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Abstract: Both unit and integration testing are incredibly crucial for almost
any software application because each of them operates a distinct process to
examine the product. Due to resource constraints, when software is subjected
to modifications, the drastic increase in the count of test cases forces the
testers to opt for a test optimization strategy. One such strategy is test case
prioritization (TCP). Existing works have propounded various methodologies
that re-order the system-level test cases intending to boost either the fault
detection capabilities or the coverage efficacy at the earliest. Nonetheless,
singularity in objective functions and the lack of dissimilitude among the
re-ordered test sequences have degraded the cogency of their approaches.
Considering such gaps and scenarios when the meteoric and continuous upda-
tions in the software make the intensive unit and integration testing process
more fragile, this study has introduced a memetics-inspired methodology
for TCP. The proposed structure is first embedded with diverse parameters,
and then traditional steps of the shuffled-frog-leaping approach (SFLA) are
followed to prioritize the test cases at unit and integration levels. On 5 standard
test functions, a comparative analysis is conducted between the established
algorithms and the proposed approach, where the latter enhances the coverage
rate and fault detection of re-ordered test sets. Investigation results related
to the mean average percentage of fault detection (APFD) confirmed that
the proposed approach exceeds the memetic, basic multi-walk, PSO, and
optimized multi-walk by 21.7%, 13.99%, 12.24%, and 11.51%, respectively.

Keywords: Test case prioritization; unit testing; shuffled frog leaping
approach; memetic based optimization algorithm; integration testing

1 Introduction

Testing is arguably the most empirical and least comprehended part of the software development
process [1]. Ever since the inception of contemporary development practices viz continuous integration
and deployment (CI and CD), the significance of testing has escalated in industries. Such practices
suggest that the entire set of test cases should be executed after every alteration in the code, as this
not only guarantees the compatibility of new patches with the existing code but also makes sure that
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the functionality of the existing code remains intact (regression testing) [2]. Nevertheless, repeated re-
execution of the entire test set after each code commit is nearly impossible, particularly in cases where
the test suites and the system-under-test (SUT) are enormous [3]. For instance, it was reported that the
statistics of per day test execution at Google is nearly 150 million. Such hard-hitting numbers directly
point to the mundanity, time-absorbing, and highly-priced (up to 80% of development expense) nature
of the regression test execution cycles [4].

The above-stated complications could be precluded through appropriate selection, minimization,
and re-ordering of test cases [4]. Among these three, single criterion-based exclusion of test cases
during test case selection (TCS) or minimization (TCM) sometimes results in insecure test executions.
However, this isn’t a scenario with TCP as it opts for scheduling the test cases’ execution order
in a manner that would maximize the detection percentage of regression faults at the earliest [5].
Mathematically, TCP could be elaborated as [6]:

Given: T (any test suite); pT (different permutations of T)

Problem: To find {(pT ′ ∈ pT) : f (pT ′) > f (pT ′′)} where pT ′′ defines other permutations in pT and f
is a function that maps pT to R (real numbers), depicting the prioritization objective.

Categorically, the TCP techniques available today could be studied in two levels, i.e., context-
dependent strategies and the heuristic and optimization methodologies [4]. The test cases in
context-dependent strategy could be re-ordered according to the obtainable input resources such as
requirement, history, coverage, or fault [7,8]. The other perspective chooses to portray the test cases
in a specific manner (based on obtainable resources) and then exercise a heuristic or meta-heuristic
approach to prioritize them. Despite the fact that these context-dependent strategies acquire 63%
of the TCP-related literature, wherein the statistics of coverage-related TCP practices are incredibly
high, i.e., 25%, these could lead to scalability issues in the testing environment [9]. Additionally, the
percentage of coverage and fault detection acquired by such TCP techniques are also compromised.
One potential reason for the same is the scarcity of diversity among the re-ordered test cases.

The kind and the amount of testing information utilized during TCP also plays a vital part
in revealing its efficiency. Since most of the current nature-inspired meta-heuristics (NIMs) [10],
including Greedy, Genetic algorithm (GA) and its variants [11], consider the single criterion fact for
re-ordering system-level test cases, ensuring early coverage of severe faults through them would be
difficult. The procedure would become more cumbersome when testers would employ them on real-
world applications in unit-level testing environments. Besides this, with the trend of CI, execution of
even 100s of unit tests or affected test cases in an order specified by these meta-heuristics after each
code commit could become prohibitively expensive.

To address such issues, this research work primarily concentrated on a shuffled-frog-leaping
algorithm (SFLA) [12], a population-based, memetics-inspired approach. SFLA assumes global
search as a natural evolution process and incorporates information sharing and partitioning hierarchy
while targeting the individuals of the populations. Since this property is rare in other NIMs, SFLA
could prove to be a strong competitor in handling TCP issues, that too in CI and CD environments.
It was noticed that Manaswini et al. [13] also suggested SFLA for TCP; however, the authors haven’t
utilized its intrinsic capabilities and skipped the comprehensive clarity on how the approach is being
molded to serve TCP with a relevant experimental structure to support.

With the stated facts and the need for a more stable TCP methodology in the practical environ-
ment, the major contribution of this study could be enlisted as follows:
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• To propound an SFLA-based TCP approach that could handle regression test cases at the initial
and most arduous levels of testing, i.e., unit and integration levels.

• To incorporate diversity while re-ordering via evaluation of critical testing parameters (multi-
objectiveness).

• To not rely on conventional optimization heuristics and strengthen the proposed-SFLA frame-
work so that it could maximize coverage and fault detection rate, all simultaneously.

• To assess the efficacy levels of proposed-SFLA against other stable and widely suggested NIMs.

The rest of the study is bifurcated as follows: Section 2 explicates the basic theoretical and
mathematical steps of conventional-SFLA along with the inspection of some related works. Section 3
presents the proposed-SFLA framework with a case study. Experimental validation is provided in
Section 4, and eventually, Section 5 culminates this study.

2 Background and Related Studies

SFLA algorithm was first proposed by Eusuff et al. in 2006 [12] to merge the search intensification
element similar to the memetic approach with the global diversification element inherited from the
response surface information exchange in particle swarm optimization (PSO) and shuffled-complex
evolution. The basic idea revolved around how frogs leap in a swamp to reach the point of maximal
food availability (Fig. 1).

Figure 1: Diagrammatic representation of basic SFLA with pseudo steps [12]

On a broader angle, TCP is a topic of active investigation in the realm of regression testing.
Primary heuristics-based TCP techniques are entirely coverage-based and founded on the premise
that raising the SUT’s structural test coverage would increase the likelihood of fault discovery. These
coverage-based heuristics possess two sub-categories: Overall coverage and Supplementary coverage
[14]. Inspired by the latter, Lu et al. [15] suggested an additional-coverage-based (ACB)-heuristic
function for TCP problems that blended the additional greedy method’s searching efficiency with the
ant colony optimization (ACO) approach’s global searching efficacy. The authors also refined the test
solutions obtained by artificial ants using sorting-based-local search methods. Fu et al. [16] combined
the clustering and scheduling approaches so that test cases with comparable coverage information in
previous executions were clustered and rated, and then execution priorities were assigned to each test
case using the scheduling algorithm.
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However, Rahman et al. [17] considered that clustering test cases based on similarity could lead
to local minima; thus, they proposed a method in which different test cases are clustered and executed
at the earliest possible time depending on prior and current fault rates. Apart from coverage, TCP was
heavily influenced by user requirements and the complexity of the SUT. Kandil et al. [18] proposed
a TCP technique for the agile framework in which parameters such as severity fault detection rates
in previous executions and the singularity of user-defined requirements in the stories were used to
determine the weighting or priority of each test case. Afzal et al. [19] claimed that the most critical
components of TCP practice are the path complexity and branch coverage criterion. The authors
employed Halstead’s matrix to determine the difficulty of paths in their investigation.

According to the studies mentioned earlier, it was discovered that the dependence of TCP on some
specific input resource (majorly coverage) and the impact of test cases is exaggerated, and solely relying
on such notions could jeopardize the TCP’s effectiveness. Research concerning the implementation
of GA on TCP issues is extensive and has already carved out a niche in the TCP field [20–22].
Nejad et al. [23] applied discrete versions of the memetic algorithm (GA-base) on model-based testing.
The authors utilized the activity diagram of the SUT for TCP that was later converted to CFG with
weighted nodes.

Ashraf et al. [24] presented a PSO technique for TCP that is value-based. The authors combined six
practical considerations, including requirement volatility, implementation complexity, and traceability,
with the customary PSO approach for determining the fitness of test cases. Additionally, this fitness
aided them in determining the potential and priority of each test case. They acquired an APFD
of 70.3%; however, the factors’ ranking and weighting in their work were not described accurately.
Samad et al. [25] also approached PSO, yet the factors considered for allocating priority to test cases
were execution time, code coverage, and fault rate.

Noticing the growth in the utilization of state-of-art NIMs for TCP, Bajaj et al. [26] propounded
a discrete cuckoo search method in which the traditional cuckoo movement was substituted with the
double and 2-opt moves. The authors also proposed asexual genetic reproduction as a new adaptation
technique for discretizing the continual cuckoo search. Furthermore, the authors developed a cuckoo
search and genetic hybridization for re-ordering purposes. Öztürk [27] adopted a process based on bats’
basic echolocation behavior. The author utilized test case execution time and the number of defects as
the primary criteria for test optimization. For comparison and accuracy evaluation, algorithms such
as ACO, greedy, and PSO were used, with the suggested framework achieving an APFD of 0.9.

Khatibsyarbini et al. [28] applied the firefly approach to TCP, in which the firefly acted as the
test case. The fireflies’ movement was dependent on test disparity and striking similarity weights and
distinctiveness, and the brightness remained constant regardless of the distance traveled by the test
cases (edit distance). The works cited above have several shortcomings, including the following: (a) by
prioritizing fault rate, studies omitted validation of the acquired re-ordered test sequence’s coverage
efficiency, (b) increased computational cost of the methodologies due to their inherent behavior and
the complex parameter configuration process required to perform TCP, (c) lack of clarity regarding
the not-so-defined but utilized testing criteria, and (d) inabilities in addressing conflicted scenarios
where the path complexities and the count of faults could be diverse and equal.

Concentrating on the studies that suggest prioritizing test cases in a CI context based on testing
characteristics [29–31] are very few, and pointing out their inconsistencies at this stage would be
irrelevant. The distinction between this paper and previous work is that this study concentrated on
the most extensive levels of testing, namely unit and integration, for TCP, which no previous study has
done. This would enable testers to examine modified software modules with the most prominent test



CMC, 2023, vol.74, no.3 5373

sequences. To avoid the problems linked with complex parameter tuning situations that plagued several
previous studies, this work presented an SFLA-based technique for TCP. Furthermore, this technique
is infused with the five most-effective criteria, including fault, frequency aspects of test statements, and
historical details that would help preserve the diversity among the re-ordered test cases.

3 Methodology

Based on the previous studies’ experiences in devising TCP techniques and the prominence of test
coverage in optimization strategies, this research work has formulated the regression TCP problem as:

g = maximize
{
TotalCmc , TotalCmF

}
s.t.g (t) > g (t′)

where t and t′ are the permutated versions of T = {TC1, TC2, TC3 . . . . . . .TCn}, Cmc and CmF are
the cumulative statistics of coverage and fault covered by the test cases in those versions. To have a
clarified vision, this section is segmented into two subsections, wherein the algorithmic structure of
the proposed-SFLA is discussed in Section 4.1, followed by its gradational execution in Section 4.2.

3.1 Proposed Approach (SFLA)

When it comes to regression testing, historical reporting of each test case is significant as it can
truly disclose the flakiness of test cases and could provide the circumstances into which a test case could
fail. Without a proper benefit of past test data, the tester could lose visibility into the probabilities that
lead to the failure of a system. Sticking to this fact, this study has utilized and filtered some of the major
aspects from the regression test execution depositories, such as the test cases’ execution frequencies,
their fault detection potentialities, and the extremity of detected faults. A concise depiction of the
proposed methodology flow is presented in Fig. 2 with the conceptualization in Algorithm 1.

During the initial planning phase, this research study considered numerous source codes for
examination, but the practical perspective and evaluation strategies for those are different in the outer
environment. Typically, testers rely more on the environment that focuses not only on the program’s
logic but also on the program’s flow in the course of the program’s performance or reliability check.
Therefore, a control flow graph (CFG) of SUT is utilized in this study, and the paths with new additive
information are extracted (independent paths). Considering the gravity of test coverage, Cv [TCl, Ns]
in Algorithm 1 is the matrix that describes the coverage particulars of test cases in binary form. Other
than Cv [TCl, Ns], the data such as hr (TCl) and fr (TCl) in Algorithm 1 is the extracted data from the
depository that interprets the history and fault figures of test cases.
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Figure 2: Block schema of the proposed-SFLA

This study has integrated two more essential features that are often neglected during the assess-
ment of data related to test statements and test cases, i.e., the recurrence ratio of test statements in
independent test paths (ν (Ns))and the cost of test cases

(
CTCl

)
(Eqs. (1) and (2)).

ν (Ns) = Ip (f (Ns))

totIp

(1)

s.t.if [orgiν (Ns)] =
{

1, set ν (Ns) = 0
< 1, variate ν (Ns)

}

CTCl
=

Maxst∑
s=1

(Cv [TCl, Ns] ∗ w (Ns)) (2)

Ip (f (Ns)) in Eq. (1) elucidate the frequency with which a particular statement appeared in the
independent paths while totIp is the number of independent paths as a whole. To secure the less frequent
statements with crucial data and assign an importance factor based on their prevalence, [orgiν (Ns)] is
devised. In Eq. (2), CTCl

is entirely different from what the actual definition of test cases’ cost means.
Basically, it’s the acceptability factor that points to those test cases that cover the statements with
critical conditions. To measure this criticality, each statement at its initial is assigned a weightage value
(w (Ns)) that is absolutely random yet depends on the complexity of the conditions or functions that
the test statements have.

Besides Cv [TCl, Ns], all other features stated till are evaluated to form another informatory packet,
i.e., Cst [TCl, Ns] (cost matrix). After the preparatory stage, Algorithm 2 is applied to the mapped
CFG (Local Exploration). As the conventional-SFLA [12] starts by forming the memeplexes and
dividing the graded population into them, Algorithm 2 assumes the test cases as the population and the
mapped CFG as one search space that holds several memeplexes and subgroups within. The individual
memeplexes are supposed to be the unit modules within the SUT, while any intra-connection between
two unit modules is the point of integration where the interim ordered test cases are allowed to re-
shuffle (Global Exploration) (Algorithm 3).
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3.2 Experimental Study

Primarily, this study considered a working module of tax-discount application as the test function
(test function 1). On developing its graphical representation (i.e., CFG), it was perceived that the test
function comes under a category of high complexity with totIp = 9. As there is no specific scale or
guidance according to which the parameters of conventional-SFLA [12] could be configured, this
work has molded the parameters to conform to the structural delineation of test function and the
testing protocols (Table 1).

Table 1: Estimation of the proposed-SFLA parameters with their definition

Parameters denotation Definition Value

m Number of memeplexes Number of cnode

n Number of frogs (population size) Number of TCs = 11
N Number of memetic evolution in

each sbgrp of a memeplex

Q(Q−1)

2
where Q is the current

population in sbgrp

Smax Maximum step size allowed during
global exploration

(Number of descendant nodes
attached to cnode) +cnode

3.2.1 3.2.1 Construction of Cv [TCl ∗ Ns] and Cst [TCl ∗ Ns] (preparatory stage)

The instructions presented in Algorithm 1 are considered for the emergence of Cv [TCl ∗ Ns] and
Cst [TCl ∗ Ns]. The prior, being the representation of test coverage, would demonstrate the flow of
test cases during the implementation of test statements in ‘1’ and ‘0’ format. The value ‘1’ would
signify the successful execution of a test statement (Ns) by a test case (TCi); however, ‘0’ is vice versa.
Before the demonstration of second-most consequential information, i.e., Cst [TCl ∗ Ns], the fetched
data from the depository needs to be inspected thoroughly. For simplicity purposes, this work has
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considered a random scale of [0–1] to allot values for features such as hr, fr and w (Table 2). Although
this consideration is entirely notional, it is directly proportional to the past behavior of test cases and
the seriousness of data residing in the test statements.

The CTC and ν (Ns)values stated in Table 2 are enumerated using Eqs. (1) and (2). For instance, the
cost of TC7 would be CTC7

= ∑24

s=1 (Cv [TC7, Ns] ∗ w (Ns)) i.e., CTC7
= (1 × 0.1 + 1 × 0.1 + 1 × 0.4 + 1.×

0.3 + 1× 0.2 + 1× 0.2 + 1× 0.4 + 0× 0.7 + 1 × 0.1) = 2.5If the values of ν (Ns)are looked, the value
of ν (N9) is found to be 0.44 in Table 2. However, in accord with Eq. (1), the value of ν (N9) should be
0.33. This happened because of the broad range that is being set to retain the indispensable yet less-
frequent test statements. Such computations (Table 2) and the Cv data would lead to the establishment
of Cst [TCl ∗ Ns] (Table 3).

Table 2: Features considered for designing Cst [TCl ∗ Ns] with their estimate

Test cases TC1 TC2 TC3 TC4 TC5 TC6 TC7 TC8 TC9 TC10 TC11

hr (TC) 0.1 0.6 0.5 0.4 0.8 0.8 0.6 0.7 0.2 0.6 0.3

f r (TC) 0.2 0.8 0.8 0.4 0.1 0.3 0.4 0.6 0.1 0.9 0.8

CTC 2.1 2.4 1.9 2.3 2.3 2.3 2.5 2.1 1.7 2.1 2.4

Statements/Nodes
in test function

N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 N11 N12 N13 N14 N15 N16 N17 N18 N19 N20 N21 N22 N23 N24

ν (Ns) 0 0 0.25 0.6 0.6 0.9 0.9 0.44 0.44 0.9 0.6 0.6 0.9 0.9 0.3 0.6 0.6 0.9 0.9 0.6 0.6 0.9 0.9 0

w (Ns) 0.1 0.1 0.4 0.6 0.3 0.5 0.8 0.3 0.2 0.7 0.2 0.4 0.5 0.7 0.4 0.3 0.2 0.9 0.5 0.6 0.3 0.5 0.8 0.1

Table 3: In-depth view of Cst [TCl ∗ Ns] for test function 1

Cst [TCl , Ns] N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 N11 N12 N13 N14 N15 N16 N17 N18 N19 N20 N21 N22 N23 N24

TC1 2.5 2.5 3.05 3.6 3.3 3.8 4.1 2.84 2.84 3.3 3 3 3.3 3.3 2.7 3 3 3.3 3.3 3 3 3.3 3.3 2.5
TC2 3.9 3.9 4.45 5 4.7 4.7 5.5 4.24 4.24 4.7 4.4 4.4 4.7 4.7 4.1 4.4 4.4 4.7 4.7 4.4 4.4 4.7 4.7 3.9
TC3 3.3 3.3 3.85 3.8 3.8 4.1 4.1 3.94 3.84 4.8 3.8 3.8 4.1 4.1 3.5 3.8 3.8 4.1 4.1 3.8 3.8 4.1 4.1 3.3
TC4 3.2 3.2 3.75 3.7 3.7 4 4 3.84 3.74 4 3.9 4.1 4.5 4 3.4 3.7 3.7 4 4 3.7 3.7 4 4 3.2
TC5 3.3 3.3 3.85 3.8 3.8 4.1 4.1 3.94 3.84 4.1 4 4.2 4.6 4.1 3.5 3.8 3.8 4.1 4.1 3.8 3.8 4.1 4.1 3.3
TC6 3.5 3.5 4.05 4 4 4.3 4.3 4.14 4.04 4.3 4.2 4.4 4.8 4.3 3.7 4 4 4.3 4.3 4 4 4.3 4.3 3.5
TC7 3.6 3.6 4.15 4.1 4.1 4.4 4.4 4.24 4.14 4.4 4.3 4.5 4.4 5.1 3.8 4.1 4.1 4.4 4.4 4.1 4.1 4.4 4.4 3.6
TC8 3.5 3.5 3.65 4 4 4.3 4.3 3.84 3.84 4.3 4 4 4.3 4.3 4.1 4.3 4.2 5.2 4.3 4 4 4.3 4.3 3.5
TC9 2.1 2.1 2.25 2.6 2.6 2.9 2.9 2.44 2.44 2.9 2.6 2.6 2.9 2.9 2.7 2.9 2.8 2.9 3.4 2.6 2.6 2.9 2.9 2.1
TC10 3.7 3.7 3.85 4.2 4.2 4.5 4.5 4.04 4.04 4.5 4.2 4.2 4.5 4.5 4.3 4.2 4.2 4.5 4.5 4.8 4.5 5 4.5 3.7
TC11 3.6 3.6 3.75 4.1 4.1 4.4 4.4 3.94 3.94 4.4 4.1 4.1 4.4 4.4 4.2 4.1 4.1 4.4 4.4 4.7 4.4 4.4 5.2 3.6

3.2.2 Local Exploration (memetic-based search)

The central working of the proposed-SFLA starts from here (Algorithm 2). Based on the current
execution status, the test cases are plotted on the CFG. This insight would aid in comprehending how
the test cases’ population is disseminated over the search space or the test flow that they are adapting
(Fig. 3). IndFit(TCq) in Algorithm 2 is responsible for the computation of each test case’s competence
linked to a specific path on the search area. Since it utilizes the details from the preparatory stage,
this notion would highlight the extremely significant dependencies between the test cases and the test
statements. The two most proficient ones with the highest IndFit(TCq) are extracted from Rank1db and the
aggregated value of them (BEST) is considered as the termination criteria for the memetic evolution
process.
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Figure 3: Scattered population of test cases over CFG of test function 1

The mapped CFG in Fig. 3 is scrutinized sequentially in a bottom-to-top manner. The parameter
which needs much more concentration while tuning in conventional-SFLA was F [12]; however, this
parameter is not necessitated during TCP as there could be several test cases executing a particular unit
module and deciding m and even distribution of n on m would be impracticable. In Fig. 3, the combi-
nation of the test cases present in sbgrp1 of memeplex1 would be {(TC4, TC5) , (TC5, TC6) , (TC6, TC4)}.
Since the memetic evolution framework that this study adopted is composed of GA and hill-climbing,
each test pair from this sequence would undergo a phase of selection, crossover, and mutation.

Selection Operation

Among the test pairs in sequence {(TC4, TC5) , (TC5, TC6) , (TC6, TC4)} an arbitrary pair is selected
initially, and an ‘OR’ operator is applied to the coverage particulars of test cases that are linked with
the elected test pair. Fitness in any phase of the genetic approach strictly relies on the coverage of
test statements by the offspring. For instance, O1 covers a test statement N1, then Cst [TC4, N1] and
Cst [TC4, N1] (parent test cases which are responsible for that coverage) are considered to contribute
to the fitness of O1. For this case, Fitness (O1) appeared to be 67.76, which is relatively less, and thus
(TC4, TC5) is passed to the crossover phase.
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Crossover Operation

In this stage, the swapping is conducted between the 1st bit of TC4 and the 16th bit of TC5 along with
2nd bit of TC4 and the 17th bit of TC5 (2-point crossover), concurrently (Fig. 4). The flow of swapping
depends upon the Cst data of parent test cases for the specified bits.

Figure 4: Exemplar view of bit swapping between test case TC4 and TC5 during crossover

After applying the ‘OR’ operator on the swapped versions of TC4 and TC5, the estimate
for Fitness (O) noticed to be 68.96. Due to the repeated non-fulfillment of termination criteria
(BEST = 73.36), the (TC4, TC5) pair is forced to enter the mutation phase.

Mutation Operation

The mutation is the slight alteration to the gene value to have a different trait compared to
parents. To acquire this nature, the 21st bit of the chromosomal structure of the offspring test case
(here O) is flipped from ‘0’ to ‘1’ based on the statistics of its parent test cases in Cstdata (Table 3).
Fitness (O4), after the mutation process, observed to be 72.76. Since in all the phases (TC4, TC5) pair
haven’t approved the scale of prescribed termination criteria; therefore, the termination criteria is
modified. This study has contemplated 95% of BEST as the second suitable termination criteria for
the (TC4, TC5) pair to exercise the genetic cycle.

The genetic cycle is iterated until all the pairs inside {(TC4, TC5) , (TC5, TC6) , (TC6, TC4)} are
covered. Rank2db is the database that keeps track of fitness values of all pairs and is updated every
time a new sbgrp is processed. After the generic iterations of the GA cycle, the notion of hill-climbing
is initiated. The test pairs are sorted in ascending order of their fitness in the Rank2db and are shifted
from snode (sequential node) to cnode (conditional node) of their memeplex according to the adapted
triangular probability of the conventional-SFLA [12] (Fig. 5). For such scenarios, the movement and
the exploitation rate are managed by another vital information packet, i.e., ρ

[
TCi=1ton ∗ Nj=1toMaxst

]
which is basically the test statement-wise distribution of the fault figures of test cases.

The pair (TC5, TC6) is ordered at first in Rank2db with fitness equal to 75.86. Being the highest
fitted test pair in Rank2db, the FsTC value of TC5and TC6 is calculated before TC4. Subsequent to the
results depicted in Fig. 5, TC6 is the first test case in sbgrp1that is allowed to climb or move close to
cnode = N12. Ultimately, the locally explored solution or the set of re-ordered sbgrp1 and sbgrp2 found at
N12 would be {{TC6, TC5, TC4} {TC7}}.
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Figure 5: Representation of test cases’ movement during the local search phase

3.2.3 Global Exploration (PSO-based search)

Algorithm 3 is referred to globally re-order the locally procured solution from Algorithm 2. A
temporary data storage k

[
TCs ∗ Nj

]
is defined to have a cognizance of the statement-wise coverage

and fault figures of each test case that resides at a particular position in the locally prioritized sequence.
The exploration rate in k

[
TCs ∗ Nj

]
is controlled by the parameter Smax. Considering the case of

{{TC6, TC5, TC4} {TC7}}, initially, the test cases from the sequence are sundered into a 2 layer structure
in such a manner that the ρ

[
TC, Nj

]
value of each test case at layer 1 should be higher than that of the

test cases at the lower layer. This notion is rather identical to the rule that states that the population
close to the global best solution is always ahead of the population following or getting influenced
by them.

The positions of the test cases within the layers kept changing due to the enumerations
(Feval (TC)) at each test statement inside k

[
TCs ∗ Nj

]
. A detailed view with counter (c) information

for {{TC6, TC5, TC4} {TC7}} at N12 and N13 is presented in Fig. 6. A similar phenomenon could be
observed at N14, however, TC7 with Feval = 1.133 took over TC6which is placed at layer 1 in Fig. 6. The
final order of test cases at memeplex 1(Gbest_sol), after the computation of Feval at N14, is recorded
as {TC4, TC7, TC6, TC5}. Gbest_sol is generally the representation of the prioritized test cases at the
integration level and must be revised while handling every new memeplex dynamically. The point
where the test cases are integrated to perform verifications of the conditions is different from the
point of integration of two memeplexes. For the latter one, the Gbest_sol from cnode of one memeplex is
progressed towards the snode of another memeplex if there exists any interdependence between them
(Fig. 7).

Figure 6: Information exchange and re-shuffling among the locally re-ordered test cases
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Figure 7: Partial view of test cases advancing towards Gbest_sol

This whole procedure from Algorithm 2 to Algorithm 3 is re-iterated until the search reaches at
N1. The final prioritized test sequence attained at N1 is:

Gbest_sol = {TC10, TC3, TC2, TC8, TC4, TC11, TC7, TC1, TC9, TC6, TC5}

4 Experimental Inferences and Discussion

This study addressed the following four research questions that prompted the experiments.

RQ1. How efficaciously can the proposed-SFLA re-ordered test cases uncover the faults in contrast
to the existing techniques?

RQ2. What is the pace of test coverage by the re-ordered test sequence obtained from proposed-SFLA
and other contrasting algorithms? Is the proposed-SFLA efficient enough in tracking the coverage at
the earliest?

RQ3. Compared with the original order of the test cases, how productive is the prioritized order
presented in the case study in terms of coverage and fault?

RQ4. Taking the case study into reference, does the proposed-SFLA generates encouraging outcomes
concerning the APFD?

4.1 Comparative Study

To answer RQ1 and RQ2, apart from test function 1, this study has considered 4 other test
functions with high and medium-level complexities. The proposed-SFLA approach is compared with
those algorithms that are highly stable in the domain of memetics or are not entirely approaching
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randomnesses, such as GA-infused-Multi-walk (Optimized Multi-walk) [5], Memetic algorithm [23],
PSO [24], and Multi-walk [32].

Through the observations depicted in Fig. 8a, it is seen that the proposed-SFLA achieved the
maximum fault rate at

⌈
n
2

⌉
th position in Gbest_sol that means at only 54% of the test suite execution, 43%

of the faults are already detected. Optimized multi-walk [5] and PSO [24] also yielded a fault detection
rate of 40% and 41%, which are near to the results of the proposed-SFLA, respectively. However,
the nature shown by the memetic algorithm [23] in covering the potential faults at the earliest is not
promising. One reason for the same is the dominance of shielded test cases at the unit level; however,
when memetic is practiced at the integration level to attain TCP, this dominance could lower fault
rates for prioritized test sequences. To comprehend what a shielded test case is, it is a test case whose
execution flow is entirely similar to the other test case in a test suite; nonetheless, the test data that it
holds might be different.

Figure 8: Graphs depicting the growth of fault detection rate among the re-ordered test cases

For cases stated in Figs. 8b and 8c, the fault detection rate by the proposed-SFLA is maximum
at

⌊
n
2

⌋
, however, in Figs. 8d and 8e, the significant gap could be detected before

⌊
n
2

⌋
and at

⌈
n
2

⌉
,

respectively. It is also seen that the shieldedness of test cases had a severe impact on the performances
of optimized multi-walk [5] and PSO [24]. The performance of basic multi-walk [32] is reasonably
satisfactory compared with memetic; nevertheless, this algorithm’s performance is also indirectly
proportional to the shieldedness effect.

According to the coverage statistic shown in Fig. 9a, the memetic approach [23] is again the worst
performer since it retains only 70% of the coverage of test function when approximately 60% of the
re-ordered test cases are executed. Optimized [5] and basic multi-walk [32] performed almost on the
same scale, where the first secured the coverage rate of 75% and the latter 79%. PSO [24] appeared to
be finer than these 3 algorithms since the coverage rate that it procured is 83% at

⌈
n
2

⌉
th position of

execution, yet proposed-SFLA outperformed with approximately 88% of attained test coverage at the
same position. This could be inferred from Fig. 9 that in 3 out of 5 instances, PSO is the second-best
in satisfying the coverage of the test functions. The comparison outcomes in terms of Cmc and CmF

for test function 1 are listed in Table 4.
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Figure 9: Graphs depicting the growth of coverage rate among the re-ordered test cases

Table 4: Algorithms’ performance data for test function 1

Algorithms Prioritized test sequence Cmc rate Total CmF

Memetic TC7, TC5, TC4, TC6, TC2, TC3, TC1,
TC10, TC11, TC8, TC9

9, 10, 10, 10, 13, 17, 18, 21, 22,
23, 24

14.14

Multi-walk TC8, TC9, TC7, TC3, TC11, TC4, TC2,
TC1, TC10, TC6, TC5

7, 8, 14, 15, 18, 19, 22, 23, 24, 24,
24

20.86

PSO TC8, TC10, TC4, TC7, TC6, TC2, TC1,
TC5, TC9, TC11, TC3

7, 8, 16, 17, 17, 20, 20, 21, 22, 23,
24

20.89

Optimized
multi-walk

TC7, TC11, TC2, TC4, TC6, TC3,
TC10, TC1, TC8, TC9, TC5

9, 13, 16, 17, 17, 18, 19, 20, 23,
24, 24

23.14

Proposed-
SFLA

TC10, TC3, TC2, TC8, TC4, TC11,
TC7, TC1, TC9, TC6, TC5

7, 11, 14, 17, 20, 21, 22, 23, 24,
24, 24

30.46

It could be observed from Table 4 that in the case of moderate shieldedness, optimized multi-
walk [5] is the second-best in satisfying the coverage and fault at the earliest. This further ensured that
optimized multi-walk could be considered the finer option for test codes possessing high complexity
and higher or moderate shieldedness effect among the test cases. However, there is no guarantee that
the results achieved are optimal since randomness could also affect them in some instances.

With reference to the coverage and fault detection pace of the original order of the test cases and
the prioritized order through the proposed-SFLA, Fig. 10 exhibits how the speed drastically changes
at the peak, i.e., after

⌊
n
2

⌋ − 1. The nature of the proposed-SFLA depicted in Fig. 10 also addresses
RQ3. The justifications regarding the APFD computation [2] for test function 1 are shown in Fig. 11,
which also answers RQ4. In Fig. 11, it is seen that the APFD estimate of optimized multi-walk [5] is
slightly lower than basic multi-walk, which in turn is a rare scenario. Since the basic multi-walk [32]
incorporates approximately 80% of the randomness, determining its efficiency in terms of the earliest
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fault and coverage detection for a specific case is almost uncertain as it could even go beneath the
efficiency levels of the memetic algorithm [23]. On the contrary, PSO [24] is better in dealing with
highly complex code but with a moderate or less shieldedness effect. However, whether the absence of
this effect would escalate or de-escalate its efficiency is not yet analyzed. Proposed-SFLA, on the other
hand, surpassed all other algorithms by achieving around 70% of APFD with no significant effect of
randomness and shieldedness (Fig. 11).

Figure 10: Comparative depiction between original test case order and prioritized test case order by
proposed-SFLA for test function 1

Figure 11: Comparative analysis among algorithms over evaluation metric (i.e. APFD) for test
function 1

5 Conclusion

Maximization of either fault or coverage at the earliest is the necessitated prioritization goal in the
studies approaching TCP. These studies, using some heuristics or meta-heuristic techniques, prioritize
the test cases to attain the specified goal. However, with such a prioritization goal and the lack of multi-
objectiveness, one or the other testing information related to test cases or test code gets compromised
during TCP. Apart from that, previous research has concentrated their TCP techniques exclusively on
the third level of testing, i.e., system. This study tries to shift this focus on the most vulnerable levels
of testing, i.e., unit and integration, by proposing a natural memetics-inspired framework (i.e., SFLA)
for TCP. The baseline structure of SFLA is infused with the critical parameters to have prioritized
sequences of test cases at the unit and integration level of testing of SUT.
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The experimental environment was configured to enhance the rate of test coverage and fault, both
at the earliest in the prioritized sequence. It could be inferred from experimental data that Gbest_sol

(prioritized sequence) acquired through proposed-SFLA suffice total test coverage at 9th position
with a total CmF of 30.46 for test function 1. The peak is achieved at

⌈
n
2

⌉
th position in Gbest_sol. An

average APFD estimate concluded that the proposed-SFLA surpassed optimized multi-walk, PSO,
basic multi-walk, and memetic by 11.51%, 12.24%, 13.99%, and 21.7%, sequentially.

Since the Gbest_sol is competent in disclosing faults at the earliest, it could be said that the probability
of localizing faults is also improved. However, for future perspective, if additional measures such as
fault score, frequency of multi-line faults, and probability of faults in non-weighted statements could
be tracked from previous releases of SUT, the ρ

[
TCi=1ton ∗ Nj=1toMaxst

]
database in this study could

be further improved and thus could enhance the percentile of fault localization. Additionally, more
intricate branching in the CFG and the increased number of leaf nodes (unit nodes) that might be
tested by single test cases could make the working of proposed-SFLA susceptible. Since this work
is the first to adopt SFLA for TCP in the unit and integration environment, a hybridization of the
proposed-SFLA could be practiced for stability.
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