.W\ Computers, Materials &)
‘ Continua & Tech Science Press

DOI: 10.32604/cmc.2023.042432

ARTICLE Check for

updates

Data Analysis of Network Parameters for Secure Implementations of
SDN-Based Firewall

Rizwan Igbal'-', Rashid Hussain’, Sheeraz Arif’, Nadia Mustaqim Ansari’ and Tayyab Ahmed Shaikh’

'Department of Telecommunication Engineering, Dawood University of Engineering & Technology, Karachi, Pakistan
?Faculty of Engineering Sciences and Technology, Hamdard University, Karachi, Pakistan

*Faculty of Information Technology, Salim Habib University, Karachi, Pakistan

*Department of Electronic Engineering, Dawood University of Engineering & Technology, Karachi, Pakistan
*Corresponding Author: Rizwan Igbal. Email: rizwan.igbal@duet.edu.pk

Received: 30 May 2023 Accepted: 29 August 2023 Published: 29 November 2023

ABSTRACT

Software-Defined Networking (SDN) is a new network technology that uses programming to complement the data
plane with a control plane. To enable safe connection, however, numerous security challenges must be addressed.
Flooding attacks have been one of the most prominent risks on the internet for decades, and they are now becoming
challenging difficulties in SDN networks. To solve these challenges, we proposed a unique firewall application
built on multiple levels of packet filtering to provide a flooding attack prevention system and a layer-based packet
detection system. This study offers a systematic strategy for wrapping up the examination of SDN operations. The
Mininet simulator examines the effectiveness of SDN-based firewalls at various network tiers. The fundamental
network characteristics that specify how SDN should operate. The three main analytical measures of the network
are jitter, response time, and throughput. During regular operations, their behavior evaluates in the standard SDN
conditions of Transmission Control Protocol (TCP) flooding and User Datagram Protocol (UDP) flooding with no
SDN occurrences. Low Orbit Ion Cannon (LOIC) is applied to launch attacks on the transmission by the allocated
server. Wireshark and MATLAB are used for the behavioral study to determine how sensitive the parameters are
used in the SDN network and monitor the fluctuations of those parameters for different simulated scenarios.

KEYWORDS

Software defined networking; firewall; POX controller; open v switch; Mininet; OpenFlow

1 Introduction

Due to several claims that rely on data-driven and reliable facts-sharing paradigms, data networks
are becoming more prevalent. The Industrial Internet of Things (IIoT) and the Internet of Things (IoT)
are the most dominant. As they develop and are exposed to increasingly unequal dynamic behavioral
changes, current network architectures still have a management complexity problem. Software-
Defined Networking (SDN) addresses the difficulty of managing contemporary data networks [1,2].

Recent studies have examined several significant new technologies, including edge/fog computing,
Blockchain (BC), SDN, IIoT, 5G, Machine Learning (ML), and Wireless Sensor Networks (WSN).

This work is licensed under a Creative Commons Attribution 4.0 International License,
@ @ which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

https://www.techscience.com/journal/CMC
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2023.042432
https://www.techscience.com/doi/10.32604/cmc.2023.042432
mailto:rizwan.iqbal@duet.edu.pk

1576 CMC, 2023, vol.77, no.2

All these technologies offer data confidentiality, integrity, and authenticity in their respective use cases
(particularly in the business sector). SDN provides infrastructure flexibility, while BC safeguards the
privacy of smart IIOT services [3].

SDNs perform separate control, management, and forwarding planes [4]. To aid with this
endeavor, SDNs enable openness. Most modern data networks are open, programmable, and adapt-
able. In a typical SDN, operators can dynamically configure network—device programs to ensure
the best possible resource distribution and usage. The SDN controller stores all network information
like topology, protocols, applications, and security parameters. This architecture permits forwarding
devices in SDNSs to implement an integrated interface for data interchange with the SDN controller.
They obtain the operational state of the network for network operations such as traffic engineering.
Giving to the literature, the critical issue in modern SDN-based architecture with the enlarged coding,
flexible environment, and scalable like IoT and IIoT networks. All mentioned reasons increased
vulnerability and compromised security results in the Distributed Denial of Service (DDoS) flooding
attacks [5].

Conventionally, DDoS attacks are well-planned attacks from several hacked hosts. They are
directed at network nodes or end-user devices to steal their share of the available bandwidth or entirely
shut them down. Researchers have launched DDoS flooding attacks in previous years. They are
considered the most hazardous means of traffic on the internet. Hence, these flooding attacks are
well investigated in the current body of literature [6,7]. According to numerous researchers in this
field, there is no standard technique to handle these types of attacks. Typically, attackers use a botnet
to launch attacks. Consequently, device node operators on attacked networks frequently ignore that
attacks originate from their hardware and network addresses [8].

Modern SDNSs are being researched by analyzing data network performance indicators and the
many types of DDoS flooding attacks. As discussed further in Section 2, it remains a relatively grey
area [9—11]. Throughput, jitter, and response time measurements have been used in several research
projects to assess the effectiveness and performance of SDNs. They are, therefore, maybe the most
well-known SDN performance measures. Network administrators can identify and differentiate DDoS
attacks on SDN platforms by analyzing the behavior of SDN performance indicators under common
SDN DDoS states.

Consequently, more effective mitigation strategies, action plans, and response plans are devised
to ensure the consistency and accessibility of current and expectations of SDNs. This study uses the
emulated network’s jitter, latency, and throughput to assess how DDoS flooding attack scenarios affect
SDN performance [12—14].

A firewall monitors network traffic and decides whether to allow or deny traffic based on
predefined rules. Through time, it has provided network security. It also analyses every outgoing
and incoming message and blocks those not complying with a predetermined set of restrictions. It
aids in overcoming issues caused by attackers by employing various forms of attacks [15]. Types
of firewalls include Stateful and Stateless firewalls. Packets that fit into tracked links can be passed
through a stateful firewall using attributes such as source and destination IP addresses, port numbers,
and sequence numbers. Identify the communication path during the transfer of the packet. Packet
encryption is also an option [16]. It is safer than a stateless firewall regarding security and throughput
for significant traffic volumes. Similarly, using its ruleset, a stateless firewall verifies and forwards all
incoming packets. By using distinct dynamic criteria, machine learning algorithms will improve the
capacity of security solutions for protecting the upcoming 5G and future networks [17].

CMC, 2023, vol.77, no.2 1577

The SDN model demonstrated it in the literature, and the related dataset was analyzed and
evaluated by a representative of actual SDN and SDN scenarios. As a result, additional research was
conducted on the SDN model, and different data was extracted to describe the findings by evaluating
the performance parameters of the SDN network through TCP and UDP protocols in the presence of
DDoS attacks. Jitter, latency, and throughput are common SDN performance indicators that have
been the focus of behavioral research on SDN operations. Reliable SDN performance indicators,
including jitter, response time, and throughput, were subjected to regression-based sensitivity analysis
(RSA). Determine their pairwise relationships for practical SDN operations. Low-cost, inference-
driven characterization and evaluation of SDN processes in practice [18-20].

Security is a major problem because it was not adequately considered in the original design of the
SDN architecture. Therefore, it is crucial to construct a reliable security mechanism to safeguard the
network from both inside and outside threats without compromising the SDN’s intended function.
To put it another way, defense-in-depth is typically regarded as a good solution for networks with
varying degrees of trust. Authors who aimed to improve network safety were inspired to work with
SDN technology because of its logical and centralized management.

2 Related Work

DDoS attacks launch against an SDN network’s infrastructure, control, and application layers;
the consequences can be significantly more severe than in conventional networks. Therefore, for the
immediate or real-time detection and evaluation of problematic SDN activities, it is necessary to
conduct an interactive analysis of the performance metrics that serve as the foundation for the proper
operation of SDN. Network performance measurements typically investigate the potential quality of
service enhancement strategies in SDN environments. Examples include anticipating packet scheduler
actions for hierarchical token buckets (HTB), stochastic fairness queueing (SFQ), and random early
detection using different metrics values like response time and throughput of the SDN. Consequently,
the HTB and SFQ packet scheduler was superior to the other evaluated typical response time and
throughput designs. Even though the work accurately illustrates a specific fraction of SDN for quality-
of-service monitoring, a comprehensive behavioral investigation of the SDN metrics has not been done
[21,22]. According to the researcher’s analysis, new types of attacks occurred in cloud systems, such as
flow table overloading DDoS attacks. Flow table sharing is the proposed method to encounter defined
attacks [23]. There are many possibilities to reduce the effect of DDoS attacks in cloud computing,
but DDoS attacks are still creating problems for researchers and host resources. This paper proposed
a low-overhead effective operation for handling DDoS attacks. The proposed mechanism is based on
the entropy value between DDoS attacks and normal traffic [24]. Researchers intended a protective
activity to detect such attacks by analyzing entropy values. Then, according to entropy values, the
SDN-cloud-enabled online social network (OSN) will block that port to combat DDoS attacks [25].

Performance parameters like jitter, latency, throughput, and packet loss investigate to enhance
the SDN network’s quality. In every instance, the QoS-aware routing method (QRS) suggested and
chose a route with minimum jitter, end-to-end delay, and greater throughput [26]. However, illative
evaluations of how SDN performance metrics change between states do not outperform experimental
designs. We utilized Mininet and GNS3 to simulate and characterize both an SDN and a traditional
network. It is important to compare the metrics used to measure the stability of SDN designs with
those used to measure the strength of conventional network topologies. No behavioral evaluation of
network performance measures [27] was provided, even though experimental latency analysis showed
that the SDN provides a mean latency around three times lower than the legacy system.

1578 CMC, 2023, vol.77, no.2

The researchers have reported a local sensitivity study of throughput, reaction time, and jitter
measurements in different SDN conditions. Due to widespread DDoS flooding attacks against
the SDN, the SDN’s throughput, jitter, and reaction time measurements are statistically sensitive
to the transition from normal to abnormal operations. Jitter is the most sensitive SDN metric or
parameter. As a result, there is a need for a comprehensive analytical approach that can assess the
whole distributions and tendencies of SDN parameters and metrics. This study follow-up confirmed
that SDN states effectively map to their significant performance metrics (numerical or continuous
variables). All the classifiers we looked at to determine SDN states [28,29].

Depending on specified rules, a firewall monitors network traffic and decides whether to allow
or deny traffic. Over time, it has offered network security. Additionally, it looks at each incoming
and outgoing message to prohibit any that do not adhere to a set of rules or standards. Employing
various attacks aids in solving the issues brought forth by the attackers [30]. Two categories of firewalls
exist: stateful and stateless. Attributes of packets, such as source and destination IP addresses, port
numbers, and sequence numbers, are utilized within tracked connections. A stateful firewall monitors
the link. It identifies the communication path during packet transmission. Encrypting messages is
another method [31].

It is more secure than a stateless firewall regarding security and speed for considerable traffic
volumes. In a stateless firewall, all incoming packets are similarly examined and forwarded according
to the ruleset. The link never traces, as opposed to a stateful firewall. Based on source and destination
IP addresses, network traffic is analyzed without knowledge of the traffic pattern or data flow [32].

The architecture of ML-based intrusion detection systems (IDSs) for a better comprehension of
recent forms of intrusion detection in SDNs and to provide major hints for future research in this area
[33]. Machine learning methods can strengthen detection rates, decline false alarm rates, and realistic
processing and transmission values [34].

The Graph connectivity method and several trust-based routing principles are used for Crossfire
attack detection and mitigation. The norms are applied in the SDN switches for better bandwidth
utilization [35].

Based on the works, most current works in accessible literature provide solutions for boosting the
quality of service to detect and categorize the status of the SDN in the face of attacks. To illustrate
and draw inferences regarding the SDN’s behavior under stress, the author employs exploratory data
analysis and regression-based sensitivity analysis, such as DDoS attacks. It offers a new paradigm and
understanding for safeguarding the SDN in the face of attacks like DDoS.

3 Methodology and Implementations

This paper discusses the implementation of a firewall on the SDN POX controller that admits or
rejects data traffic, including the MAC address, IP address, and port address. As shown in Fig. 1, SDN
functional structure with a firewall based on the application, control, and data layer. The application
layer consists of different applications like routing, security, and others. The control layer manages
TCP and UDP traffic flows in real-time. After receiving the data flow, the payload decided their route
from source to destination. The information regarding network connectivity, like IP and port addresses
of incoming and outgoing packets, session management and packet sequence management examined
to establish the connection. Firewall rules are applied to the traffic flow by using a state table. The
occurrence of every event because of the firewall rule is recorded and updated in the session table.

CMC, 2023, vol.77, no.2 1579

Flow-based scheduling decreases path selection method and bandwidth surety for flows and expands
scalability. The data layer uses OpenFlow switches to create topologies.

Routing Security Other
Applications Applications Applications

NORTH
BOUND
INTERFACE INTERFACE

Network
Operating
Characteristics OPEN FLOW System(NOS)
Of Policy Manager
d b Packet Scan
i Detection FIREWALL
Authorizatlon
Security System
Privilege

Security

Management

SOUTH SOUTH | | SOUTH

BOUND BOUND BOUND
INTERFACE INTERFACE l INTERFACE

Figure 1: SDN functional structure with firewall [30]

Create SDN-based custom topology using open v switch to implement firewall rules on network
layers 2, 3, and 4. TCP and UDP scenarios are used to validate the firewall rules. After that, evaluate
the system by measuring the performance of network parameters like round trip time, bandwidth
utilization, latency, and data loss. To check the proposed firewall in the normal and under flooding
attack scenario with throughput, response time, and jitter values. LOIC is applied to launch attacks on
the transmission by the allocated server. The efficiency of the recommended network was determined
by measuring the network’s throughput, latency, and response time. Comparing the performance

1580 CMC, 2023, vol.77, no.2

results revealed the firewall-enabled controller as an SDN network environment with great potential,
as shown in Fig. 2.

Create SDN based topology

!

Implementation of Firewall rules for
Layer 2, Layer 3 and Layer 4

l

Validate Firewall rules under TCP and UDP
scenario

l

Evaluate Round trip time, Bandwidth
utilization, Latency (Jitter) and Data Loss

v
Measurement of Performance in normal

and under flooding attack scenario with
Throughput, Response time and Jitter

Figure 2: Flow graph of the proposed system

As depicted in Fig. 3, the custom topology employs a 180 GB HDD, 8 GB RAM, 2.4 GHz
processor, and Linux as the operating system. On Ubuntu 16.04 LTS, the Mininet emulator 2.3.0 and
the POX controller are installed. The experiment design Python considers nine OpenFlow switches
and sixty-four associated hosts or end nodes to define topology and firewall rules.

H1l--H8 H9 --H16 H17 --H24 H25 .+ H32 H33 ..« H40 H41 ---H48 H49 --H56 H57 - H64

Figure 3: SDN-based topology

CMC, 2023, vol.77, no.2 1581

Table 1 shows the configuration of IP addresses, MAC addresses, and port numbers of the
controller, switches, and hosts.

Table 1: Configuration of network nodes

Device name IP address MAC address
POX controller 127.0.0.1 Port no. 6636
Host hl 10.0.0.1 00:00:00:00:00:01
To To To

Host h64 10.0.0.64 00:00:00:00:00:40

The following procedures are used to generate SDN data with custom firewall rules. Table 2 shows
firewall rules for layer 2.

Table 2: Layer 2 firewall rules for multiple devices

Device Source MAC address Destination Action
h2 00:00:00:00:00:02 Any Deny
h12 00:00:00:00:00:0c Any Deny
h22 00:00:00:00:00:16 Any Deny
h32 00:00:00:00:00:20 Any Deny
h42 00:00:00:00:00:2a Any Deny
h52 00:00:00:00:00:34 Any Deny
h62 00:00:00:00:00:3e Any Deny
h8 00:00:00:00:00:08 Any Deny
h18 00:00:00:00:00:12 Any Deny
h28 00:00:00:00:00:1c Any Deny
h38 00:00:00:00:00:26 Any Deny
h48 00:00:00:00:00:30 Any Deny
h58 00:00:00:00:00:3a Any Deny
h14 00:00:00:00:00:0e Any Deny
h25 00:00:00:00:00:19 Any Deny
h34 00:00:00:00:00:22 Any Deny
h44 00:00:00:00:00:2¢ Any Deny
h54 00:00:00:00:00:36 Any Deny
h64 00:00:00:00:00:40 Any Deny
h15 00:00:00:00:00:0f Any Deny

Table 3 shows firewall rules for layer 3.
Table 4 shows firewall rules for layer 4.

Verify network connectivity across hosts using the “ping” command. For example, host 2
established a connection with host 4 by implementing firewall rules from Table 2, as shown in Fig. 4.

1582 CMC, 2023, vol.77, no.2

Table 3: Layer 3 firewall rules for multiple devices

Source device Source IP address Destination device Destination IP address Action

hl 10.0.0.1 h4 10.0.0.4 Deny
hll 10.0.0.11 h13 10.0.0.13 Deny
h21 10.0.0.21 h23 10.0.0.23 Deny
h31 10.0.0.31 h33 10.0.0.33 Deny
h41 10.0.0.41 h43 10.0.0.43 Deny
h51 10.0.0.51 h53 10.0.0.53 Deny
h61 10.0.0.61 h63 10.0.0.63 Deny
h6 10.0.0.6 h9 10.0.0.9 Deny
h16 10.0.0.16 h19 10.0.0.19 Deny
h26 10.0.0.26 h29 10.0.0.29 Deny
h36 10.0.0.36 h39 10.0.0.39 Deny
h46 10.0.0.46 h49 10.0.0.49 Deny
h56 10.0.0.56 h59 10.0.0.59 Deny
h13 10.0.0.13 h21 10.0.0.21 Deny
h23 10.0.0.23 h31 10.0.0.31 Deny
h33 10.0.0.33 h41 10.0.0.41 Deny
h43 10.0.0.43 h51 10.0.0.51 Deny
h53 10.0.0.53 hé61 10.0.0.61 Deny
h63 10.0.0.63 hl 10.0.0.1 Deny

Table 4: Layer 4 firewall rules for multiple devices

Source Destination device Destination server IP address Port number Action
Any h3 10.0.0.3 80 Deny
Any h5 10.0.0.5 80 Deny
Any h15 10.0.0.15 80 Deny
Any h25 10.0.0.25 80 Deny
Any h35 10.0.0.35 80 Deny
Any h45 10.0.0.45 80 Deny
Any h55 10.0.0.55 80 Deny
Any h7 10.0.0.7 80 Deny
Any h17 10.0.0.17 80 Deny
Any h27 10.0.0.27 80 Deny
Any h37 10.0.0.37 80 Deny
Any h47 10.0.0.47 80 Deny
Any h57 10.0.0.57 80 Deny
Any h10 10.0.0.10 80 Deny
Any h20 10.0.0.20 80 Deny

(Continued)

CMC, 2023, vol.77, no.2 1583

Table 4 (continued)

Source Destination device Destination server IP address Port number Action
Any h30 10.0.0.30 80 Deny
Any h40 10.0.0.40 80 Deny
Any h50 10.0.0.50 80 Deny
Any h60 10.0.0.60 80 Deny

mininet> h2 ping h4

PING 10. 4 (10.0.0.4) 56(84) bytes of data.

From 1. icmp_seq=1 Destination Host Unreachable
From 10. icmp_seq=2 Destination Host Unreachable
From 10. icmp_seq=3 Destination Host Unreachable
From icmp_seq=4 Destination Host Unreachable
From icmp_seq=5 Destination Host Unreachable
From icmp_seq=6 Destination Host Unreachable
From icmp_seq=8 Destination Host Unreachable
From icmp_seq=9 Destination Host Unreachable
From icmp_seq=10 Destination Host Unreachable
From icmp_seq=11 Destination Host Unreachable
From icmp_seq=12 Destination Host Unreachable
nG

--- 10.0.0.4 ping statistics ---

14 packets transmitted, 0 received, +11 errors, 100% packet loss, time 13318ms
pipe 4

+a

0.
(6]
0
0.
0.0
.0
.0
.0
28
.0.
0.0
.0

CO00OOO0OO0 O
N NNMNNNNMNNRNN

Figure 4: Connectivity between h2 and h4

In the above scenario, host 2 blocks all traffic for all hosts. So, when the h2 ping h4 command
runs, no packets are received, and there is 100% packet loss. Similarly, when pinging h6 from h3, 16
containers were transmitted, and all 16 packages were obtained with 0% packet loss, as shown in Fig. 5.

mininet> h3 ping hé

PING 10.0.0.6 (10.0.0. bytes of data.
bytes from 10. 5 = time=50.5 ms
bytes from ttl=64 time=0.466
bytes from : 1 ttl=64 time=0.071
bytes from : icmp_se ttl=64 time=0.071
bytes from 5: lcmp_s ttl=64 time=0.061
bytes from 65: icmp_seq=6 ttl=64 time=0.663
bytes from 6: icmp_seq=7 ttl=64 time=0.069
bytes from ttl=64 time=0.069
bytes from 9 ttl=64 time=0.069

ttl=64 time=0.070

oo

[« < I« R« < I «- i <}

20000

bytes from
bytes from
bytes from
bytes from
bytes from
bytes from
bytes from

5: lcmp_seq=13

: lemp_s 3 time=0.077
6: ilcmp_s 54 time=0.067
5: icmp_seq=16 ttl=64 time=0.066

o000
[« < I« < I« I« I « I«]

@

10.0.0.6 ping statistics ---
packets transmitted, 16 received, 0% packet loss, time 15334ms

Figure 5: Connectivity between h3 and h6

1584 CMC, 2023, vol.77, no.2

It concludes that there is connectivity between h3 and h6 and no connectivity between h2 and
h4. So, the POX controller blocks only the link for the desired hosts by implementing the firewall on
layer 2.

1.Using the “iperf” command, make UDP and TCP servers that will listen on various network
ports.

For example, Fig. 6a shows node h3 as a TCP server, and Fig. 6b shows hosts h4, h5, h6, h7, h10,
h11, h16, and h17 as a client. According to the predefined rule mentioned in table no. 4, port no. 80 of
h3(10.0.0.3) block for all other devices. In Fig. 6b, all clients want to access port no. 80 of h3 (10.0.0.3),
but the port is blocked for all users; there is no transmission, which is confirmed by Fig. 6a. The server
cannot listen to any transmission request on port no. 80. All traffic destined to process h3 at port 80
is blocked. No data was sent on port 80 by the server h3.

"Node: h3"

Figure 6a: h3 working as a server

"Node: ha" C "Node: h5"

root@rizwan-Lenovo-6580;"% iperf -c 10,0,0,3 -p B0 -t 10 rootfrizuan-Lenovo-0580:" iperf -¢ 10,0,0,3 -p 80 -t 10
7 ~

[2)+ Stopped iperf -¢ 10.0.0.3 -p 80 -t 10

7
reot@rizwan-Lenovo-0580; "0 [[2)+ Stopped " [] iperf -¢ 10.0.0.3 -p 80 -t 10

root@rizuan-Lenowo-(58(¢
"Node: h6" "Node: h7"

o — root@rizvan-Lenovo-G580:"# iperf -c¢ 10.0.0.3 -p 80 -t 10
root@rizvan-Lenovo-G580:"8 iperf -¢ 10,0,0,3 -p 80 -t 10 n

e
rd [2)+ Stopped iperf -¢ 10,0,0,3 -p 20 -t 10
[2]+ Stopped iperf -¢ 10,0,0,3 -p 80 -t 10 root@rizuan-Lenc 80z~
rootlrizvan-Lenovo-6580:" []

"Node: h10" @S "Node: h11"
rg-:'.ﬁri:uan-Lemuo-G%D:"' iperf =¢ 10,0.0.3 -p €0 -t 10 ootlrizvan-Lenovo-G580:“0 iperf =-¢ 10.0,0,3 -p 80 -t 10
- 7

[4
[2)+ Stepped iperf -¢ 10,0,
root@rizvan-Lenovo-G580:" i

“«
[2]+ Stopped fperf -¢ 10,0,0,3 -p 80 -t 10
oot @rizvan-Lenovo-G580:"w []

"Node: h13" "Node: h16"

AP A B TR TSRS) G S I e e L S oot@rizuan-Lenovo-(580: ¢ iperf -c 10.0.0.3 -p €0 -t 10

2

[2]+ Stepped tperf -¢ 10,0.0.3 -p 80 -t 10 S .

:':cr.?r::u‘:::Lerm-o-GEﬁf.l:"' 0 i i 2]+ Stopped iperf -¢ 10,0,0,3 -p 80 -t 10
oot@rizuan-Lenovo-6580:"s []

"Node: h17" (—
root@rizvan-Lenowo-G580:"# iperf -¢ 10.0.0.3 -p 80 -t 10
a7

-
[2)+ Stepped iperf -¢ 10,0,0,3 -p 80 -t 10
root@rizvan-Lenovo-G580:"w]

Figure 6b: Different hosts try to access port number 80 of h3

CMC, 2023, vol.77, no.2 1585

Similarly, and 7b show that clients h4, h5, h6, h7, h10, h11, h16, and h17 access server h3
10.0.0.3 on port 22, the connection on port 22 from server connection establish. All the nodes working
as clients have successfully approached port 22 of the h3 for 10 s and transferred data because port 22
is not a blocked-in custom firewall.

Similarly, shows that client hl accessed UDP server h3 10.0.0.3 on port 22, and the
connection on port 22 from the server connection establish. h1 working as a client, has successfully
approached port 22 of the h3 for 15 s and transferred data because port 22 is not a blocked-in custom
firewall.

2. Using ping queries from a different host of TCP, and UDP servers, monitoring throughput,
jitter, and response time. GNUPLOT is used to make a graphical representation of SDN data. Those
data are retrieved by using the CAT command of Mininet.

"Node: h3"

rootlrizuan-Lenovo-G58

[154] 0.0- 1.0 sec
[155] local 10
[154]

d with 10,0.0,5 port 52258

0,13 port 45582

0.0.7 port 44614

C
10.0.0.10 port 42654

0.11 port 42336

Figure 7a: h3 working as a server

1586 CMC, 2023, vol.77, no.2

"Node: h4" "Node: h5"
root@rizvan-Lenovo-G580:~¢ iperf -¢ 10,0,0.3 -p 22 -t 10 root@rizvan-Lenowo-0530:~# iperf -¢ 10,0,0.3 -p 22 -t 10

to 10,0,0.3, TCP port 22 Client connecting to 10,0,0.3, TCP port 22
: 85,3 KByte (default) TCP window : 85,3 KByte (default)

[153] local 10,0,0.4 port 46676 connected with 10,0.0.3 port 22 [153] local 10.0.0.5 port 52258 connected uith 10.0.0.3 port 22
[ID] Interval Transfer Banduidth [10 Int.erv-al' .' Transfer Banduidth)

[153) 0.0-10.0 sec 16.0 GBytes 13.8 Gbits/sec (153] 0.0-10.0 sec 11.6 GButes 9.95 Gbits/sec
rootlrizvan-Lenovo-(580:" root@rizvan-Lenowo-(580:~s []

"Node: h6" "Node: h7"
wan-Lenovo-G580:"# iperf -c 1 2 root@rizuan-Lenovo-(580:"# iperf -¢ 10,0,0,3 —-p 22 -t 10

Client connecting to 10,0,0.3, TCP port 22
TCP window £5.3 KByte (default)

[153] local 10.0.0.6 port 34180 connected with 10.0.0.3 port 22 [153) local 10,0.0.7 pu‘t 4-‘514 connected with 10,0,0.3
[ID] Interval Transfer Banduidth [ID] Interval Transfer Banduidth

[153] 0.0-10,0 sec 19.6 GBytes 16.8 Gbits/sec [153] 0.0-10.0 sec 9.91 GBytes 8.52 Gbits/sec
root@riz Lenovo-G580:"# [root@r izuan-Lenovo-(580:“#

"Node: h1o" "Node: h11"

crt,ing to 10,0,0.3, TCP port 22 TCP po
. _ 9 port 22
5.3 KByte (default) ' 5.3 KBute (default)

3] loc al 10 0,0,10 port 42664 connected with 10,0,0,3 port 22 3 al 10,0,0,11 port 4295 connected with 10,0,0.3 port 22
] Interval Trangfer Banduidth [ID] Interval Transfer Banduidth
‘*] 0 0 10,0 sec 9,75 CPytes 8,38 Chits/sec [153] 0,0-10,0 sec 12,9 GBytes 11,1 Gbits/sec

-Lenovo-6580; 7 [iroot@rizwan-Lenovo-Gf 0

"Node: h13" "Node: h16"
root@rizwan-Lenovo-G580:"# iperf -¢ 10.0.0.3 -p 22 -t 10 i n-meo-GS‘ﬁ)‘ ¥ iperf -¢ 10,0.0,3 -p 22 -t 10

Client connec to 10,0,0.3, TCP port 22 Client cmr-ecti to 10,0,0,3, TCP port 22

TCP window si .3 KByte (default) TCP windou size: 85,3 KByte (default)

[153] local 10,0,0.13 port 45562 connected with 10,00 [153] lecal 10,0,0,16 port 403928 cornected with 10,0,0,3 port 22
[1D) Intcrual Transfer Bandwidth [ID] Interval Transfer Bandwidth

[153] 0,0-10,0 sec 7,79 GBytes 6,69 Gbits/sec [153] 0,0-10,0 sec 9.24 CBytes 7,94 Cbits/sec
root@rizuan-Lenovo-G580: "] rootlrizuan-Lenovo-G580: " [J

“"Node: h17"
root@rizwan-Lenovo-GS80:"N iperf -c 10 0.0

TCP pcrt 22
TCP window size: 85,3 KByte (default)
[153] local 10,0,0.17 port 51765 connected with 10,0,0,3 port 22
[1D] Interval Transfer Bandwidth
[153] 0 L0-10,0 sec 16,6 GDJU"‘ 14,3 Cbits/sec
ant O Y ,

Figure 7b: Different hosts try to access port number 22 of h3 (TCP server)

CMC, 2023, vol.77, no.2 1587

Figure 8: h3 working as a UDP server and hl as a client

4 Evaluations

To evaluate the competence of the proposed firewall by using the ping command. Ping command
measures round trip time (RTT), packet transmits, packet received, and packet loss. The comparisons
have been made among the proposed firewall module and 12_learning transfer, which is a part of
making OpenFlow switches act as a kind of 12_learning switches.

After the implementation of the firewall, the following parameters measure to evaluate the
performance of the proposed firewall.

4.1 Round Trip Time (RTT) Evaluation

Established on layer 3 firewall rule set up on POX controller, host 3 can ping host 4. Figs. 9 and
10 show that host 3 effectively sent 10 ICMP messages to host 4 and got responses. Each output shows
the same test output of POX with the firewall and without the firewall running. RTT is almost the
same: 9172 ms with a firewall and 9170 ms without a firewall running. In that manner, parsing packets
and matching regulations no longer influence performance.

| root@rizuan-Lenovo-G580:~/SDN# ping -¢ 10 10.0.0.4
IPING 10,0,0.4 (10,0,0,4) 56(84) bytes of data,

64 bytes from 10,0,0,4: icmp_seq=1 tt1=64 time=53.4 ms
|64 bytes from 10,0.0.4: icmp_seq=2 ttl=64 time=0.441 ms
(64 bytes from 10,0,0,4: icmp_seq=3 ttl=64 time=0,066 ms
(64 bytes from 10,0,0.4: icmp_seq=4 ttl=64 time=0,067 ms
|64 butes from 10,0,0,4; icmp_seq=5 ttl=64 time=0,070 ms
|64 butes from 10, icmp_seq=6 ttl=64 time=0,070 ms
|64 butes from icmp_seq=7 tt1=64 time=0,071 ns

|64 butes from 10,0,0 icmp_seq=8 tt1=64 time=0,065 ms
icmp_seq=9 tt1=64 time=0,068 mns
10.0,0.4: fcmp_saq=10 tt1=64 time=0,070 ms

|--- 10.0.0.4 ping statistics ——-

|10 packets transmitted, 10 received, OX packet loss, time 9172ms
Irtt min/avg/max/mdev = 0,065/5,442/53,440/15,939 ms
root@rizwan-Lenovo-6580:~/SDhe i

Figure 9: ICMP traffic permitted from host 3 to host 4 with a firewall

1588 CMC, 2023, vol.77, no.2

root@rizwan-Lenovo-G580:"# ping -c 0
PING 10,0,0,4 (10,0,0,4) 56(84) bytes of data.
B4 bytes from 10,0,0,4: i seq=1 ttl=64 tim
64 bytes from HIB ttl=64
64 bytes from i
64 bytes from
64 bytes from 10 0,0, 4' i
B4 bytes from 10,0,0,4: i
B4 bytes from 4
64 bytes from
from
from

0,0,0,
10 packefs transm1t d ived, O packet loss, time 9170ms
rtt min/avg/max/mdev = 0,059/0,529/4,301/1,261 ms
root@rizwan-Lenovo-G580:"#

Figure 10: ICMP traffic permitted from host 3 to host 4 without a firewall

4.2 Bandwidth Utilization
4.2.1 TCP Flow

A GNUPLOT shows a graphical representation of bandwidth utilization to estimate the band-
width. The values are extracted by using the iperf command. One node is used as a server, and another
as a client. Generate TCP flows without a firewall at port 80, as shown in Fig. 1 1. Similarly, the iperf
command generates TCP traffic by implementing a firewall at port 80, as shown in Fig. 12.

50
! " ? : TCP ﬂn{v without firewall flor multiple users clonnem!d with unelser\rertlu.o.ﬂ.ﬁl I;y port 80 —+—

a5 .

40 - .

Bandwidth (Gbps)

o 1 1 1 1 1

o 10 20 30 40 s0 60 70 B0 50 100
Time (Sec)

Figure 11: Bandwidth vs. time without a firewall (TCP flow)

As shown in Figs. 11 and 12, the data traffic appears for almost 100 s on the x-axis by accessing
different clients. Consume bandwidth in Gbps is shown on the y-axis. Hence, it concludes that after
implementing the proposed firewall, there is no significant consumption in bandwidth as compared to
without a firewall for a TCP flow.

CMC, 2023, vol.77, no.2 1589

50 T T T T T T T T T
TCP flow with firewall for multiple users connected with cne server (10.0.0.6) by port 80 ——
45 - 4

40 4

35 - -1

Bandwidth (Gbps)

0 10 20 30 40 50 60 70 80 90 100
Time(Sec)

Figure 12: Bandwidth vs. time with a firewall (TCP flow)

4.2.2 UDP Flow

To estimate the bandwidth, GNUPLOT is used to show a graphical representation of bandwidth
utilization. The values are extracted by using the iperf command. One node is used as a server, and
another as a client. Generate UDP flows without a firewall at port 80, as shown in Fig. 13. Similarly,
the iperf command generates UDP traffic by implementing a firewall at port 80, as shown in Fig. 14.

50

: : : d UDP flow without firewall fluf multiple users connected with one server (10.0.0.6) hly port 80 —+—
a5 4
40 4
35 - .

30 - =1

23 - B

Bandwidth (Gbps)

20 "

15 b

W ST 4

0 L I 1 L 1
[} 10 20 30 40 50 60 70 80 90 100

Time (Sec)

Figure 13: Bandwidth vs. time without a firewall (UDP flow)

1590 CMC, 2023, vol.77, no.2

20 T T T T

UDPIﬂW with firewall {lor multiple users clunnected with nnelserver (10.0.0.6) bly port 80 ——

15 -

2
E --—V"“-w—r""'-o—o—f\: + f\‘; b "““‘ o s + +——+ —— +—+
£ wf .
=
k]
o
-]
sk 4
o L . L " L L L " .
0 10 20 30 40 50 60 70 80 90 100
Time(Sec)

Figure 14: Bandwidth vs. time with a firewall (UDP flow)

As shown in Figs. 13 and 14, the data traffic appears for almost 100 s on the x-axis by accessing
different clients. Consume bandwidth in Gbps is shown on the y-axis. Hence it is concluded that
after implementing the proposed firewall, the graph shows a relatively small change in bandwidth
consumption. Still, it shows that the proposed firewall has no adverse effect on bandwidth for UDP
flow compared to the implementation of the firewall.

4.3 Latency (Jitter)

Latency or jitter is the time-dependent delay of data transmitted from sender to receiver. The
values are extracted by using the iperf command. One node is used as a server, and another as a client.
Generate UDP flows without a firewall at port 80, as shown in Fig. 15. Similarly, the iperf command
generates UDP traffic by implementing a firewall at port 80, as shown in Fig. 16.

As shown in Figs. 15 and 16, the data traffic appears for almost 100 s on the x-axis by accessing
different clients. The appearing jitter in (ms) shows on the y-axis. Hence it is concluded that after
implementing the proposed firewall, the graph shows better results regarding minimum jitter values.
It is a noticeable change in jitter values as compared to firewall implementations.

4.4 Data Loss

It is possible to see in Fig. 4 that the data loss is 100%. All the packets sent from h2 to h4 are
unreachable. [t is clear from Fig. 5 that thereis a 0% packet loss from h3 to h6. All packets were received
without loss. It is mentioned in firewall rules that there is no connectivity of h2 to any destination, so
it shows 100% packet loss.

CMC, 2023, vol.77, no.2 1591

UDP flow without firewall for multiple users connected with one server (10.0.0.6) bly port 80 ——

Jitter (ms)
=
w

0.75

0.5

0.25

L LN L S A— 1 J\.L*..AA./’?\ —— — - g
20 30 40 50 60 70 80 90 100
Time (Sec)

Figure 15: Jitter vs. time without a firewall

0.03 T T T T

UDP flow with firewall for multiple users connected with one server (10.0.0.6) by port 80 —+—

0.025 |- -

T

0.015 -1

Jitter (ms)

0.01 - —

Time (Sec)

Figure 16: Jitter vs. time with a firewall

5 Performance Measure Metrics of SDN

Fig. 3 shows the suggested network design with 64 hosts and 10 OpenFlow switches for testing
on 8 GB RAM and Linux. Ubuntu 16.04 LTS Mininet emulates the POX controller. Host-switch
throughput is 100 Mbps. “iperf” and “ping” check network node connectivity and data traffic. Six
infected hosts employed Low Orbit Ion Cannon (LOIC) to DDoS the network server. TCP and

1592 CMC, 2023, vol.77, no.2

UDP-based DDoS flooding attacks lasted 35 min. These attacks were tested for performance metrics.
Network performance measurements forecast and prevent downtime. Table 5 shows the conventional
behavior of performance parameters regarding different scenarios, i.e., normal and attack in an SDN
environment.

Table 5: Conventional SDN setup

Parameters Scenario Behavior
Throughput Not under attack High
Under attack Low
Response time Not under attack Low
Under attack High
Jitter Not under attack Stable
Under attack Vary a lot

Table 6 shows statistics of different network parameters in normal scenarios and attack scenarios.
Changes in network parameters because of attacks indicate that the SDN is evolving. Therefore, the
methodology described in Section 6 uses data analysis techniques in their behavioral investigation.

Table 6: Statistics for S, S,,, and S, (over 2000 samples) for different operating scenarios

Parameters Case of Minimum Maximum Mean Median Standard
operations deviation
Normal TCP 29.6 47.6 39.85365 39.8 2.24228691
scenario

Throughput TCP DDoS 0 60.2 31.04907 32.1 7.701552
flooding attack
scenario
Normal UDP 33.7 105 104.5 105 5.721683418
scenario
UDP DDoS 10.5 10.5 10.5 10.5 0
flooding attack
scenario

Round trip Normal TCP 0.061 50.576 3.250 0.0876 12.219

time scenario
TCP DDoS 0.037 0.985 0.090 0.0953 0.021
flooding attack
scenario
Normal TCP 0.0020 0.2710 0.1160 0.0831 0.0043
scenario

Jitter TCP DDoS 0.0020 0.2710 0.1160 0.0831 0.0043
flooding attack
scenario

(Continued)

CMC, 2023, vol.77, no.2 1593

Table 6 (continued)

Parameters Case of Minimum Maximum Mean Median Standard
operations deviation
Normal UDP 0 4.902 0.012 0 0.201935711
scenario
UDP DDoS 0 0.015 0.001728228 0.001 0.001897661
flooding attack
scenario

6 Analysis & Discussion

This section uses univariate, multivariate, and graphical methods to display and analyze the
network parameters mentioned in Section 5. Data Science is the primary technique for data analysis.
Using data analysis techniques, generate descriptive statistics and histograms for visualization and
interpretation. Using a linear regression model to recognize and statistically for the pairwise relations
between the Jitter (S)), the response time (S,), and throughput (S,) parameters of the emulated
Scenario of SDN. For operating normally histogram shows a “Normal TCP Scenario”, “TCP attack
scenario”, and “UDP Attack Scenario”.

Throughput has shown in Fig. 17 for “Normal TCP Scenario”, “TCP Attack Scenario”, “Normal
UDP Scenario”, and “UDP Attack Scenario”. It impacts SDN DDoS flooding attacks. When the
SDN was under a TCP attack, most metrics were spread around 0, compared to a range of 5 to 55
when it usually worked or under a UDP flooding attack. S,, distribution did not alter under the SDN-
exposed UDP attack scenario. S,, is more vulnerable to TCP and UDP attacks since they flood the
target server with repeated connection requests, using its network resources and DDoS valid requests.
The UDP attack scenario, in which the targeted server checks and responds to every UDP packet,
including spoofed ones, may not affect S,,.

Normal TCP Scenario Normal UDP Scenario

400 400

350

Frequency
e -] <] 8
(=] w (= (4]
(=] (=] o (=] (=]
Frequency
= I] 5 2 &
(=] (=] (=] (=] (=] (=]

3
&

=]

30 32 34 36 38 40 42 44 46 48 50 80 B85 8 9 100 105 110 115 120 125 130
Throughput (Stp) Throughput (Stp)

Figure 17: (Continued)

1594 CMC, 2023, vol.77, no.2

450 v Lila Mkso.mum . UDP Attack Scenario
800
400 t
700
350
600
300 |
500
) 3
£ 250 2
3 S 400
o
@ 20f g‘
- * 300
150 f
200
100 |
100
s0 b
o i A i i
9 5 15 25 35 45 55 10 102 104 10.6 108 1"
Throughput (S
Throughput (Stp) ghput (Stp)

Figure 17: S,, metrics for various SDN scenarios

Fig. 18 shows jitter implications. It controls the “Normal TCP Scenario”, “TCP Attack Scenario”,
“Normal UDP Scenario”, and “UDP Attack Scenario”. SDN TCP flooding did not affect jitter
distribution. Instead of —0.6 to 0.6, most measurements are —4 to 8 in the “Normal UDP Scenario”
and “UDP Attack Scenario”. Jitter is about timing and packet sequence in a typical SDN or a TCP
flooding attack. The jitter will be considerable if packets arrive in intermittent or out-of-order clusters.
UDP DDoS flooding attacks are more effective against jitter.

Fig. 19 shows response time conclusions. It controls the “Normal TCP Scenario”, “TCP Attack
Scenario”, and altered response time distribution. TCP flooding attacks 0.02 to 0.16 against —40 to
40 in regular SDN operation. Hence, response time is a crucial network monitoring parameter, and
DDoS flooding attacks can severely impact it, notably when packets must be acknowledged before
being sent again.

Nermmal TCP Scenario
450

Nommal UDP Scenario

450
400
400
350 5
00 200
EZSD 5
§ i
a3 a
u-213(‘.' g?ﬂo
& &
150 150
100 100
50
50
0
0 -4 08 06 04 02 0 02 04 06 08
01 0105 011 0115 012 0125 013 0135 014 Jitter (Sjt)

Jitter (Sjt)

Figure 18: (Continued)

CMC, 2023, vol.77, no.2 1595

o TCP Attack Scenario UDP Attack Scenario

400

300

o = <
01 0105 011 0116 012 0125 013 0135 014 R 7 = - - a i
Jitter (Sjt) 10"

Jitter (Sijt)

Figure 18: S, metrics for various SDN scenarios

Normal TCP Scenario TCP Attack Scenario
400 ~ v 400 - : . -
350 F as0 F
300 00 F
= 250 - 250 |
- g
] o
2 200 3 200
£ 2
150 F ool
100 w00}
50 50 +
0 ol— . -3
49 20 o 20 40 L 002 004 005 008 01 012 014 016 0.18
Response Time (Srt) Response Time (Srt)

Figure 19: S, metrics for various SDN scenarios

These recommendations may be incomplete, but it is anticipated that they will be enough to edu-
cate. As research and visualization of the indicators to show the performance of SDN, administrators,
and operators are informed about similar attacks on the SDN. As discussed above, it can be the most
recent studies extracted from the literature to provide methods for advancing the quality of service,
identifying and categorizing the status of the SDN in the face of an attack like a DDoS flooding attack.
Apply Regression-based sensitivity analysis in this work. The following sections are based on a more
thorough inferential assessment of the network, a description to secure the network when anomalous
state changes or transitions because of attacks like DDoS flooding.

7 Conclusion

This study analyzes the performance evaluation of firewalls by applying it to different network
layers. Creating topology through the POX controller using four nodes and one OpenFlow switch on
a Mininet simulation tool is highly significant for SDN research. We extract results in graphical form

1596 CMC, 2023, vol.77, no.2

by using a GNUPLOT. After extensive simulation study has evaluated the bandwidth of TCP flow
with and without firewall implementation, the bandwidth of UDP flows with and without firewall
implementation, latency, roundtrip time (RTT), and packet loss parameters. Work demonstrates
that the proposed firewall significantly influences bandwidth, roundtrip time, jitter, and packet loss.
The findings give SDNs operator inference-based evaluation guidelines. Even if these rules are not
exhaustive, they anticipate adequate notification of SDNs operators regarding the possibility of an
SDN attack based on the study and analysis of SDN performance indicators. In the future, different
other controllers like RY U, Floodlight, and NOX will be used. Also, generate application layer firewall
rules. Real-world, real-time SDN data will validate the investigations and findings presented in this
work and serve as the foundation for creating comprehensive guidelines for SDN administrators and
operators.

Acknowledgement: This work is an expanded version of “Towards Secure Implementations of SDN-
Based Firewall,” which appeared in the Journal of Independent Studies and Research Computing,
20(2),40-47,2022. This research supported by Akinsolu, M. O., Sangodoyin, A. O., and Uyoata, U. E.,
“Behavioral Investigation of Software-Defined Network Parameters Using Exploratory Data Analysis
and Regression-Based Sensitivity Analysis,” Mathematics, 10(14), 2536. This research is part of the
author’s Ph.D. dissertation at Hamdard University. The results were implemented on the MININET
emulator from the GitHub Community Forum and online-accessible functions and procedures for the
initial implementation.

Funding Statement: This research is supported in part by the Research Committee of Hamdard
University Karachi Pakistan (www.hamdard.edu.pk) and the Office of Research Innovation & Com-
mercialization (ORIC) of Dawood University of Engineering & Technology Karachi Pakistan (www.
duet.edu.pk).

Author Contributions: The author’s contribution to the paper is as follows: study conception and
design: R. Igbal and R. Hussain; data collection: R. Igbal and R. Hussain; analysis and interpretation
of results: R. Igbal, S. Arif and N. M. Ansari; draft manuscript preparation: R. Igbal, N. M. Ansari
and T. A. Shaikh. All authors reviewed the results and approved the final version of the manuscript.

Availability of Data and Materials: This research is part of the author’s Ph.D. dissertation at Hamdard
University. Due to the nature of this research, participants of this study did not agree for their data to
be shared publicly and only available upon reasonable request.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References

[11 C. Urrea and D. Benitez, “Software-defined networking solutions, architecture, and controllers for the
Industrial Internet of Things: A review,” Sensors, vol. 21, no. 19, pp. 1-20, 2021.

[2] M. Duand K. Wang, “An SDN-enabled pseudo-honeypot strategy for distributed denial of service attacks
in the industrial Internet of Things,” IEEE Transactions on Industrial Informatics, vol. 16, no. 1, pp. 648—
657, 2020.

[3] A.Rahman, M. J. Islam, S. S. Band, G. Muhammad, K. Hasan et al., “Towards a blockchain-SDN-based
secure architecture for cloud computing in smart industrial IoT,” Digital Communications and Networks,
vol. 9, no. 2, pp. 411-421, 2022.

www.hamdard.edu.pk
www.duet.edu.pk
www.duet.edu.pk

CMC, 2023, vol.77, no.2 1597

(4]
(5]

(6]
(7]
(8]
9]

[10]

(1]
(12]

[13]

[14]
[15]

[16]

[17]

(18]

[19]
(20]

[21]

(22]

[23]

M. Alabbad and R. Khedri, “Configuration and governance of dynamic secure SDN,” Procedia Computer
Science, vol. 184, pp. 131-139, 2021.

R. Igbal, R. Hussain and S. Arif, “Investigating the attacks on software defined networks: Summary &
recommendations,” Journal of Xi’an Shiyou University, Natural Science Edition, vol. 18, no. 9, pp. 319-326,
2022.

G. Rezaei and M. R. Hashemi, “An SDN-based firewall for networks with varying security requirements,”
in Proc. of IEEE CSICC, Tehran, Iran, pp. 1-7, 2021.

B. V. Baiju, S. M. Yahiya, P. A. Raj and S. S. Farooq, “DDoS attack detection using SDN techniques,”
Turkish Journal of Computer and Mathematics, vol. 12, no. 10, pp. 326-335, 2021.

M. T. Islam, N. Islam and M. A. Refat, “Node to node performance evaluation through RYU SDN
controller,” Wireless Personal Communications, vol. 112, no. 1, pp. 555-570, 2020.

A. Derhab, M. Guerroumi, M. Belaoued and O. Cheikhrouhou, “BMC-SDN: Blockchain-based multicon-
troller architecture for secure software-defined networks,” Wireless Communication and Mobile Computing,
vol. 2021, pp. 1-12, 2021.

K. Siddhesh, V. Susmita and D. Pradhan, “Portable firewall for data security toward secured communica-
tion,” East African Scholars Journal of Engineering and Computer Sciences, vol. 4, no. 4, pp. 41-45, 2021.
S. Constantinou, A. Vasileiou, A. Konstantinidis, P. K. Chrysanthis and D. Z. Yazti, “IMCF: The [oT
meta-control firewall for smart buildings,” in Proc. of EDBT, Nicosia, Cyprus, pp. 658-661, 2021.

S. Hafizah, S. Ariffin, N. Muazzah, A. Latiff and M. Hamed, “The impact of firewall on TCP and UDP
throughput in an OpenFlow software-defined network,” Indonesian Journal of Electrical Engineering and
Computer Science, vol. 20, no. 1, pp. 256-263, 2020.

R. Banu, T. Jyothi, M. Amulya, K. N. Anju, A. Raju et al, “MONOSEK-A network packet processing
system for analysis detection of TCP xmas attack using pattern analysis,” in Proc. of ICCS, Madurai, India,
pp. 952-956, 2019.

H. M. Noman and M. N. Jasim, “POX controller and open flow performance evaluation in software defined
networks (SDN) using mininet emulator,” in Proc. of ICSET, Baghdad, Iraq, pp. 1-9, 2020.

R. Alkanhel, A. Ali, F. Jamil, M. Nawaz, F. Mehmood ez al, “Intelligent transmission control for efficient
operations in SDN,” Computers, Materials & Continua, vol. 71, no. 2, pp. 2807-2825, 2022.

M. Maray, H. M. Alshahrani, K. A. Alissa, N. Alotaibi, A. Gaddah et al., “Optimal deep learning-driven
intrusion detection in SDN-enabled IoT environment,” Computers, Materials & Continua, vol. 74, no. 3,
pp. 6587-6604, 2023.

H. A. Alamri, V. Thayananthan and J. Yazdani, “Machine learning for securing SDN based 5G network,”
International Journal of Computer Applications, vol. 174, no. 14, pp. 9-16, 2021.

S. Ali, M. K. Alvi, S. Faizullah, M. A. Khan, A. Alshangqiti et al., “Detecting DDoS attack on SDN due
to vulnerabilities in OpenFlow,” in Proc. of AECT, Al Madinah Al Munawwarah, Saudi Arabia, pp. 1-6,
2020.

S. Haas, F. Wilkens and M. Fischer, “Scan correlation-revealing distributed scan campaigns,” in Proc. of
NOMS, Budapest, Hungary, pp. 1-6, 2020.

Y. Li, X. Guo, X. Pang, B. Peng, X. Li et al., “Performance analysis of floodlight and RYU SDN controllers
under mininet simulator,” in Proc. of ICCC, Chongqing, China, pp. 85-90, 2020.

M. O. Akinsolu, A. O. Sangodoyin and U. E. Uyoata, “Behavioral study of software-defined network
parameters using exploratory data analysis and regression-based sensitivity analysis,” Mathematics, vol.
10, no. 14, pp. 1-26, 2022.

A. Mishra, N. Gupta and B. B. Gupta, “Defense mechanisms against DDoS attack based on entropy in
SDN-cloud using POX controller,” Telecommunication System, vol. 77, no. 1, pp. 47-62, 2021.

K. Bhushan and B. B. Gupta, “Distributed denial of service (DDoS) attack mitigation in software
defined network (SDN)-based cloud computing environment,” Journal of Ambient Intelligence and Humaniz
Computing, vol. 10, no. 5, pp. 1985-1997, 2019.

CMC, 2023, vol.77, no.2

A. Mishra, B. B. Gupta, D. Perakovic, S. Yamaguchi and C. H. Hsu, “Entropy based defensive mechanism
against DDoS attack in SDN-cloud enabled online social networks,” in Proc. of ICCE, Las Vegas, NV,
USA, pp. 1-6, 2021.

M. D. Hatagundi and H. V. Kumaraswamy, “A comprehensive survey on different attacks on SDN and
mitigation approaches,” in Proc. of ICCMC, Erode, India, pp. 624-627, 2019.

Y. Zhang, M. Cui, M. Abadeer and S. Gorlatch, “A QoS-aware routing mechanism for SDN-based
integrated networks,” in Proc. of ICOIN, Bangkok, Thailand, pp. 287-292, 2023.

C. Smera and J. Sandeep, “Networks simulation: Research-based implementation using tools and
approaches,” in Proc. of GCAT, Bangalore, India, pp. 1-7, 2022.

E. Anthi, L. Williams, M. Stowi, G. Theodorakopoulos and P. Burnap, “A supervised intrusion detection
system for smart home IoT devices,” IEEE Internet of Things Journal, vol. 6, no. 5, pp. 9042-9053, 2019.
S. Macwan and C. H. Lung, “Investigation of moving target defence technique to prevent poisoning attacks
in SDN,” in Proc. of SERVICES, Milan, Italy, pp. 178-183, 2019.

R. Igbal, R. Hussain, S. Arif, A. A. Siddiqui and S. Akhtar, “Towards secure implementations of SDN
based firewall,” Journal of Independent Studies and Research Computing, vol. 20, no. 2, pp. 40-47, 2022.

F. N. Nife and Z. Kotulski, “Application-aware firewall mechanism for software defined networks,” Journal
of Network and Systems Management, vol. 28, no. 3, pp. 605-626, 2020.

J. Li, J. Wu, H. Jiang, W. Du and W. Jiang, “SDN-based stateful firewall for cloud,” in Proc. of IDS,
Baltimore, MD, USA, pp. 157-161, 2020.

G. Kumar and H. Algahtani, “Machine learning techniques for intrusion detection systems in SDN-recent
advances, challenges and future directions,” Computer Modeling in Engineering & Sciences, vol. 134, no. 1,
pp. 89-119, 2023.

S. M. Parveen, “Intrusion detection system in software defined networks using machine learning approach,”
International Journal of Advanced Engineering Research and Science, vol. 8, no. 4, pp. 135-142, 2022.

L. Yan, M. Ma, D. Li, X. Huang, Y. Ma et al., “Certrust: An SDN-based framework for the trust of
certificates against crossfire attacks in IoT scenarios,” Computer Modeling in Engineering & Sciences, vol.
134, no. 3, pp. 2137-2162, 2023.

	Data Analysis of Network Parameters for Secure Implementations of SDN-Based Firewall
	1 Introduction
	2 Related Work
	3 Methodology and Implementations
	4 Evaluations
	5 Performance Measure Metrics of SDN
	6 Analysis & Discussion
	7 Conclusion
	References

