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ABSTRACT

The grey wolf optimizer (GWO) is a swarm-based intelligence optimization algorithm by simulating the steps
of searching, encircling, and attacking prey in the process of wolf hunting. Along with its advantages of simple
principle and few parameters setting, GWO bears drawbacks such as low solution accuracy and slow convergence
speed. A few recent advanced GWOs are proposed to try to overcome these disadvantages. However, they are
either difficult to apply to large-scale problems due to high time complexity or easily lead to early convergence. To
solve the abovementioned issues, a high-accuracy variable grey wolf optimizer (VGWO) with low time complexity
is proposed in this study. VGWO first uses the symmetrical wolf strategy to generate an initial population of
individuals to lay the foundation for the global seek of the algorithm, and then inspired by the simulated annealing
algorithm and the differential evolution algorithm, a mutation operation for generating a new mutant individual is
performed on three wolves which are randomly selected in the current wolf individuals while after each iteration.
A vectorized Manhattan distance calculation method is specifically designed to evaluate the probability of selecting
the mutant individual based on its status in the current wolf population for the purpose of dynamically balancing
global search and fast convergence capability of VGWO. A series of experiments are conducted on 19 benchmark
functions from CEC2014 and CEC2020 and three real-world engineering cases. For 19 benchmark functions,
VGWO’s optimization results place first in 80% of comparisons to the state-of-art GWOs and the CEC2020
competition winner. A further evaluation based on the Friedman test, VGWO also outperforms all other algorithms
statistically in terms of robustness with a better average ranking value.
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1 Introduction

This section first introduces why we conduct this research through background and motivation in
Section 1.1. Then we present our contribution in Section 1.2.
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1.1 Background and Motivation

With the development of society, human beings have increasingly higher requirements for the accu-
racy of engineering design, structural optimization, task scheduling, and other practical engineering
applications and scientific research. In the process of conducting the above research, many excellent
algorithms have been generated in recent years. For example, the grey wolf optimizer (GWO) [1],
the Equilibrium optimizer [2], the Artificial hummingbird algorithm [3], the Multi-trial vector-based
monkey king evolution algorithm [4], and so on. They have been shown to outperform many intelligent
optimization algorithms and are applied to different engineering optimization problems. However, as
the research progressed, many limitations of intelligent optimization algorithms were identified. For
example, Zaman et al. used the powerful global exploration capability of the backtracking search
optimization algorithm to enhance the convergence accuracy of particle swarm optimization (PSO)
[5]. Shen et al. optimized the convergence speed of the whale optimization algorithm by dividing the
fitness into three subpopulations [6].

The grey wolf optimizer (GWO) [1] is a swarm-based intelligence optimization algorithm proposed
by Mirjalili et al. in 2014. GWO solves the optimization problem by simulating the steps of searching,
encircling, and attacking prey in the process of wolf hunting. The first two stages (i.e., searching and
encircling) make a global search, and the last stage (i.e., attacking) takes a local search. The social
hierarchy of wolves is classified into four types (i.e., α, β, δ, and ω) according to their fitness, where
α wolf has the highest social rank, and ω wolf has the lowest social rank. Compared with other opti-
mization algorithms, GWO can adaptively adjust the convergence factor and information feedback
to achieve a balance between local optimization and global search, so it has good performance in
terms of problem-solving. GWO has been successfully applied to the fields of job shop scheduling [7],
parameter optimization [8], and image detection [9] due to its advantages of a simple principle and a
few parameters that need adjustment.

Despite the merits mentioned above, concerning the solution accuracy and the searching ability,
the original GWO has a potential space to improve. In addition, there is a paradox in GWO: the
social rank values of α, β, and δ are different in accordance with the design of the social hierarchy,
but these values are the same in practice. In response to the above questions, Some advanced GWOs
have been proposed recently, including variable weight GWO (VWGWO) [10], PSO combined with
GWO (PSOGWO) [11], and covariance matrix adaptation with GWO (CMAGWO) [12]. VWGWO
strengthens the leadership of α. PSOGWO accelerates the convergence of populations at later
stages. CMAGWO can enhance a local search for wolves. Although these algorithms make some
improvements to GWO, they still have the following limitations:

1) Low accuracy solution. During the initialization population phase, GWO, VWGWO, and
CMAGWO generate wolves randomly; this mechanism cannot guarantee the diversity of the
population. Although PSOGWO uses Tent mapping to make the initial population more
uniformly distributed, however, due to the fixed mapping period of the Tent mapping, the ran-
domness in the initialization phase still has room to improve. Meanwhile, in our observation,
PSOGWO does not remarkably improve the solution quality because of the two fundamental
optimizers’ common drawbacks of falling into local optimum.

2) Unreasonable weight setting. During the searching phase, VWGWO sets the weight of α close
to 1, whereas the weights of β and δ are close to 0. This setting will untimely establish the α

wolf’s dominance and weaken the leadership of β and δ. Thus, VWGWO easily leads to early
convergence to α and falls into a local optimum.
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3) High time complexity. In CMAGWO, if the GWO solution quality is poor, then the CMA-
ES optimization space is extremely limited. In addition, CMA-ES needs to decompose the
covariance matrix during iteration (its complexity is as high as O(N3), where N denotes
the number of wolves), and CMAGWO significantly increases the running time compared
with GWO.

1.2 Our Contributions

To solve the aforementioned problems, this paper proposes a high-accuracy variable GWO
(VGWO) while still with low time complexity in this study. The contributions are listed below:

1) A mechanism to improve population diversity is developed. Several pairs of wolves with
symmetric relationships are added to the population during the wolves’ initialization stage.
The diversity of the wolves increases and further makes the wolves’ distribution more uniform.
This scheme is easy to implement and can be applied to problems of different scales.

2) A method to prevent wolves from premature convergence is designed. Dynamically adjusting
the weights of α, β, and δ improves the convergence speed and solution accuracy of wolves.

3) A notion to make wolves jump out of the local optimum is presented. Random perturbations
are leveraged to delay the gathering of the wolves and strengthen the random search ability of
the algorithm while keeping the algorithm in a low time complexity.

4) Some evaluations are conducted to illustrate the VGWO’s advantages. VGWO, GWO,
PSOGWO, VWGWO, and CMAGWO are evaluated by 19 benchmark functions and 3
engineering cases. Compared to the state-of-art GWOs and CEC2020 competition winner,
the experimental results illustrate that VGWO has good solution quality and fast convergence
speed without increasing the time complexity. A further evaluation based on the Friedman
test, VGWO also outperforms all other algorithms statistically in terms of robustness with a
better average ranking value.

The remainder of this article is as follows: Section 2 reviews the work related to GWO. Section 3
describes the VGWO model and its derivation process. Section 4 gives the parameter settings of
different algorithms in the experiments. Section 5 first conducts the experiments on benchmark
functions, followed by the analysis of the experimental results, and further demonstrates the excellence
of VGWO by comparing its performance with the CEC2020 winner. Section 6 evaluates VGWO
through three different engineering examples. Section 7 summarizes the work of this study and
provides suggestions for further research.

2 Related Work

Many researchers have made relevant improvements to address the shortcomings of GWO. Work
related to GWO focuses on three perspectives, namely, the initialization population of GWO, the search
mechanism of GWO, and hybridizing other metaheuristics of GWO.

1) Population Initialization of GWO. The outcome of the initialization population affects the
quality and speed of convergence. However, wolves in the original GWO are generated
randomly, so their diversity cannot be guaranteed. Long et al. [13] first introduced the point
set theory in GWO, which initializes the population and makes wolves’ distribution more
uniform to solve this problem. Luo et al. [14] employed complex numbers to code the grey
wolf individuals. This method can increase the amount of information in the gene because
a complex number has 2D properties. Kohli et al. [15] developed a GWO based on chaotic
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sequences and demonstrated that their method has greater stability than GWO. Similarly, Teng
et al. [11] suggested a particle swarm optimization combined with GWO (PSOGWO), which
increases the randomness of initialized populations by Tent mapping. However, the foregoing
research only considers the effects of the starting population and ignores the balance between
local and global search capabilities.

2) Searching Mechanism of GWO. A number of studies about search mechanisms focus on the
enhancement of control parameter a (a is used to control the proportion of global and local
search) or on the calculation method of individual coordinates. Saremi et al. [16] combined
GWO with evolutionary population dynamics (EPD), where EPD can remove the poor
solution and reposition it around α, β, or δ to improve GWO’s local search ability. Mittal et al.
[17] proposed a modified GWO (mGWO) that adjusts the control parameter a to improve
the effectiveness and stability of GWO. Lu et al. [18] increased the topological neighbors of
wolves to ensure population diversity by combining GWO with topology. However, the weight
of dominant wolves (α, β, and δ) contradicts their social hierarchy and affects the GWO’s
performance. Considering this problem, Gao et al. [10] proposed a variable weight GWO to
reduce the probability of GWO falling into the local optimum. However, VWGWO’s solution
quality does not improve much compared to GWO because it overemphasizes the weight of α.

3) Hybrid Metaheuristics of GWO. GWO also has gained popularity in the field of hybrid
metaheuristics, with many researchers combining it with differential evolution (DE) or PSO.
Yao et al. [19] used the survival of the fittest strategy from DE and presented an improved
GWO. Similarly, Zhu et al. [20] proposed a hybrid GWO with DE to improve the GWO’s
global search ability. Contrary to reference [20], Jitkongchuen [21] proposed a hybrid DE
algorithm with GWO (jDE). jDE employs the GWO’s coordinate update strategy to improve
the crossover operator in DE. However, since PSO introduces the historical optimal solution
into the algorithm, thereby obtaining strong convergence [22], Singh et al. [23] observed that
the above GWOs do not account for wolves’ historical optimal coordinates, so they proposed
a hybrid GWO based on PSO (HPSOGWO). HPSOGWO has better exploratory ability than
GWO; PSOGWO is developed based on HPSOGWO. Zhao et al. [12] used a two stage search
to improve the GWO’s local search ability and then designed a covariance matrix adaptation
with GWO (CMAGWO).

Meanwhile, GWO plays a very important role in the application of engineering problems. In
the field of parameter optimization, Madadi et al. [24] used the GWO algorithm to design a new
optimal proportional-integral-derivative (PID) controller, then compared the PID-GWO and PID-
PSO controllers; the results showed that the PID-GWO can better improve the dynamic performance
of the system. Lal et al. [25] employed GWO algorithm to optimize the fuzzy PID controller and
applied it to the automatic control of the interconnected hydrothermal power system. Sweidan et
al. [26] leveraged GWO to optimize the parameters of the support vector machine (SVM) and used
the optimized SVM to assess water quality; Eswaramoorthy et al. [27] utilized GWO to tune the
SVM classifier and used it for a case study of intracranial electroencephalography (iEEG) signal
classification middle. Muangkote et al. [28] applied the improved GWO algorithm to the training of
q-Gaussian-based radial basis function logic network (RBFLN) neural network and pointed out that
the improved GWO algorithm has higher accuracy in solving complex problems through comparative
experiments; Mirjalili et al. [29] first used GWO to train multi-layer perceptron (MLP). Compared
with other well-known algorithms, GWO-MLP can effectively avoid falling into local optimum. Al-
Shaikh et al. [30] used GWO to find strongly connected components in directed graphs in linear



CMC, 2023, vol.77, no.2 1621

time, addressing the serious time-consuming shortcomings of Tarjan’s algorithm and the Forward-
Backward algorithm. In the field of renewable energy systems, Sivarajan et al. [31] made use of GWO
to determine the optimal feasible solution to the dynamic economic dispatch problem of combined
heat and power generation considering wind farms and tested the performance of the GWO algorithm
with a test system containing 11 generating units. The results show that the GWO algorithm is superior
in both economy and computing time. Mohammad et al. [32] used GWO to solve the problem of
photovoltaic solar cells and greatly reduced the waste of energy by estimating the performance. In
addition, Almazroi et al. applied GWO to an implicit authentication method for smartphone users
[33]. Zaini et al. predicted the energy consumption of home appliances through GWO [34].

Although the above GWOs have some advantages in different parts, they mainly focus on
optimizing the internal shortcomings of wolf individuals. This study continues to analyze GWO.
Different from the above algorithm, our work focuses on trying to leverage multiple mechanisms to
improve the quality of the solution.

3 Design of VGWO Algorithm

This section first introduces VGWO in detail. Then, an outline of three aspects is presented,
followed by a detailed description of the algorithmic flow. All variants used in this study and their
corresponding definitions, as well as the time complexity analysis of VGWO, are also introduced in
this section.

3.1 Enhancing Wolves’ Diversity through Symmetrical Wolf (SW)

In GWO, initializing the population is a crucial stage. A healthy population has a direct influence
on the speed and outcome of convergence in general. However, the original GWO population
initialization was performed at random, which cannot guarantee a good diversity of wolves, thereby
decreasing the algorithm’s effectiveness. This paper gives a definition named SW to overcome this
drawback and then focuses on how SW be used to start populations.

Definition 1: SW. Wolf individual’s symmetric coordinates about the center of the search range.

We briefly describe the above definition through an example. Assuming that a point x ∈ [l, r]
exists in the 1D space, and the SW point of x is the symmetrical point of x about the symmetry center

o = l + r
2

. When extending to 3D space, for example, a point x = (1, 2, 3) is found in Fig. 1, where the

search range is {(x, y, z)|x ∈ [−5, 5] , y ∈ [−5, 5] , z ∈ [−5, 5]}, that is, the green space in Fig. 1. Thus,
the symmetry center is (0, 0, 0), and the SW point of x in the search range is x’ = (−1, −2, −3).

Combined with Definition 1, the steps of initializing an individual coordinates solution using

SW are as follows: 1) Initialize the coordinates
→
X i (i = 1, 2, ···, N) of N grey wolf individuals in

the defined domain space as the initialization wolves ini_population; 2) Generate the SW population
sym_population of population ini_population in accordance with Definition 1; 3) Merge populations
ini_population and sym_population to obtain population, and then sort population by fitness value; 4)
Select the first N individuals as the initial population.

The pseudo-code of the initialized population is shown in Algorithm 1, where N and dim indicate
the amount and dimension of the population, respectively, and [l, r] represents the search range of
wolves. The initialized individuals obey the beta distribution because the beta distribution can generate
as many non-edge individuals as possible, thereby improving the search efficiency of GWO. With the
use of SW constraint in Algorithm 1, the diversity of the wolves is enhanced considerably. The search
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for SW and the initialization of the population are performed simultaneously, which has minimal effect
on the time complexity of the algorithm.

Algorithm 1: The initialize population algorithm
Input: N, dim, l, and r.
Output: population.
1: procedure SYMMETRIC(N, dim, l, r)
2: Set arrays ini_pop and sym_pop.
3: for (i = 0; i < N; i++) do
4: for ( j = 0; j < dim; j++) do
5: ini_pop[i][j] ← Beta (l, r).
6: sym_pop[i][j] ← l + r - ini_pop[i][j].
7: population ← ini_pop + sym_pop.
8: Sort(population). /∗according to fitness∗/
9: Remove the last N individuals in population.
10: return population;
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Figure 1: SW point in three-dimensional space (1,2,3)

The SW implementation is simple and scalable. Thus, it can be applied after each wolf’s coordinate
update. Figs. 2 and 3 show the wolves after seeking for SWs in the searching and encircling phases,
respectively. The black dot in the figure is assumed to be the search range’s center, α’, β’, and δ’ are
correspondingly the SWs of α, β, and δ. The grey point represents an ordinary wolf who will move
toward α, β, and δ, and the yellow point represents the prey. As shown in Fig. 2, SW increases wolf
diversity and has the potential to bring wolves closer to their prey. However, the wolves begin to round
up the prey, as shown in Fig. 3. If we search SW for the entire population as usual, then the generated
SW wolves will be far away from the prey, which is obviously an invalid operation. Thus, the wolves
must generate SW wolves adaptively at various stages. In short, VGWO will reduce the SW wolf search
when the wolves reach the encirclement phase.
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Figure 2: Add SW in the phase of searching prey
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Figure 3: Add SW in the phase of encircling prey

For the SW wolves search in the iterative process, our study only searches for SW wolves for the
first length of well-fitness individuals in each iteration. This length reduces linearly from N to 0 with
the number of iterations. The computation formula is expressed as follows:

length = N∗Max_iter − it
Max_iter

, (1)

where N indicates the number of individuals in the population, it indicates the current iteration, and
Max_iter indicates the number of iterations. This practice can prevent the time complexity of VGWO
from becoming high.
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3.2 Changing the Weights of α , β , and δ

As previously shown, changing the weight of the dominant wolf (i.e., α, β, and δ) can lead to
better optimization capability [10], however, the weight of α should not always be greater than one-
third. Although α is representative of the current optimal solution, it is not constantly closest to the
prey [1]. If α always has the highest weight, then the wolves will inevitably gather around α prematurely,
thereby ignoring the leadership of β and δ, and making the search easier to fall into the local optimum.
Therefore, this paper proposes a new weight calculation method.⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ω1 = 2
3
∗ it

Max_iter

ω2 = 1
3

ω3 = 2
3

− ω1,

(2)

where ω1, ω2, and ω3 indicate the weight of α, β, and δ, respectively. ω1 linearly increases from 0 to
2/3 with the iterations it. ω2 indicates the weight of the individual in the middle position, and this
paper simply keeps its weight to 1/3. ω3 linearly reduces from 2/3 to 0 with the number of iterations.
As shown in Eq. (2), this calculation method aims to weaken the weight of α in the searching and
encircling phases and strengthen the leadership of β and δ, thereby improving the global search ability
and reducing the probability of wolves falling into the local optimum.

3.3 Adding Random Perturbations to Wolves

Random perturbation is a type of contingent fluctuation that can be used to test the stability and
usefulness of a model [35]. Simulated annealing (SA) jumps out of local optimum by implementing
a survival of the fittest strategy for random perturbations [36] like the greedy strategy proposed in
DE [37]. On this basis, SA and DE have powerful random search capabilities. Contrary to GWO, the
authors in [38] and [39] pointed out that SA and DE often need to pay the price of slow convergence
speed. Therefore, this paper combines the advantages of the above three algorithms to create the
VGWO, that is, adding random perturbations to the wolves. The random perturbations are generated
as follows:
�Xvariation = �Xr1

+ F ∗
( �Xr2

− �Xr3

)
, (3)

where r1, r2, and r3 are three different random integers in the range of [1, N], and F is the scaling
parameter. In the DE, F affects the diversity of the population and has a remarkable effect on
convergence and stability. The appropriate F is difficult to be determined. As mentioned in [40], the
upper limit of F = 1.2 is determined on the basis of experience, and no optimization problem requires F
to be greater than 1.2. Therefore, for wolves, after ending each search, creating the variant individuals
with different F is a reasonable means to balance the local search and global search capabilities of the
algorithm. For the VGWO, the value of F is linearly reduced from 1.2 to 0. This paper changes F in
accordance with a special parameter, which is called temperature changing in SA.

F = 1.2−1.2∗ (Tmax − T)

Tmax − Tmin

(4)

where Tmax indicates the initial temperature, T indicates the temperature under the current iteration,
and Tmin indicates the temperature under steady state. However, the judgment of whether a random
perturbation is added to the wolf pack needs to be based on its fitness value.
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A method for calculating the probability of a random perturbation being selected is proposed in
the archival multiobjective SA algorithm (AMOSA) [41].

Probability = 1
1 + e�domavg∗T

, (5)

where �domavg is the average domination of the random perturbation. T denotes the present tem-
perature, and the above formula guarantees that the probability value is between 0 and 1. �domavg is
determined as the following:

�domavg =
(∑k

i=1
�domi,b

)
/k, (6)

where k is the number of solutions, and �domi,b is the amount of domination about two solutions (i.e.,
i and b), which is determined by

�domi,b =
∏O

j=1,fj (i) �=fj (b)
(
∣∣fj(i) − fj(b)

∣∣ /Rj) (7)

where the O is the number of objectives. In [41], the new solution is obtained by making a random
perturbation to the current state, which is similar to the idea of deriving the variant individual in
Eq. (3). However, the calculation of the average dominance in the AMOSA is based on a multiobjective
problem, and the problem discussed in this study is a single-objective problem. In other words, O in
Eq. (7) is equal to 1, and Eq. (6) represents the average domination of the new solution b over all
the solutions. This strategy is similar to the vector 1-norm. The traditional vector 1-norm calculation
method is as follows: ||x||1= ∑N

i=1 |xi|, where x denotes an N-dimensional vector. The mathematical
meaning of the 1-norm is the sum of the elements of a 1D vector, and the geometric meaning is the
Manhattan distance from the vector x to the original point.

The Manhattan distance is a scalar that reflects the absolute value of the sum of the axial distances
between two points. As shown in Fig. 4, the Manhattan distance of point x (1,1) to point y (4,5) is 7.
However, this study wants to calculate the superiority or inferiority of variant individuals relative to the
population as a whole in terms of fitness. Thus, a new method of calculating the Manhattan distance
is needed to represent the above problem by the positive or negative of the Manhattan distance.
This paper defines this method as the vectorized Manhattan distance to calculate the domination
deviation of the variant wolf to the current population. In our study, the fitness value of the population
is considered an N-dimensional vector, �Fit = (Fitness ( �X1), Fitness ( �X2),..., Fitness ( �XN)). Thus, the
corresponding vectorized Manhattan distance calculation is expressed as

�Vma =
N︷ ︸︸ ︷

[Fitness( �Xvariation), · · · ] − �Fit, (8)

then we calculate the 1-norm M of non-absolute values of the �Vma vector as the following:

M =
∑N

i=1
Vma[i] (9)

where the Fitness() function is denoted as the fitness function. For example, �Xvariation is better than
most individuals in the current wolves when the optimization objective of the fitness function is the
minimum, and the value of M is less than 0. Thus, the vectorized Manhattan distance can be used to
determine the status of random perturbations in the current population by the positive or negative of
M. The pseudo-code for vectorized Manhattan distance calculation is presented in Algorithm 2.



1626 CMC, 2023, vol.77, no.2

Figure 4: Manhattan distance from point x to point y (both the red and blue lines are Manhattan
distances)

Algorithm 2: The vectorized manhattan distance algorithm

Input: Fitness(), population, N, and �Xvariation.
Output: M, �Fit.
1: procedure SYMMETRIC(Fitness(), population, N, �Xvariation)
2: Set arrays �Fit and M ← 0.
3: M += N ∗Fitness( �Xvariation).
4: for (i = 0; i < N; i++) do
5: Fit[i] ← Fitness(population[i]).
6: M − = Fit[i].
7: return M, �Fit;

Combined with Eqs. (5) and (6), this paper can derive a new method for calculating the probability
of a variation individual being selected is presented as follows:

P = 1

1 + e�domavg∗T = 1

1 + e(
∑k

i=1 �domi,s)/k∗T
= 1

1 + e
M
N ∗T

(10)

where N indicates the population number and T indicates the current temperature.

To better clarify the definition of variables, we list the variables used in this paper and give their
corresponding descriptions in Table 1.

3.4 VGWO Process

Algorithm 3 demonstrates the VGWO pseudo-code. The initialization section must determine
the initial temperature Tmax, steady state temperature Tmin, and temperature change rate k based
on the actual problem. The initialized population ini_population is generated on the basis of the
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population size and shape; the initialized individuals follow the beta distribution. The SW popula-
tion sym_population is generated by using the method described in Section 3.1, ini_population and
sym_population are merged to obtain population, and population is sorted by the fitness value. The top
N individuals are chosen to form the final initial population. The total number of iterations Max_iter
is calculated.

Table 1: R major variants used in this study

Variants Definition

�Xi Grey wolf individuals
[l, r] Search range of wolves
N The number of individuals
dim The dimension of the population
it The current iteration
Max_iter The amount of iterations
F The DE scaling parameter
�domavg The average domination of the random perturbation
O The number of objectives
�Vma The corresponding vectorized Manhattan distance

M The 1-norm of non-absolute values of �Vma

P The probability of a variation individual being selected
Tmax The initial temperature
Tmin The steady state temperature
k The temperature change rate
stla The scheduling time of the VGWO reaches
astla

algorithm The average scheduling time of the la-th benchmark
ARVi The average response of the i-th parameter
ansla

i,j The VGWO optimized result of the la-th benchmark

The second part is the process of slow cooling. Three wolves with the highest status in the wolves
are selected as α, β, and δ. In accordance with Eq. (1), the number of SW wolves to be searched
in each iteration (length) is calculated. sym_population is initialized as an empty set, which is used
to save the SW of the first length wolves. The search process of grey wolves is the same as the
original GWO. With the gradual decrease in length, the SW of the current grey wolf is searched after
determining its new coordinates and saved in sym_population until length decreases to 0. Whenever the
wolves have finished searching, the variation factor F is calculated by using Eq. (4). The variation is
obtained as a new individual �Xvariation by using Eq. (3), and the domination M of �Xvariation is calculated in
accordance with Algorithm 2. The probability of selecting �Xvariation is calculated by using Eq. (10). New
offspring population and sym_population are combined, and the first N grey wolves are taken as the
new population.
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3.5 Complexity Analysis

Unlike the original GWO, the VGWO uses the quick sort to update the population with a time
complexity of O(n ∗ log2n). Assume the time complexity of the fitness value calculation is set to T .
The length of the population after the merging of the population and the sym_population is denoted
by L, and the value of L reduces linearly from (2 ∗ N) to N with the number of iterations to facilitate
the expression of the subsequent complexity. The basic operations’ complexities are as follows. 1)
Initializing the wolves: O(N ∗ dim + 2 ∗ N ∗ log22 ∗ N); 2) Wolf searching: The number of iterations
is Max_iter. The time complexity of updating the coordinates of wolves is O(N ∗ dim). The time
complexity of calculating the vectorized Manhattan distance and fitness values is O(N ∗ T), while
updating the population is O(L ∗ log2L). Therefore, the overall complexity of VGWO is O(Max_iter
∗ (N ∗ dim)).

The GWO, PSOGWO, and VWGWO all have the same time complexity, which is O(Max_iter ∗
(N ∗ dim)) [1,10,11]. The time complexity of the CMAGWO is O(iter1 ∗ (N ∗ dim)) + O((Max_iter
− iter1) ∗ dim) [12], where iter1 denotes the number of iterations of the first stage in the CMAGWO.
The time complexity difference between the five algorithms is small, and subtle differences may be
observed. Thus, the effect on the performance of the algorithms is negligible in this study.

Algorithm 3: The VGWO algorithm
Input: Adaptation function Fitness(), Search scope [l, r].
Output: population[0], Fit[0].
1: procedure VGWO(Fitness(), l, r)
2: Set Tmax, Tmin, N, dim, it ← 0,k, and T ← Tmax.
3: Initialize the ini_population by using Algorithm 1.

4: Max_iter = logk

Tmin

Tmax

. /∗Calculate the total amount of iterations according to the initial test

temperature and steady state temperature∗/
5: while (T > Tmin) do
6: Select the α wolf, β wolf, and δ wolf according to the population.
7: Calculate length by using Eq. (1).
8: Calculate a.
9: Set sym_ population ← ∅.
10: for (i = 0; i < N; i++) do
11: Set �R1 and �R2 to be the value calculated by rand(0, 1).
12: Calculate �A and �C.
13: Calculate �Dα, �Dβ , and �Dδ.
14: Calculate �X1, �X2, and �X3.
15: Calculate ω1, ω2, and ω3 by using Eq. (2).
16: Set population[i] ← ω1 ∗ �X1+ω2 ∗ �X2+ω3 ∗ �X3.
17: if (length > 0) then
18: Calculate the SW individual sym of population[i] according to Algorithm 1.
19: Add sym to sym_population.
20: length–.
21: Set r1, r2, and r3 to the value calculated by randint (1, N).
22: Calculate F by using Eq. (4).
23: Calculate �Xvariation by using Eq. (3).
24: Calculate the value of M and �Fit by using Algorithm 2.

(Continued)
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Algorithm 3 (continued)

25: Calculate the probability P of selecting �Xvariation by using Eq. (10).
26: if (rand() < P) then
27: population[N − 1]← �Xvariation.
28: Combine population and sym_population to form out population.
29: Sort(population). /∗according to fitness �Fit∗/
30: Select the first N individuals after sorting form a new population.
31: it++.
32: T ← T ∗ k.
33: return M, �Fit;

4 Experimental Settings

With the purpose of assessing the capability of the VGWO, we conduct a series of experiments.
The algorithms being compared include GWO, VWGWO, PSOGWO, and CMAGWO. This section
outlines the experimental steps and parameter setting. The experimental framework and programs
used for comparison were implemented in Python and ran on a computer with a 2.90 GHz Intel i7-
10700 CPU and 16 GB of RAM. The source code and experimental results are available at https://
github.com/ZhifangSun/VGWO.

4.1 Benchmark Function

Benchmark function is a variety of standard functions derived from the optimization problems
encountered by human beings in real life. This paper selected 19 representative benchmark functions
from CEC2014 and CEC2020 to test the performance of the above algorithms, which are well-known
complex test functions [42]. They can be divided into three main categories, namely, unimodal (F1,
F2, F3, F4, F5, F6, F13, F14), multimodal (F7, F8, F9, F10, F11, F12, F19), and fixed-dimension
multimodal (F15, F16, F17, F18). As shown in Table 2, the input D-dimensional vector �X = (x1,
x2, ···, xD) is limited by different definition fields. The maximum value and the minimum value in
the definition field are r and l, respectively, and the optimum of each function is 0. For each tested
algorithm, different random populations are used for 15 repeated tests, and the average solutions and
standard deviations of all experiments are recorded.

Table 2: Benchmark functions and their definition domain

Label Dim Expressions [l,r]

F1 30 y = ∑D

i=1 ix4
i + rand [0, 1) [−100, 100]

F2 30 y = ∑D

i=1 |xi| + ∏D

i=1 |xi| [−100, 100]
F3 30 y = ∑D

i=1

(∑i

j=1 xj

)2
[−100, 100]

F4 30 y = max1≤i≤D |xi| [−100, 100]
F5 30 y = (∑D

i=1 x2
i

)2
[−100, 100]

F6 30 y = ∑D

i=1 |xi| [−100, 100]

F7 30 y = −20e−0.2
√

1
D

∑D
i=1 x2

i − e(
1
D

∑D
i=1 cos(2πxi)) + 20 + e [−32, 32]

F8 30 y = ∑D

i=1(x
2
i /4000) − ∏D

i=1 cos(xi/
√

i) + 1 [−100, 100]

(Continued)

https://github.com/ZhifangSun/VGWO
https://github.com/ZhifangSun/VGWO
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Table 2 (continued)

Label Dim Expressions [l,r]

F9 30 y = 1 − cos
(

2π

√∑D

i=1 x2
i

)
+ 0.1

√∑D

i=1 x2
i [−100, 100]

F10 30 y = 0.1{sin2
(3πx1) + ∑D

i=1(xi − 1)2
[
1 + sin2

(3πxi + 1)
] +

(xD − 1)
2
[
1 + sin2

(2πxD)]
} + ∑D

i=1u(xi, 5, 100, 4)

[−50, 50]

F11 30 y = ∑D

i=1[x
2
i − 10 cos (2πxi) + 10] [−5.12, 5.12]

F12 30 y = π

D

{
10 sin2

[
π

(
1 + x1 + 1

4

)]
+ ∑D−1

i=1

(
xi + 1

4

)2 [
1 + 10 sin2

×
[
π

(
1 +xi+1 + 1

4

)]]
+

(
xD + 1

4

)2
}

+ ∑D

i=1u (xi, 10, 100, 4)

[−50, 50]

F13 30 y = ∑D

i=1 |xi + 0.5|2 [−100, 100]
F14 30 y = ∑D−1

i=1 [100
(
xi+1 − x2

i

)2 + (xi − 1)
2] [−30, 30]

F15 6 y = ∑4

i=1 ci exp
(
− ∑6

j=1 aij

(
xj − pij

)2
)

+ 3.322 [0, 1]

F16 4 y = ∑10

i=1[(X − ai) (X − ai)
T + ci]−1 + 10.5363 [0, 10]

F17 4 y = ∑5

i=1[(X − ai) (X − ai)
T + ci]−1 + 10.1532 [0, 10]

F18 2 y = x2
1 + 2x2

2 − 0.3 cos (3πx1 + 4πx2) + 0.3 [−100, 100]
F19 30 y = {[∑D

i=1 sin2
(xi)] − exp(−∑D

i=1 x2
i )} * exp(−∑D

i=1 sin2 √|xi|) + 1 [−5, 10]

4.2 Parameter Setting of VGWO

Orthogonal experimental design is a multi-factor, multi-level experimental design method [43],
which is fast, economical, and efficient, and can obtain satisfactory results with a fewer number of
experiments. Therefore, the orthogonal test method is often used to compare the nature of parameters
and to determine the best combination between different parameters. The parameters that need to be
set in advance for this experiment are the rate of temperature change k, the starting temperature Tmax,
and the steady state temperature Tmin. The three parameters control the global number of iterations
Max_iter, the variation factor F , and the admission probability P of the perturbed individuals.
Therefore, different combinations and different levels of the 3 parameters are shown in Table 3.

Table 3: Combinations of different values for parameters

Fator/Parameter Level/Value

1 2 3 4 5

1©Temperature change rate: k 0.99 0.96 0.93 0.90 0.87
2©Initial temperature: Tmax 2.5 2 1.5 1 0.5
3©Steady state temperature: Tmin 0.1 0.01 0.001 1e−4 1e−5

Table 3 lists factors/parameters and their corresponding levels/values. The number of orthogonal
groups of L25(53) was chosen for this experiment. For each set of orthogonal experiments, five tests are
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performed, and the test termination condition is when the scheduling time of the VGWO reaches stla =
max {astla

GWO, astla
VWGWO, astla

PSOGWO, astla
CMAGWO}, where astla

algorithm denotes the average scheduling time of the
la-th benchmark function after 300 iterations through algorithm, where algorithm ∈ {GWO, VWGWO,
PSOGWO, CMAGWO}, and la ∈ Label, for the benchmark functions in Table 2. The results of the
orthogonal experiments are shown in the GitHub repository mentioned in Section 4.

The performance of the GWOs is linked to the parameter values when faced with different
problems, and a tuned combination of parameter values will yield better results. However, the
experiments use the same combination of parameters to optimize different benchmark functions for
highlighting the performance of VGWO. Thus, the average response value (ARV) of the i-th parameter
combination is calculated by using the following equation:

ARV i = 1
5|Label|

5∑
j=1

∑
la∈Label

{ansla
i,j − min

i=1,··· ,25;j=1,··· ,5
{ansla}} (11)

where ansla
i,j represents the VGWO optimized result of the la-th benchmark function of the j-th when

selecting the i-th set of parameter combinations, and the value of ARV can reflect the performance of
each of the 25 sets of parameter combinations.

The ARVs obtained from the orthogonal experiments are shown in Table 4. Table 5 shows the
mean value of ARV and the extreme difference in the mean value for each factor at different levels.
A smaller value of ARV indicates that this parameter has less difference from the global optimum at
the current level, and a larger value of ARV indicates that this parameter has less optimization ability
at the current level. The larger the extreme difference in the mean value of ARV indicates that this
parameter has more influence on the performance of the algorithm. Therefore, the conclusions based
on Tables 4 and 5 are summarized as follows:

1. In accordance with the value of range, the effect of the three parameters on the performance
of the algorithm from low to high is Tmax, Tmin, k.

2. Based on each factor’s mean ARV value of different levels, the best combination of parameters
for the VGWO is suggested to be Tmax = 1, Tmin = 1e−4, and k = 0.90.

3. The extreme differences of all three parameters are small, less than 0.25, which shows that
the algorithm is not sensitive to the values of the parameters, and has robust and stable
performance within a wide range of parameter settings.

Table 4: Combinations of different values for parameters

Run Factor ARV Run Factor ARV
1© 2© 3© 1© 2© 3©

1 1 1 1 0.6865 14 3 4 5 0.6417
2 1 2 3 0.6818 15 3 5 2 0.3672
3 1 3 5 0.6163 16 4 1 3 0.4291
4 1 4 2 0.7509 17 4 2 5 0.4875
5 1 5 4 0.7453 18 4 3 2 0.3590
6 2 1 5 0.7010 19 4 4 4 0.3695
7 2 2 2 0.5198 20 4 5 1 0.7188
8 2 3 4 0.5382 21 5 1 2 0.5085

(Continued)
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Table 4 (continued)

Run Factor ARV Run Factor ARV
1© 2© 3© 1© 2© 3©

9 2 4 1 0.4124 22 5 2 4 0.3297
10 2 5 3 0.6072 23 5 3 1 0.8427
11 3 1 4 0.4111 24 5 4 3 0.3197
12 3 2 1 0.5423 25 5 5 5 0.4348
13 3 3 3 0.4836

Table 5: Combinations of different values for parameters

Level k Tmax Tmin

1 0.69616 0.54724 0.64054
2 0.55572 0.51222 0.50108
3 0.48918 0.56796 0.50428
4 0.47278 0.49884 0.47876
5 0.48708 0.57466 0.57626
Range 0.22338 0.07582 0.16178
Rank 1 3 2

4.3 Other Parameter Settings

The parameters of the VGWO are obtained in Section 4.2 (i.e., Tmax = 1, Tmin = 1e−4, and k
= 0.90), and the parameters of the remaining algorithms (GWO [1], PSOGWO [11], VWGWO [10],
CMAGWO [12]) are set in the same way as the parameters of the respective references. The number
of iterations of all algorithms is 90, and the number of wolves is 50.

5 Experimental Result

This section presents and discusses the results of the proposed VGWO compared with the state-
of-art GWOs. Mainly comparing their performance through optimization results and convergence
curves.

5.1 Result Analysis

The optimal solutions of the above 10 functions and the algorithms that produce this result are
recorded in Table 6, where the optimal average solution of each function is marked in boldface. Given
that the generation of the wolves is random and has certain instability in the iterative process, the
results that are different from the ideal state exist. However, they are determined by the excellence of
the algorithm itself in most cases.
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The results of the 19 benchmark functions are analyzed as follows:

1) For all functions, most of the optimal average solutions compared with various algorithms
are found by the VGWO. Because the VGWO enhances the diversity of wolves through SW,
it outperforms other algorithms in terms of finding the best solution and even produces the
ideal solution 0 for functions F8, F11, and F18. In each iteration, VGWO will arrange more
ω wolves to search for prey, which greatly increases the probability of obtaining the global
optimum.

2) The standard deviation of F8, F11, and F18 functions is 0, and the other four GWOs easily
fall into local optimum, so it is difficult to achieve this level. VGWO generates random
perturbations through differential operators, and calculates the probability of acceptance
through its own domination. This method provides a chance for the stability of the wolves
to jump out of the local optimum, which reflects the strong robustness of VGWO.

3) F10 and F12 are multi-peaked functions, F13 is a single-peaked function, and F16 is a fixed-
dimensional multi-peaked function. Although the GWO achieves the lead, it does not differ
much from the results obtained by the VGWO, and VGWO has good performance for other
functions of the same type.

In addition, the Friedman test results shown in Table 7 indicate that VGWO ranks first in terms
of average results. It is clear that VGWO is statistically superior to all other algorithms since it has an
average ranking value.

Table 7: Ranking of all algorithms for all benchmarks obtained by Friedman test

Rank VGWO GWO CMAGWO PSOGWO VWGWO

F1 1 2 4 5 3
F2 1 3 4 5 2
F3 1 3 4 5 2
F4 1 2 4 5 3
F5 1 2 4 5 3
F6 1 3 4 5 2
F7 1 2 4 5 3
F8 1 3 4 5 2
F9 1 2 4 5 3
F10 3 1 2 5 4
F11 1 2 4 5 3
F12 3 1 2 5 4
F13 4 1 2 5 3
F14 1 2 4 5 3
F15 1 2 4 5 3
F16 2 1 4 5 3
F17 1 2 4 5 3
F18 0.2 0.2 0.2 0.2 0.2
F19 1 2 4 5 3
Average 1.37894737 1.90526316 3.48421053 4.74736842 2.74736842



CMC, 2023, vol.77, no.2 1635

5.2 Convergence Curve Analysis

Figs. 5–7 show most of the fitness value iteration plots. The rest of the functions not shown are
due to either excessive disparity or similarities in the convergence curves between different algorithms.
GWOs’ excellence cannot be compared visually by the graphs. Considering that the curves of different
GWOs overlap in these graphs, some iteration graphs have additional small views, which can be used
to visualize the distribution of the overlapping curves at the end of the iteration.

Figure 5: Unimodal benchmark functions

The analysis results for the three different types of benchmark functions (unimodal, multimodal,
and fixed-dimension multimodal benchmark functions) are as follows:

1) For the unimodal benchmark function, the VGWO and CMAGWOs have excellent capabilities
in initializing populations due to the beta distribution. Figs. 5b and 5c show that the conver-
gence rate at the beginning is still slow. This finding is due to the improved mechanism proposed
in Section 3 enhances the population diversity of the pre-VGWO. However, this scheme does
not affect the convergence speed of the VGWO, and the rich population diversity enhances the
convergence speed of the VGWO in the later stages. As shown in Figs. 5b and 5c, for the above
reasons, the VGWO obtains a solution that exceeds the rest of the algorithms when the number
of iterations reaches about the 20th time.

2) For the multimodal benchmark function, except for the PSOGWO that will fall into the local
optimum prematurely, the rest of the algorithms have a good convergence trend, where the
most outstanding performance is still the VGWO. With the continuous addition of random
perturbations, and accepting wolves with dominant positions, the VGWO can jump out of the
local optimum easily and establish the search area quickly by the rich population diversity.
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3) For the fixed-dimension multimodal benchmark function, many algorithms fall into local
optimum, and the curves of the GWO, VWGWO, and VGWO show a decreasing trend, as
shown in Fig. 7a. In Fig. 7b, only the GWO and the VGWO converge toward the amiable
results. In Fig. 7c, only the VGWO converges to the ideal results. The GWO, CMAGWO,
PSOGWO, and VWGWO are difficult to determine the approximate position of the prey and
present extremely unstable curves. This is due to VGWO’s guarantee of population diversity,
which reflects the strong robustness of the VGWO.

Figure 6: Multimodal benchmark functions

Figure 7: Fixed-dimension multimodal benchmark functions
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5.3 Comparison with CEC Competition Winner

To judge the performance of VGWO further, this study compares the results obtained by VGWO
from the 19 benchmark functions mentioned above with those obtained by the winner of the CEC2020
competition, an improved multi-operator DE (IMODE) algorithm. Its parameters are obtained from
relevant articles, and the same random seeds are used for both VGWO and IMODE to ensure a fair
comparison.

The mean and standard deviation of the results are recorded according to the rules of the
benchmark.

The run was stopped if the number of evolutions was greater than 90. The performance compar-
ison between VGWO and IMODE is shown in Table 6.

By the mean and standard deviation obtained, the proposed VGWO outperforms IMODE for
unimodal, multimodal, and fixed-dimension multimodal problems. In [44], IMODE obtains good
results by a large number of iterations and running time. However, in this study, the results obtained by
IMODE are much worse compared to VGWO. This shows that VGWO is able to obtain better results
after fewer iterations compared to IMODE, proving that VGWO has higher accuracy and convergence.

6 Application Studies on Engineering Cases

Engineering examples are designed in such a way that the solution usually involves constraints
on inequalities or equations. The methods to handle the constraints are special operators, repair
algorithms, and penalty functions [45]. The simplest method is used because this study ignores
additional algorithms for the VGWO to design good handling of constraints. In simple terms, any
solutions that violate the constraints are uniformly penalized by assigning them the maximum fitness
value (minimum fitness value in the maximization case). This method is extremely easy to implement
and requires no modification to the VGWO.

In the following summary, the VGWO will be used to solve 3 constrained engineering problems
and each engineering case will be run 15 times to compare the optimization results with the GWO,
CMAGWO, PSOGWO, and VWGWO. The number of iterations of all algorithms is 90, and the
number of wolves is 50. The parameter settings for all algorithms are the same as in Section 4.

6.1 Cantilever Beam Design Problem

Fig. 8 shows the model of a cantilever beam, which consists of five hollow elements of a square
cross section, each corresponding to a variable parameter. From Fig. 8, the right side of element 1
is rigidly supported, and element 5 is subjected to a vertical load [46]. The optimization objective is
to minimize the total weight of the beam without violating the vertical displacement constraint. The
weight of the beam is calculated by using the following formula:

f
(→

x
)

= 0.0624 ∗ (x1 + x2 + x3 + x4 + x5) (12)

The constraint function for the vertical displacement can be expressed as follows:

g
(�x) = 61

x3
1

+ 37
x3

2

+ 19
x3

3

+ 7
x3

4

+ 1
x3

5

≤ 1 (13)

where 0.01 ≤ x1, x2, x3, x4, x5 ≤ 100. Table 8 shows the best results of the five algorithms optimized
for this engineering example. The VGWO achieves the best average result after 15 iterations of the
experiment. Although the global optimal solution is obtained by the CMAGWO, its average result is
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inferior to that of the VGWO, which reflects the stability of the VGWO. The last column of the table
(Max. eval.) represents the maximum number of evaluations required for the algorithm of this row
to converge to the average value of the VGWO (bolded values in the table), and N/A represents the
inability to reach the average of the VGWO. This finding shows that the VGWO only requires a smaller
number of evaluations to converge to a better solution, reflecting the higher accuracy of the results
obtained by VGWO.

Figure 8: Cantilever beam design problem

Table 8: Comparison results for cantilever design problem

Algorithm Optimal values for variables Average of 15
optimizations

Optimum
weight

Max.
eval.

x1 x2 x3 x4 x5

VGWO 6.060636 5.317785 4.434152 3.498035 2.166890 1.3404493 1.3401960 87
GWO 6.071908 5.346120 4.433684 3.501883 2.135901 1.3409640 1.340253 90
CMAGWO 6.023866 5.304281 4.499211 3.508727 2.137856 1.3479516 1.3399740 90
PSOGWO 11.218468 68.452177 92.127824 3.903034 67.669331 1.462091 1.391713 N/A
VWGWO 5.884392 5.143916 4.950015 3.600569 2.111516 1.3621113 1.345435 N/A

6.2 Three-Bar Truss Design Problem

Fig. 9 shows the second engineering example, which is the design of a threebar truss with the
optimization objective of minimizing its weight while being constrained by buckling and stresses [47],
where trusses x1 and x3 are the same. The objective function can be expressed as

f
(�x) = (2

√
2x1 + x2)

∗l (14)
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Figure 9: Three-bar truss design problem

The constraint function can be expressed as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

g
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2x2
1 + 2x1x2

P − σ ≤ 0

g
(�x) = x2

√
2x2

1 + 2x1x2
P − σ ≤ 0

g
(�x) = 1√

2x2 + x1

P − σ ≤ 0,

(15)

where 0 ≤ x1, x2 ≤ 1, l = 100 cm, P = 2 kN/cm2, σ = 2 kN/cm2. From Table 9, the VGWO achieves
the optimal average result, obtains the global optimal solution among the five algorithms, and only
uses 79 iterations. The optimal solutions obtained by GWO, PSOGWO, and VWGWO are less than
the average of VGWO, which again proves the efficiency of the VGWO in solving engineering instance
problems.

Table 9: Comparison results of the three-bar truss design problem

Algorithm Optimal values for variables Average of 15
optimizations

Optimum
weight

Max.
eval.

x1 x2

VGWO 0.78833698 0.40923986 263.9313018498927 263.89586755920436 79
GWO 0.79654379 0.4133241 264.1915141452602 263.9365176832555 N/A
CMAGWO 0.78849488 0.40875837 264.1180455966054 263.8993541076323 90
PSOGWO 0.29714538 0.88195163 264.30746833329135 263.9876372189363 N/A
VWGWO 0.62868634 0.3561151 265.67838791337937 264.10334353791336 N/A

6.3 Gear Train Design Problem

Fig. 10 shows the third engineering example, which is a discrete case study with four parameters
representing four gears (i.e., A, B, C, and D), and the optimization objective is to minimize the rotation
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ratio of the gears and determine the optimal number of teeth for the four gears at this time [48]. The
objective function can be expressed as follows:

f
(�x) =

(
1

6.931
− x2x3

x1x4

)2

(16)

Figure 10: Gear train design problem

Its constraints are relatively simple and only need to be satisfied as follows: 12 ≤ x1, x2, x3, x4 ≤ 60.
According to [49], when the optimal number of teeth is set to x1 = 43, x2 = 19, x3 = 16, and x4 = 49,
then the gear rotation ratio will obtain the smallest value. As shown in Table 10, VGWO obtains this
result by only through 81 iterations, and its average result is the best among the five algorithms. From
the above three engineering examples, the VGWO is suitable for most of optimization problems with
constraints and can obtain better results after relatively fewer iterations, which reflects the robustness,
stability, and strong convergence of the VGWO.

Table 10: Comparison results of the gear train design problem

Algorithm Optimal values for variables Average of 15
optimizations

Optimum
weight

Max.
eval.

x1 x2 x3 x4

VGWO 43 19 16 49 8.99137768137e-10 2.700857148887e-12 81
GWO 51 26 15 52 8.039399153925e-08 2.307815733313e-11 85
CMAGWO 54 22 17 48 3.692037760945e-06 1.166115767811e-10 90
PSOGWO 57 39 17 51 8.941831357334e-09 2.307815733313e-11 86
VWGWO 40 19 15 52 2.107713739241e-06 1.8273802353e-08 N/A

7 Conclusion

In this study, this paper proposes a high-accuracy VGWO while still with low time complexity. SW
is used to enhance the diversity of the wolves. Inspired by VWGWO’s proposal that three dominant
grey wolves have different social statuses in different periods, this study improves the linear variation
method of the three dominant wolves’ weights during the search procedure. With the purpose of
reducing the chance of falling under local optimum, a differential variation factor is introduced
to generate new individuals. Enlightened by the AMOSA, the probability of accepting the random
perturbation is calculated by vectorizing the Manhattan distance when the grey wolf finishes the
current search. The experimental comparison of 19 benchmark functions, the CEC competition winner



CMC, 2023, vol.77, no.2 1641

(IMODE), and 3 engineering cases with GWO, CMAGWO, PSOGWO, and VWGWO reflects the
advantages of VGWO in terms of convergence and accuracy. The experimental results show that our
VGWO has better solution quality and robustness than other algorithms under different conditions.
For 19 benchmark functions, VGWO’s optimization results place first in 80% of comparisons to the
state-of-art GWOs and the CEC2020 competition winner. Only VGWO’s average ranking value is less
than 1.5, according to Friedman’s test.

The proposed VGWO is promising to be a good choice for solving problems with uncertain search
ranges and high requirements for accuracy of results. However, the proposed improvements mainly
focus on increasing the wolves’ diversity, which is not necessarily applicable to solve all benchmark
functions. Tendency to fall into local optimum is still a weakness of the GWO. VGWO is not always the
best solution when encountering a larger range of solution spaces than the current popular application
problem, and further efforts are needed to solve this problem. The GWO is still a hot topic for
future research on optimization algorithms, and the application of VGWO to suitable engineering
optimization problems will be considered in the future. For example, it can be applied to renewable
energy systems, to workflow scheduling problems in heterogeneous distributed computing systems, or
to integrated process planning and scheduling problems. As more excellent intelligent optimization
algorithms are proposed, we will try to shift our research direction to these algorithms in the future,
such as Mountain Gazelle Optimizer [50], African Vultures Optimization Algorithm [51], and so on.
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