviations?

Enhancement Security analysis
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The first type is discovery. A discovery method takes an event log and produces a process model
without using any a-priori information. For instance, the Alpha algorithm takes an event log and
produces a process model (a Petri Net) explaining the behavior recorded in the log. Later, the discovery
algorithms are discussed and benchmarked in order to choose the best algorithm for producing the
most proper SA model.

The second type is conformance. Here, an existing process model is compared with an event log
of the same procedure. Conformance checking can be used to check if reality, as recorded in the log,
conforms to the model and vice versa. In HSAEF, this type is used to assess the mined SA models to
select a “good” SA model. It also is used to check the conformity of the implemented and planned SA.

The third type is enhancement. The major idea is to improve and extend an existing process
model using information about the actual process recorded in some event logs. Whereas conformance
checking measures the alignment between reality and model, this third type of PM targets extending
or changing the a-priori model. This type is used to check the performance and security of the SA
model.

Orthogonal to the three types of mining, different perspectives can be defined. The control-flow
perspective focuses on the ordering of activities goal of mining in order to find a good characterization
of all possible paths that can be expressed in Petri Net. The case perspective focuses on the properties
of cases. The time perspective is concerned with the frequency and timing of events. It makes it possible
to discover bottlenecks, measure service levels, monitor resource utilization, and predict the remaining
processing time of running cases.

4.3 Play-In, Play-Out and Replay Method

It uses existing event logs data to model processes that run in implemented SA. Play-In is useful
for formally describing the procedures that generate the known information. Petri Nets generate many
possible behaviors. The technique of “playing the token game” executes repeatedly and produces traces
by means of Petri Nets. Play-out either analyzes models or enacts business processes.

In HSAEF, different scenarios according to the model are simulated for filling the event log by
data recorded during the simulation events. This simulation shows the various implementation of
the process. Play-Out is used to validate the developed models of processes for compliance with the
expected data (sequence of events) with reality. The event log and its relevant process models are both
inputted to replay. The event log is replayed based on the process model [51].

The approach attempts to match simulation results with the real model results to find model’s
deviation of real SA but can also be used to analyze the performance and security of SA. Lastly, replay
has as input both event log and process model and necessities for conformance checking, extended
the model with frequencies and temporal information, constructing predictive model and operational
support.

4.4 Case, Time and Component Perspective

When normally, event logs contain various data. Analysts can exploit it to focus more on specific
PM perspectives. In HSAEF, control flow, case, SA component, and time perspectives are highlighted.
The control-flow perspective captures the sequence of activities. The case perspective captures data,
information and documents produced or required in one case. The component perspective identifies
components or roles performing specific activities. The component is like the organization’s perspec-
tive, referring to components that beget events. The time perspective revolves around the events and
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timing frequency. It tries to discover bottlenecks, measure service levels, monitors resource utilization,
and predict the remaining processing time of running cases. Different perspectives possess common
intersections. As it is shown in Fig. 2, in order to analyze the SA model, these five steps should happen.
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Figure 2: Five steps toward integration of SA mode

5 Experimental Setup

The previous section discusses how the PM can be adapted to HSAEF and obtained loge files. This
section explains how the best PM discovery algorithm will be selected. It is crucial for the framework,
as the quality of SA models deeply affects the performance and security analysis. Moreover, this section
determines the ultimate model of the planned and actual SA model. The discovered SA model quality
should be assessed in order to choose the best model. Fig. 3, depicts the process of assessing SA models.
As it is shown, there are four main parts. The first part is a simulation that converts UML diagrams
and Natural Language (NL) requirements into Hierarchical Colored Petri Nets (HCPN). CPN-tools
runs the simulation and produces raw data. Then in the data part, raw data should be preprocessed
and exported into Prom to produce log files.

Figure 3: Processes of assessing of mined SA model

The discovery algorithm is necessitated at least four fields: Case/trace ID of the process instance,
Actor, Activity, and Timestamp, as mentioned in Section 2. In HSAEF, these fields are mapped to the
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proper fields based on each case study. The log file will be inputted to the selected discovery algorithms
plug-in to produce a set of mined SA models in the discovery part. The models are presented in
Petri Net form. In the end all models and the log files will be evaluated by Cobefra. Based on this
benchmark’s result, the best model will be selected.

5.1 SA Models Discovery

Except for main PM types (discovery, conformance, and enhancement), various perspectives
of models also (the organizational/resource perspective, the control-flow, the time and the data
perspective) are identified. In HSAEF, the first focus is on the process of discovery. This section aims
to assess the quality of discovered mined SA models.

Process discovery is considered the first and most challenging PM type. It is a process model which
is constructed based on an event log in order to capture the behavior that has been seen in the log.
Discovery techniques use event logs to produce models while there is not any priori information about
the models [52]. In HSAEF, the discovery techniques are used to discover the component relations SA
and check the validity of some models against the event logs.

Formally, a process discovery algorithm can be defined as a function that maps a log file into a
specific process model [53]. A log file contains information for different perspectives, whereas here,
the focus is on the discovery models of Petri Nets. Petri Net is graphical and simple, enabling model
choices, iteration, and concurrency [53]. A process discovery algorithm is a function γ that maps a log
L ∈ B (A∗), in which B is a bag of all possible combinations of the activities of A, onto a marked Petri
Net γ (L) = (N, M). Ideally, N is all traces in L that correspond to the possible firing sequences of (N,
M) and M indicates the current marking. Function γ defines the technique so-called “Play-in” [54].

As the classical approaches of model comparison provide only true/false answers, they are not
useful in PM. When two processes are too similar, the classical equivalence may result in the processes
which are not equivalent because of some exceptional paths [53]. Therefore, this research focuses on
comparing a model to an event log instead of comparing two models. Generally, to evaluate a model,
a trade-off should be done among the four Quality Criteria:

5.1.1 Fitness

The mined model can indicate the existing behaviors in the log file.

5.1.2 Precision

The mined model can ignore the behaviors that are not totally in the log file.

5.1.3 Generalization

The mined model can generalize the sample behaviors existing in the log file.

5.1.4 Simplicity

The simplicity of the mined model.

Good fitness means that a model is able to replay most of the traces in the log. Poor precision
belongs to an underfitting model, which can replay very different traces in the event log. Overfitting
goes for a model specific to the event log traces and not generalized enough to replay various traces.
Based on Occam’s Razor [55], the “simplest process model” that can explain what is observed in the
event log is a good model. It is challenging to balance these quality criteria. The nature completeness
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and noise are different in the realm of SA and no approach attempts to handle SA by PM yet [16,56].
The challenges of process discovery algorithms facing noise and incompleteness are mitigated as the
synthesized data used in HSAEF. Moreover, It is hard to compare the discovery algorithms with the
classical data mining challenges [57].

5.2 Discovery Algorithms

Many process discovery techniques have been developed in the last decade. Process discovery
algorithms are viewed from two perspectives. First, according to the approach, these algorithms can
be applied and second, according to the structures which can be discovered and typical problems can
be handled. The research [58] looks at discovery approaches from these two perspectives and divides
discovery algorithms into the following items:

5.2.1 Early Algorithmic Approaches

Approaches are mostly immature as they cannot handle the noise and incompleteness in the event
logs. Moreover, these approaches have problems in discovering the structures of loops or concurrency.
One of the examples of these approaches is the Alpha miner.

5.2.2 Heuristic Dependency Based Approaches

Generally, these techniques have been introduced to improve the functionalities of the discovery
to handle the short loops, noise, duplicate tasks and non-free choice constructs. One of the examples
of these approaches is the Heuristics miner [46,47].

5.2.3 Genetic Approaches

These approaches can discover a wide spectrum of constructs, but they are so time-consuming
and problematic in the large scale of log files [59].

5.2.4 Machine Learning-Based Approaches

These techniques were developed based on machine learning techniques to discover control flow.
One of the examples of these approaches is the ILP-based approach [58]. The alpha algorithm is
considered a milestone for those discovery algorithms dealing with concurrency. Although the Alpha
algorithm provides an insightful view of the PM’s realm, it cannot deal with the frequency and noise
properly. So, the outcomes of the algorithm are not viewed as world-realistic results [28]. Mostly,
discovery algorithms provide models with problems such as dead activities, livelocks, deadlocks,
improper termination and inability to terminate [60]. In the proposed framework, the Extreme “flower
model” model is used to discover log files as a criterion for an over-general model with high fitness.
It allows any behavior (a combination of activities), which causes a highly imprecise process model
[34,61,62].

Like this study, some studies reviewed mining techniques and Petri-net discovery algorithms
[63–67]. HSAEF defines the activities or events belonging to SAs to synthesize event logs. Three
applications pertaining to case studies produced event logs from the simulations to reach this research’s
aim. The quality of the models is investigated and then the performance issues are examined. Finally,
Flower, Alpha, ILP, Heuristic, and Inductive algorithms are selected to discover SA models from log
files. These algorithms produce Petri Net models, as it is discussed, they are proper to be applied to
the synthesized log.
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5.3 Analysis the “Goodness” of the Mined SA Model

The Selected algorithms should assess the mined SA models’ quality. The evaluation is conducted
to compare the quality of mined models based on the log file [68,69]. This study uses the comprehensive
and extensible benchmarking framework called CoBeFra. As it is shown in Table 4, the qualities of
mined models are evaluated from two angels: comprehensibility and accuracy. These elements can
be further decomposed. The comprehensibility is based on the structuredness and simplicity. The
simplicity represents controlling the construct’s number in the process model. Mostly, model element’s
number is considered the simplicity metrics.

Table 4: Experimental setup

Discovery algorithms Flower, alpha, ILP, heuristic, inductive
Quality criteria Metrics

Accuracy Recall: able to replay even log Fitness
Negative event recall

Precision: not over-fitting the
event log

Negative event precision

Behavioral specificity
Generalization: not
under-fitting the event log

Negative event generalization

Simple behavioral appropriateness

Comprehensibility Simplicity: Occam’s razor Number of arcs, nodes, transitions or cut
vertices

Structuredness: ease of
interpenetration

Structural appropriateness

Simple behavioral appropriateness

The accuracy belongs to a process model that is composed of the recall or fitness. This is the
model’s ability to replay the existing behavior in the log file. The precision or appropriateness indicates
the ability of the model not to replay the unseen and unwanted behaviors (underfitting prevention)
and the generalization, which shows the ability of the model to replay the unseen expected or desired
behaviors (overfitting prevention). Table 4, shows the experimental setting to test process discovery
algorithms when the original model is known [53].

5.3.1 Fitness Recall

Fitness Recall is the primitive accuracy evaluation since it indicates the number of behaviors that
exist in the log file and is reflected in the model. So, it can be considered the most important quality
of the mined models. Subsequently, the fitness calculates the compensation tokens which are injected
in the Petri Net and remained tokens after the replay’s completion.
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5.3.2 Behavioral Recall

Behavioral Recall delivers the rate of positive events that are classified correctly in the event log.
Each positive event is verified that it is repayable by the process model and sequence replay techniques.
These metrics successfully deliver the percentage of positive events parsed by the process model,
regardless of remaining or missing tokens.

5.3.3 Precision

Precision implies that a process model does not allow unwanted and unseen behaviors to execute.

5.3.4 Behavioral Specificity

Behavioral Specificity delivers the rate of negative events that are classified correctly in the event
log when sequences replay. However, the metric includes natural or artificial negative events. The
model replays behaviors. Although these behaviors do not belong to the given event log, they are
False positives which can be regarded as negative events.

5.3.5 Generalization

Although the precision of the model is crucial, the model must be generalized over the observed
behavior. No event log contains all the behaviors, so the Metrics that express the generalization should
penalize overly the precise models. Comprehensibility Metrics expresses the structuredness as the ease
of interpretation. It is a difficult dimension to measure. The selected count-based simplicity metrics
are the number of nodes, arcs, places, transitions, or cut vertices, the weighted transition/place arc degree
and the average node arc degree [48].

The point of the benchmark of the current research is that the weighted artificial negative events
are used for checking the conformance. It leads to accurate results, in the case of a complete event
log containing just some possible behaviors [34]. True positive (TP) events are assumed as possible
events with regard to the process model and the log file, while false-positive (FP) events are assumed as
negative events that are induced by a possible given prefix derived from the model. Weighted behavioral
precision, Generalization induces the negative events for an event by taking a window [70].

Simple structural appropriateness is a metric that clarifies the versatility of the task labels in
connection with the model (the graph’s size) [71]. The induction of negative events explicitly supports
incomplete event logs [72,73]. The Artificially Generated Negative Events (AGNEs) enriches the event
log with the negative events. The event log consists of the complete set of behavioral patterns, which
is interpreted that events can only be missing in a log because they are not permitted by the process
[74,75].

5.4 Simulation

CPN Tools produces logs for discovery algorithms of PM in a totally controlled environment,
which are suitable for testing PM Algorithms. As discussed, the nominated algorithms are compared
to assess the “goodness” of models and selection of the best algorithm. Fig. 4 describes the method of
comparison of the algorithms.

In this research, three case studies are selected, and the discovered models of each case are tested.
As shown in Fig. 3, the simulation and conversation of SA to Petri net models are out of this research
scope, and it will be highlighted in another research for implementation of HSAEF.
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Figure 4: Method of testing of process discovery algorithms

5.5 Results
5.5.1 Online Webshop

Online webshops as industrial reference architectures are standards and commonly known.
Consequently, the SAs can directly be implemented with minor modifications. Developing the web-
based shopping solution with the realization of Service-Oriented Architecture (SOA) is considered
a standard reference architecture. These architectures denote the correct ways that subsystems and
components should work through. In this sense, the reference architecture is a conceptual architecture
or an artifact like SA’s diagrams.

5.5.2 Assessing the Discovered SA Models’ Results for Online Webshop

Table 5 shows the SA models that are mined by the nominated algorithms. The ILP figure contains
approximately 3000 arcs and looks so messy in its small size. The figure is included in this thesis to
show the complexity of the discovered SA model.

Table 5: Mined SA models by nominated algorithms for online webshop

Alpha Flower ILP1 Inductive Heuristic

5.5.3 Benchmark Result
5.5.4 Personalized Bug Prediction

The repositories of multiple open-source software projects containing datasets of code change
histories for several years have been collected. The Datasets involve more than 100 software developers.
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The software developers make the different bug patterns based on their experiences and background,
from a bug type like wrong literals to wrong if conditionals.

The system supports personalized bug prediction in open-source software by analyzing code
pattern changes referring to bugs and bug fixes made by developers over time. The system aims to
identify likely locations in a codebase that may contain bugs.

The system extracts the code change histories for a specific period from the various repositories of
open-source software projects in the various programming languages such as C, C++, Java, etc. Then
the various measures (bugs, bug fixes, location of the bugs, who injects the bug/fixes the bug, time of
the bug occurrence, the bug type, the code complexity around the bug, etc.) about the characteristics
of the code and the project code are elicited and calculated.

5.5.5 Assessing the Discovered SA Models’ Results Personalized Bug Prediction

Table 6 shows the SA models that are mined by the nominated algorithms. The ILP and Alpha
figure approximately contain 3000 arcs and it looks so messy in the small size. The figure is included
in this paper to show the complexity of the discovered SA model.

Table 6: Mined SA models by nominated algorithms for personalized bug prediction

Alpha Flower ILP2 Inductive Heuristic

5.5.6 Benchmark Result
5.5.7 Air Conditioner Controlling Through Remote Location

The system is called “Air conditioner controlling through remote location”. This system checks
if the air-con system is ON and there is nobody in the room, then it will trigger an alarm to the
user’s mobile phone to enable the user to switch off the air conditioner through the phone. There are
two sensors; one to detect the motion and another to detect the temperature. These sensors are both
connected to the Arduino microcontroller board. The microcontroller checks if there is no movement
while the temperature is less than a specific degree Celsius, then it will send a message to the user’s
mobile phone by Global System for Mobile communication (GSM) shield. There is an application on
the mobile phone which enables the user to turn the air conditioner off.

The mind models are presented in Table 7, the ILP figures of other case studies contain more than
3000 arcs and look so messy in the small size as a result are not included. The figure is included in this
paper to show the complexity of the discovered SA model.
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Table 7: Mined SA models by nominated algorithms for air conditioner controller

Alpha Flower ILP2 Inductive Heuristic

5.5.8 Assessing the Discovered SA Models’ Results
5.5.9 Benchmark Results
6 Discussion

In this research, the stated questions for these case studies are; “Is it possible to apply PM
algorithms for discovering SA?”, “What are the discrepancies among process discovery algorithms’
output of SA models?”, and “which attributes of a SA behavior can be identified by PM algorithms?”.
The goal of this section is to apply PM algorithms on SA in order to identify the differences between
outputs and SA execution. Process discovery algorithm, which can produce Petri Net models, has been
selected among the PM algorithms.

As it is shown in Figs. 5–7, the fitness of the Heuristic algorithm is accordingly fairly good (0.6),
(0.57), (0.812) rather than other algorithms. It also has almost the lowest value of negative metrics in
comparison with other algorithms. It means the model doesn’t allow traces that do not belong to the
log file be replayed. The simple behavioral and structural appropriateness also is acceptable. Figs. 8–10
confirm that the Heuristic model has the lowest amount of nods and arcs compared to other models,
so it is more understandable for stakeholders.

The research assesses the process discovery algorithms based on complex and real event logs. It is
concluded that the heuristic miner algorithm is especially suited. The Heuristic Miner (HM) normally
handles noise and can indicate the main behaviors residing in the log of activities. It can mine all of the
common constructs except the duplicate tasks. The algorithm builds a dependency on the best causal
predecessor and successor or a given task. Moreover, this research overcomes the obtaining log file
challenges mentioned in Table 1 as:

In HSAEF the scenarios relate to events.

In the proposed framework by adding timed tokens, this problem is alleviated.

In HSAEF, cases with a missing “head” or “tail” are mostly removed by filtering the event log,
as starting and finishing activities are known. Information systems may have irrelevant data, which
should be omitted from the log file. Domain knowledge of software architects is needed to distinguish
required data and to scope data. Obviously, the desired scope depends on both the available data and
the questions that need to be answered by the human expert.
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In HSAEF, the granularity is determined based on the identified components and the events. The
research also addresses PM adaptation challenges mentioned in Table 2 as:

PMAC1: Simulation and the induction of negative events explicitly supports that event logs are
incomplete, and the models show better results.

PMAC2: The simulation produces perfect, noise-free and completed log files

PMAC3: The framework can be run periodically.

PMAC4: Use case analysis and add perspectives to ease the process.

PMAC5: Benchmark shows heuristic algorithm can reflect model near to its real one.

PMAC6: We run multiple simulations in different sizes

PMAC7: The five selected algorithms and benchmark criteria alleviate this problem.

PMAC8: Simplicity criteria are considered in the benchmark

PMAC9: Scenario in simulation relate log files.

7 Conclusion

PM should be adapted as a tool in HSAEF. PM produces SA models from the log file, which is
the list of the sequence of activities. These activities are associated with an event. The challenges of
events’ correlation, events’ timestamp, data cleaning (snapshots and scoping), scoping and granularity
were addressed and mitigated by defining events and logs. Then, the log files were ready to be applied
by PM. The strategy of Play-in, Play-out, and Replay was applied to the log files. The fundamental
questions of analyzers were answered, and the events were connected to the activities of SA.

In the second step, the discovered SA model’s qualities were assessed in order to choose the best
SA model. The obtained log files were inputted to the selected discovery algorithms plug-in to produce
a set of mined SA models. The models were presented in Petri Net form. In the end, all the models and
log files were evaluated by CoBefra. Based on this benchmark’s result, the best model was selected.
Moreover, PM discovery algorithms and the quality of mined models are assessed and heuristic models
are selected. In this paper, we first introduced the challenging problem of process mining to adapt
to HSAEF and assess the quality of the mined SAs. We focused on the discovery techniques which
produce Petri Net. Hereafter, we presented the benchmark among Alpha, Flower, ILP, and Inductive
and Heuristic algorithms. In the experimental session, we showed how Heuristics could deal with the
problems based on the given metrics. The results indicate Heuristic algorithm can focus on all behavior
in the event log, or only the main behavior, although low frequency behavior and some noise exist in
the log.
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