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ABSTRACT

Due to the large unexplored compositional space, long development cycle, and high cost of traditional trial-and-
error experiments, designing high strength aluminum-lithium alloys is a great challenge. This work establishes
a performance-oriented machine learning design strategy for aluminum-lithium alloys to simplify and shorten
the development cycle. The calculation results indicate that radial basis function (RBF) neural networks exhibit
better predictive ability than back propagation (BP) neural networks. The RBF neural network predicted tensile
and yield strengths with determination coefficients of 0.90 and 0.96, root mean square errors of 30.68 and 25.30,
and mean absolute errors of 28.15 and 19.08, respectively. In the validation experiment, the comparison between
experimental data and predicted data demonstrated the robustness of the two neural network models. The tensile
and yield strengths of Al-2Li-1Cu-3Mg-0.2Zr (wt.%) alloy are 17.8 and 3.5 MPa higher than those of the Al-1Li-
4.5Cu-0.2Zr (wt.%) alloy, which has the best overall performance, respectively. It demonstrates the reliability of
the neural network model in designing high strength aluminum-lithium alloys, which provides a way to improve
research and development efficiency.
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1 Introduction

The severe situation of rapid reductions in fuel resources has made the demand for lightweight
materials increasingly urgent, especially in the aerospace field [1–5]. The aluminum-lithium alloy’s
excellent properties of low density and high strength make it an ideal material for aircraft and new
weapons [6–11]. Research has found that every 1 wt.% of lithium added reduces aluminum alloy density
by 3% and increases modulus by 6% [12–17]. By replacing conventional aluminum alloy components
with aluminum-lithium alloys, component mass can be reduced by 10% to 20%, and stiffness can be
improved by 10% to 20% [16,18,19]. Hence, in aerospace and defense fields, aluminum-lithium alloys
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are widely used [20–23]. Due to the wide range of unexplored components, traditional trial-and-error
methods consume time, manpower, and cost, and cannot meet the design requirements of high-end
metal materials. Thus, designing high strength aluminum-lithium alloys remains a huge challenge.

With the increasing computational power of computers, ML can explore the non-linear relation-
ship between material composition, process, and performance by learning and training algorithms
on complex datasets [24,25]. On materials, ML is seen as a “semi-empirical” method that can be
combined with other simulation calculation methods (first-principles calculation [26,27], phase field
method [28,29], molecular dynamic [30–32], and high-throughput calculation [33,34]) to explore
the physical quantitative relationships between material data and optimize material performance
[35–38]. Compared with traditional trial-and-error experiments, the ML method can more efficiently
and quickly generate new models from material data. Currently, ML has been successfully used for the
performance prediction of high-performance aluminum alloys, including tensile strength [39–43], yield
strength [39,43,44], elongation [39,41], and hardness [45]. Li et al. [39] investigated the relationship
between the composition processes of the 7-series aluminum alloys using a genetic algorithm. The
ultimate tensile strength (UTS) of the Al-7.5Zn-2Mg-1.8Cu-0.12Zr (wt.%) alloy was 664 MPa, the
yield strength (YS) was 609 MPa, and the elongation was 13.5%. Jiang et al. [41] proposed a
performance-oriented ML design system that can quickly obtain aluminum alloy composition designs
that meet target strength and toughness requirements. The tensile strength of three typical alloys
measured through experimental verification is 707–736 MPa. Although the ML method is widely used
in the aluminum alloy field, its application in the aluminum-lithium alloy field is limited. Juan et al. [43]
quickly designed a high strength aviation aluminum alloy (UTS = 812 MPa, YS = 792 MPa) using
an ML knowledge design perception system. The database used for this study is not exclusively for
aluminum-lithium alloys, and the proportion of aluminum-lithium alloy data is very small. Li et al. [46]
established an AdaBoost regression prediction model to achieve the design of high-performance
aluminum-lithium alloys. However, the non-linear relationship between strength, composition, and
process remains unclear because no predictive regression model has been developed in this study. With
the in-depth research of Al-Li alloys, some experimental data on the composition, processing, and
performance of aluminum-lithium alloys have been accumulated. Therefore, there is hope to achieve
accelerated design of high-performance aluminum-lithium alloys through machine learning.

This study proposes a performance-oriented machine learning strategy for the “composition-
process-performance” of Al-Li alloys. We have established two neural network models with composi-
tion and heat treatment process as input features, UTS and YS as output, and conducted experimental
verification. The reliability of the neural network model for designing high strength aluminum-lithium
alloys has been confirmed, and this strategy effectively shortens the research and development cycle,
reduces costs, and accelerates the discovery and design of new materials.

2 Machine Learning Model

This study proposes a performance-oriented design strategy of “composition-heat treatment-
mechanical properties” of Al-Li alloys. Fig. 1 shows the specific research methodology, which includes
data collection, data preprocessing, feature analysis, model construction, model evaluation, and
performance prediction.

2.1 Data Collection

This study collected the composition, heat treatment process, and performance data of aluminum-
lithium alloys published in the literature over the past decade for data set construction. Among them,
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the alloy compositions include the elements Li, Mg, Cu, Si, Fe, Zr, and Sc, the heat treatment processes
include solid solution temperature, time, aging temperature, time, and the performance parameters
mainly include tensile strength and yield strength. It should be noted that to avoid excessive features
caused by complex machining steps and ensure prediction accuracy, only aluminum alloys processed by
traditional forming methods are considered, excluding severe plastic deformation techniques [47,48].

Figure 1: Schematic diagram of machine learning design of high-strength Al-Li alloy

2.2 Data Preprocessing

Data preprocessing is one of the important steps in developing efficient and accurate ML models.
The processing of outliers and missing values, data normalization, and partitioning of training and
testing sets are important data preprocessing techniques [49]. For data samples with significant missing
feature values, we choose to delete them directly. When collecting data, we select data with more
complete performance values so there are fewer missing performance values. We use the mean to
replace the missing values. In the end, 59 sample data were obtained. Table 1 shows the content range
of alloy elements. Table 2 shows the range of heat treatment conditions. The target values for UTS and
YS are 340 and 200 MPa, respectively.

Table 1: Alloy elements and the range of element content in the dataset

Alloying element Li Mg Cu Si Fe Zr Sc

Content (wt.%) 0–3.16 0–6 0–4.5 0–0.85 0–0.13 0–0.21 0–0.31

Table 2: The range of heat treatment conditions in the dataset

Heat treatment
process

Solution
Tem1/°C

Solution
Time1/h

Solution
Tem2/°C

Solution
Time2/h

Age
Tem/°C

Age
Time/h

Range 0–570 0–32 0–560 0–36 0–180 0–32
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Afterward, the processed dataset will be normalized. Normalization is a commonly used method
for standard data preprocessing of numerical features. The right kind of normalization can not only
speed up the training speed but can also improve the predictive ability of the model [50–52]. This
study used min-max standardization to scale the numerical values to intervals of [0, 1], represented by
Eq. (1):

x′ = x − min
max − min

(1)

Among them, x represents the original data, x′ represents the normalized data, max represents
the maximum of x, and min represents the minimum of x.

2.3 Feature Analysis

The correlation coefficient matrix graph can intuitively represent the correlation relationship
between input data [43,46]. The Pearson correlation coefficient between any two features is calculated
by Eq. (2):

r =
∑

[(xi − x) × (yi − y)]√∑
(xi − x)

2
√∑

(yi − y)
2

(2)

Among them, xi and yi are any two feature values, x is the average value of xi, and y is the average
value of yi.

2.4 Model Construction

2.4.1 Back Propagation Neural Network

The BP neural network can quickly learn and establish relationships between data without the
need to input mathematical equations between data relationships in advance. It is a commonly
used error back propagation structure. The BP neural network continuously optimizes the network
parameters until the error reaches the set target value [39,53,54]. Fig. 2 shows the structure of the BP
neural network. Each layer of neurons in the BP neural network is connected to each other without
feedback links, and there is no connection between neurons within the layer. The layers are connected
to form a feed-forward neural network system [55,56]. The calculation formula for hidden layer nodes
is shown in Eq. (3):

h = √
n + j + a (3)

Among them, n, h, and j are the number of nodes in the input, hidden, and output layers,
respectively, and a is a constant between 1 and 10.

Numerical overflow can lead to insufficient computational accuracy in the BP neural network.
Therefore, we normalize the characteristic values and target values of the samples using the same
method. Fig. 3a shows the algorithm steps of the BP neural network.

2.4.2 Radial Basis Function Neural Network

The RBF neural network typically has three layers. The hidden layer of the RBF neural network
uses RBF as the activation function. The output layer is a linear combination that is combined with the
output layer and the hidden layer to form a feed-forward neural network. Fig. 3b shows the algorithm
steps of the RBF neural networks. The output formula is shown in Eq. (4):
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F (x) =
N∑

i=1

wiφ (||x − ci||) (4)

Figure 2: Topological structure of BP neural network

Figure 3: Algorithm steps of two neural networks (a) BP neural network; (b) RBF neural network
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Among them, N is the number of neurons in the hidden layer, φ is the radial basis function, ci is
the central vector, and wi is the output weight.

RBF neural network has similar structures to the BP neural network, but its training speed is
faster than the BP neural network. RBF neural networks have characteristics that other forward neural
networks do not possess, such as global optimization and the ability to approximate any nonlinear
function.

2.5 Model Evaluation

We selected three evaluation indicators to evaluate the performance of the two neural network
models: determination coefficient R2, root mean square error (RMSE), and mean absolute error
(MAE). The calculation formula is shown in Eqs. (5)–(7):

R2 = 1 −
∑m

i=1

(
yi − ŷi

)2

∑m

i=1 (yi − y)
2 (5)

RMSE
(
y, ŷ

) =
√√√√ 1

m

m∑
i=1

(
yi − ŷi

)2
(6)

MAE
(
y, ŷ

) = 1
m

m∑
i=1

∣∣(yi − ŷi

)∣∣ (7)

Among them, yi is the experimental value, ŷi is the predicted value, y is the average value of yi, and
i is the number of samples participating in the evaluation (i = 1, 2, . . . , m).

R2 is used to characterize the interpretability between the data in ML regression models. Generally
speaking, R2 ranges between 0 and 1, with values nearer to 1 indicating input features and output
results with better interpretability. However, we cannot measure the performance of the model solely
by this standard. Therefore, RMSE and MAE are used together to assess predictive errors. RMSE and
MAE can more directly reflect the size of the model’s prediction error, and the closer they are to zero,
the more accurate the model’s prediction results will be.

3 Results and Analysis
3.1 Feature Correlation Analysis

Fig. 4 shows the Pearson correlation coefficient r value. Based on the r values between −1 and
+1, it can be determined whether the two variables are linearly correlated (r = +1 represents positive
correlation, r = −1 represents negative correlation) or uncorrelated (r→0). In addition to the r value,
color change corresponds to the correlation between data, with green and red indicating strong positive
and negative correlations, respectively. |r|> 0.95 indicates a strong linear correlation between these two
features, indicating that they have similar effects on alloy properties [43,57,58]. There is a certain ratio
relationship between the features Mg and Mg/Li, with an r value of 0.95. There is a strong positive
correlation between the feature heat treatment conditions (solid solution temperature, time, aging
temperature, time), with r values between 0.8 and 0.98. The weakest correlation was observed between
feature Si and the target value UTS, as well as between feature Cu, solid solution time 1, and target
value YS, with an r value of less than 0.1. The r value between UTS and YS is 0.88, indicating a strong
correlation.
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Figure 4: Heat map of Pearson correlation coefficient matrix

3.2 Model Accuracy Analysis

The pre-processed dataset is randomly divided into training and test datasets in a 4:1 ratio. To
better evaluate the robustness of the ML model, the training model uses a training dataset, and the
trained model is tested using a testing dataset. The neural network model was established between
alloy composition, process, and performance, with alloy composition, process as inputs and UTS, YS
as outputs. By repeatedly training two models, the prediction results of the training and prediction sets
are obtained. Figs. 5 and 6 show the predicted results of the BP neural network. Figs. 7 and 8 show
the predicted results of the RBF neural network. The fitting curves of the true and predicted values
show that the predicted values of the two models are very close to the true values, indicating that the
training results of the two neural network models are accurate.

Fig. 9 shows the results of two neural networks predicting UTS and YS, respectively. The results
indicate that the R2 of UTS and YS predicted using the BP neural network is 0.84, 0.95, RMSE is
38.56, 26.29, and MAE is 33.04, 20.31, respectively. The R2 of UTS and YS predicted using the RBF
neural network is 0.90 and 0.96, RMSE is 30.68 and 25.30, and MAE is 28.15 and 19.08, respectively.
By comparing the calculation results and fitting graphs of the two models, we can see that the fitting
degree of the RBF neural network is closer to the diagonal than the BP neural network, indicating
that the RBF neural network model exhibits a better ability to predict.
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Figure 5: Comparison of true and predicted values of UTS predicted by BP neural network (a) training
set; (b) test set
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Figure 6: Comparison of true and predicted values of YS predicted by BP neural network (a) training
set; (b) test set

4 Discussion
4.1 Feature Importance Analysis Based on Shapley Values

The Shapley value is used to describe the contribution of each feature to the predicted target
[59–61]. This study analyzed the degree of influence of different features on the performance indicators
of UTS and YS, as shown in Fig. 10. Figs. 10a and 10c represent the Shapley values of UTS and YS
for a single feature, respectively. The vertical axis sorts features based on the size of the Shapley value
on the horizontal axis. Each point on the graph represents a sample, with red and blue corresponding
to high and low values, respectively. The sample color maps to the feature values. Figs. 10b and 10d
represent the absolute values of a single feature for UTS and YS calculations, respectively, with the
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vertical axis corresponding to the feature term and the horizontal axis representing the mean absolute
values of Shapley values, reflecting the importance of each feature in prediction.
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Figure 7: Comparison of true and predicted values of UTS predicted by RBF neural network (a)
training set; (b) test set
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Figure 8: Comparison of true and predicted values of YS predicted by RBF neural network (a) training
set; (b) test set

The blue sample is on the negative x-axis, and the red sample is on the positive x-axis, indicating
that the feature is positively correlated with the predicted target. Conversely, the feature is negatively
correlated with the prediction target. Samples with positive Shapley values and large values indicate
that it has a positive impact on the prediction results and will increase the predicted value of UTS
or YS. On the contrary, samples with negative Shapley values and small values indicate that it has
a negative impact on the prediction results and will decrease the prediction value of UTS or YS. As
shown in Fig. 10a, the features that are significantly positively correlated with UTS include aging
temperature, solid solution temperature 1, Li element content, and aging time, while the features that
are significantly negatively correlated with UTS include Mg element content, Mg/Li, and Cu element
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content. As shown in Fig. 10b, the top 5 features that contribute most to the prediction of UTS are
Mg element content, aging temperature, solid solution temperature 1, Mg/Li, and Cu element content.
As shown in Fig. 10c, the features that are significantly positively correlated with YS include aging
temperature, aging time, Li element content, and solid solution temperature 1, while the features that
are significantly negatively correlated with YS include Mg element content and Mg/Li. As shown in
Fig. 10d, the top 5 features that contribute the most to the prediction of YS are aging temperature,
Mg element content, Mg/Li, aging time, and Cu element content.
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Figure 9: The results of training (a) and (b) BP neural network; (c) and (d) RBF neural network

Mg and Cu elements are the main strengthening elements of aluminum-lithium alloys, and their
addition can play a certain role in solid solution strengthening, while also reducing the solid solubility
of Li in the matrix and promoting the precipitation of δ′ (Al3Li) phase and T1 (Al2CuLi) phase, thereby
improving the strength of the alloy. Therefore, the content of Mg and Cu is an essential feature for
predicting UTS and YS. Aluminum-lithium alloys belong to the heat-treatable strengthening alloy.
The precipitation sequence and distribution in aluminum-lithium alloys are affected by different
solution temperatures, solution times, aging temperatures, and aging times, which in turn affects alloy
performance. Fig. 10 shows that aging temperature and solution temperature 1 are important features
for predicting the UTS of aluminum-lithium alloys, while aging temperature and time are important
features for predicting the YS of aluminum-lithium alloys.



CMC, 2023, vol.77, no.2 1403

Figure 10: Shapley value analysis of UTS and YS with different features (a) The Shapley value of a
single feature on UTS; (b) The absolute value of a single feature after UTS calculation; (c) The Shapley
value of a single feature on YS; (d) The absolute value of a single feature after YS calculation

4.2 Experimental Application

Three types of alloys (1#, 2#, and 3#) and two sets of experimental data of experimental alloys (4#
and 5#) (not included in the model training) were selected from the recently published literature [62,63]
to ensure the accuracy of the prediction model obtained in this work. The prediction was performed
by the trained neural network model. Table 3 lists the composition of the predicted alloy.

Figs. 11a and 11b show the UTS and YS of the alloys predicted using the two models compared
with the experimental values, respectively. Through observation, it was found that the RBF neural
network model exhibits a higher accuracy in prediction than the BP neural networks, which is
consistent with the results obtained from the model training, further verifying the reliability of the
two neural network prediction models. Tables 4 and 5 calculate the prediction errors of the two neural
network models. The maximum prediction error of the BP neural network model in predicting UTS is
−13.8% for alloy 4#, in predicting YS is −12.6% for alloy 1# and 13.5% for alloy 4#; the maximum
prediction error of the RBF neural network in predicting YS is 14% of the alloy 5#; all other errors
are within 8.5%. This indicates that the neural network model can effectively predict the UTS and YS
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of new alloys, and the RBF neural network model has better performance than the BP neural network
model.

Table 3: Composition of predicted alloy

Alloy Al (wt.%) Li (wt.%) Cu (wt.%) Mg (wt.%) Zr (wt.%)

1# Bal. 1.5 0.5 5 0.1
2# Bal. 3 2 0.2 0.15
3# Bal. 1.5 4.5 0 0.2
4# Bal. 2 1 3 0.2
5# Bal. 2 1 1 0.2
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Figure 11: Validation of two model predictions

Table 4: Experimental data and predicted data of UTS prediction model

Alloy UTS (MPa) Prediction error
of UTS

Experimental RBF predicted BP predicted RBF BP

1# 293.0 287.0 272.5 −2.0 −7.0
2# 335.0 327.2 311.4 −2.3 −7.0
3# 362.0 345.9 331.3 −4.4 −8.5
4# 358.8 341.9 309.2 −4.7 −13.8
5# 252.6 235.7 242.5 −6.7 −4.0
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Table 5: Experimental data and predicted data of YS prediction model

Alloy YS (MPa) Prediction error
of YS

Experimental RBF predicted BP predicted RBF BP

1# 168.0 157.5 146.8 −6.2 −12.6
2# 141.0 132.6 130.2 −6.0 −7.7
3# 221.0 218.1 239.9 −1.3 8.5
4# 211.5 228.7 240.1 8.1 13.5
5# 171.0 194.9 161.9 14.0 −5.3

Fig. 12 shows the results of this study and the reported UTS and YS of the same type of aluminum-
lithium alloys. The comparison shows that the UTS of experimental alloy 4# is 358.8 MPa, which is
17.8 MPa higher than the UTS of Al-1Li-4.5Cu-0.2Zr (wt.%) alloy with the best overall performance.
The YS of experimental alloy 4# is 211.5 MPa, which is 3.5 MPa higher than the YS of Al-1Li-4.5Cu-
0.2Zr (wt.%) alloy with the best overall performance.
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Figure 12: Comparison of UTS and YS of high-strength Al-Li alloy

5 Conclusion

In this study, we collected data on Al-Li alloys from literature, including composition, process,
and mechanical properties, and established predictive models for the strength of Al-Li alloys using
the BP neural network and RBF neural network. The final results indicate that RBF neural networks
exhibit better predictive ability than BP neural networks, with R2 of 0.90 and 0.96 for UTS and YS,
RMSE of 30.68 and 25.30, and MAE of 28.15 and 19.08, respectively. Finally, the accuracy of the
two models was verified through experiments, indicating that the models can effectively predict the
UTS and YS of new alloys. Compared with the reported properties of Al-Li alloys, the UTS and YS
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of Al-2Li-1Cu-3Mg-0.2Zr (wt.%) alloy are 17.8 and 3.5 MPa higher than the UTS and YS of the Al-
1Li-4.5Cu-0.2Zr (wt.%) alloy with the best overall performance, respectively. The RBF neural network
model can provide a reference for the accelerated design of high strength aluminum-lithium alloys.
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