
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

echT PressScience

DOI: 10.32604/cmc.2022.028680

ARTICLE

Detecting Android Botnet Applications Using Convolution Neural Network

Mamona Arshad1, Ahmad Karim1, Salman Naseer2, Shafiq Ahmad3, Mejdal Alqahtani3,
Akber Abid Gardezi4, Muhammad Shafiq5,* and Jin-Ghoo Choi5

1Department of Information Technology, Bahauddin Zakariya University, Multan, 60000, Pakistan
2Department of Information Technology, University of the Punjab Gujranwala Campus, Gujranwala, 52250, Pakistan
3Industrial Engineering Department, College of Engineering, King Saud University, P.O. Box 800, Riyadh,
11421, Saudi Arabia
4Department of Computer Science, COMSATS University Islamabad, Islamabad, 45550, Pakistan
5Department of Information and Communication Engineering, Yeungnam University, Gyeongsan, 38541, Korea

*Corresponding Author: Muhammad Shafiq. Email: shafiq@ynu.ac.kr

Received: 15 February 2022 Accepted: 05 July 2022 Published: 29 November 2023

ABSTRACT

The exponential growth in the development of smartphones and handheld devices is permeated due to everyday
activities i.e., games applications, entertainment, online banking, social network sites, etc., and also allow the end
users to perform a variety of activities. Because of activities, mobile devices attract cybercriminals to initiate an
attack over a diverse range of malicious activities such as theft of unauthorized information, phishing, spamming,
Distributed Denial of Services (DDoS), and malware dissemination. Botnet applications are a type of harmful
attack that can be used to launch malicious activities and has become a significant threat in the research area.
A botnet is a collection of infected devices that are managed by a botmaster and communicate with each other
via a command server in order to carry out malicious attacks. With the rise in malicious attacks, detecting botnet
applications has become more challenging. Therefore, it is essential to investigate mobile botnet attacks to uncover
the security issues in severe financial and ethical damages caused by a massive coordinated command server.
Current state of the art, various solutions were provided for the detection of botnet applications, but in general,
the researchers suffer various techniques of machine learning-based methods with static features which are usually
ineffective when obfuscation techniques are used for the detection of botnet applications. In this paper, we propose
an approach by exploring the concept of a deep learning-based method and present a well-defined Convolutional
Neural Network (CNN) model. Using the visualization approach, we obtain the colored images through byte code
files of applications and perform an experiment. For analysis of the results of an experiment, we differentiate the
performance of the model from other existing research studies. Furthermore, our method outperforms with 94.34%
accuracy, 92.9% of precision, and 92% of recall.

KEYWORDS
CNN; botnet applications; machine learning; image processing

https://www.techscience.com/journal/CMC
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2022.028680
https://www.techscience.com/doi/10.32604/cmc.2022.028680
mailto:shafiq@ynu.ac.kr


2124 CMC, 2023, vol.77, no.2

1 Introduction

Nowadays, Android smartphones have become a convenient and ubiquitous part of our lives, are
widely used by the majority of end users for everyday activities, business management, data sharing,
social sites, and online banking. As compared to other Personal Computer (PC) platforms, smart-
phone devices are stored more sensitive information because of the full-featured operating system
incorporated with a user-friendly environment that helps the end users for installing applications for
everyday activities from unverified sources such as third-party Appstore. Therefore, cybercriminals can
exploit the weakness of smartphone devices by installing the applications and embedding malicious
codes into the mobile clean applications.

The most common technique to embed malicious codes into mobile clean applications is the
Android permission system. Every android application needs specifically ask for permission from end-
users to install in order to perform operations on the devices, such as sending an Short Messaging
Service (SMS)/Multimedia Messaging Service (MMS) [1]. Unfortunately, many end users provide
access to unknown mobile applications without considering the internal code of applications. As a
consequence, cybercriminals employ the reverse engineering technique on apps, disassembling the
apps, embedding malicious code into the original code, and then uploading the updated version to
the android market. Using this concept, end users can be easy misleads because they are unable to
recognize the difference between malicious and clean applications. Once malicious applications have
been installed, the malicious code within applications can perform attacks in the background. Botnet
applications are a type of such attacks in which the cybercriminals exploit a security hole in the
platform i.e., Command and Control server (C&C) in order to command, inspect the applications
and install malware, worms, trojans, threats, and botnets [2] on the android devices that can be used
to launch malicious activities to the targets.

Botnets are a type of malware that uses a C&C channel to compromise a network of interconnected
devices. Attackers or cybercriminals are known as botmasters that control the command-and-control
channel to send, update, and obtain information from end-users [3]. In addition, such types of attacks
can infect Android smartphones and turns into harmful bots. These malicious bots turn into a large
botnet. The objective of our paper is the detection of executing malicious activities in devices through
C&C servers that are arranged by botmasters [4].

From the security perspective, the exponential growth in malicious activities is a significant threat
in educational and industry research. Botnets have their own set of characteristics and capabilities.
The botnets are usually divided into subgroups such as botmasters, bot clients, and bot servers. The
botmaster is incharge of the botnet’s controller and operator known as malware management and
launch an attack through interaction with the network of the command-and-control channel (C&C
network) in order to establish a communication channel with the system as sown in Fig. 1.

Moreover, a C&C network is a large server with a lot of resources such as Central Processing Unit
(CPU), memory, and bandwidth responsible for delivering commands to the victims for configuration
and updating purposes. Furthermore, the victims or service provider has no idea what malware has
been installed on it or if it is part of the botnet. The attackers infect the targets’ systems in order to
carry out malicious operations such as data breaches, remote monitoring, online or mobile banking,
click fraud, hacking, malware dissemination, spam, phishing, and unauthorized information [5].



CMC, 2023, vol.77, no.2 2125

Figure 1: Workflow of communication channel

Therefore, above all explanation, there is a critical situation to develop innovative methods for
the detection of botnet applications. In recent years, the detection of mobile botnets is challanging for
researchers because of feature representations, extraction or by dissembling the program codes through
the static [6,7] and dynamic analysis [8]. To solve this issue, we present an image-based approach
through visualization representation methods for android botnet application detection in our paper.

The following are the main contributions of this paper:

• This paper proposed an effective approach for detecting botnet applications in android devices
by learning feature maps extraction through the Convolutional Neural Network (CNN) model.

• The most challenging task in CNN is to transform the android applications into images. For
this task, we use the feature representations method in the form of colored images using the
visualization technique on bytecode files of android applications.

• The proposed approach to represent the extracted features through colored images, a CNN
model is trained to detect android botnet applications from benign ones.

• We compare the effectiveness of our approach to other existing studies that significantly improve
detection accuracy mainly due to the simple image processing of android applications. To the
best of authors’ knowledge, this is the first CNN model that uses image processing for android
botnet detection applications.

The rest of this paper is structured as follows. Section 2 summarizes the related works. Section 3
inclides the proposed work of the CNN model for the detection of botnet applications. Section 4
represents results and discussion. In the last section, we have presented the conclusion.

2 Related Works

In recent years, several research studies have proposed several methodologies for the detection and
prevention of Android Botnet Applications. Additionally, the existing methodologies can be catego-
rized into two kinds such as static and dynamic analysis. In static analysis, applications are decompiled
to detect malicious features of Application Programming Interface (API) calls, Permissions, and lines
of codes. On the other hand, in the dynamic analysis, the Applications are installed and executed on
devices to investigate the malicious behavior. It should be noted that it uses special security techniques
to inspect and stop malicious activities on the devices. i.e., sandbox



2126 CMC, 2023, vol.77, no.2

Kadir et al. [9] proposed a fully automated and comprehensive analysis for a better understanding
of malicious activities and their aspects in their study. The researchers combine static and dynamic
analysis approaches and demonstrate numerous families of an Android botnet. Moreover, the author’s
study on C&C channel and embedded Uniform Resource Locators (URLs) uncover the malicious
behavior of applications with the basic infrastructure of botnet families and analyze the relations.
Furthermore, the approach uses the ISCX [10] dataset consists 1929 samples of android botnet
applications belonging to 14 different families.

Anwar et al. [6] proposed a static feature-based methodology to detect Android botnet activities.
The most important features, such as permissions, MD5 signatures, broadcast, and background
services were extracted. In order to extract these features, the researchers used 1400 ISCX [10] botnet
applications and 1400 benign applications. The Machine Learning (ML) Classifiers were applied to
perform the experiment and examine the accuracy with respect to the feature length. The authors
claimed that they obtained an accuracy of 95.1%, recall of 0.827%, and precision of 0.97% by the
consideration of respective features.

Another approach [11] was designed for analysis of the mobile platform to distinguish malicious
activity by investigating permissions and protections of the applications. The authors introduced 138
attributes of permissions initially and were extended to 145 when protection applications were used as
unique attributes. The designed approach is then classified based on four different Machine Learning
(ML) boxes of Multi-Layer Perceptron (MLP), Decision Tree, Random Forest, and Naïve Bayesian
were performed on 1635 benign and 1635 botnet features from the ISCX dataset [10]. However,
Random Forest achieved the best results of 97.3% accuracy, recall of 0.987%, and 0.985 precision
among four ML classifiers.

Abdullah et al. [12] specified a mechanism to track permissions in android applications that limits
functionality and code and employ an ML box of Decision Trees, Naive Bayes and Random Forest for
evaluation of the results. Overall, in these approaches, Random Forest was performed best approach
and gave results of 94.6% accuracy and 0.099% with a false-positive rate.

Another mobile botnet De-Droid approach was proposed by Karim et al. in [7]. De-Droid is a
static and lightweight technique to identify the botnet-specific properties. Additionally, the dataset
consists of 5064 malicious and 14865 benign applications, which is the largest dataset to detect
suspicious binaries by decoding the API Calls and Permissions. Through the comparison between
malicious and benign applications, the researchers claimed that applications could be classified as
botnets with 35% of malicious binaries. However, results reveal that the applications are confirmed as
botnet with 90% accuracy.

Jadhav et al. [8] proposed a dynamic and cluster analysis approach to detect Android botnets
by using a virtual environment. The approach employs cloud-based analysis systems to detect the
behavior of the security systems with redefined attributes such as tcp dump, strace, sysdump, logcat,
and netflow. However, there were no experimental results in their study for the usefulness of the
proposed cloud-based solution. Additionally, the virtual environment needs the installation of a JAVA
program on the user’s smartphone for a security analysis report.

MBotCS another approach presented by Meng et al. [13], was designed for botnet applications
detection in network parameters like source/destination IP address, frame duration, and packet size.
The researchers identify malicious network traffic through the cooperation of ML algorithms. By
contrast, their method suffers from a significant rate of false positive value. Another study [14],
illustrated a comprehensive study for the detection of Android Botnets. The authors utilized API
call permissions from different Android Botnet families and performed an experiment using various



CMC, 2023, vol.77, no.2 2127

machine learning approaches. As a result, the high false positive rate was the main drawback of their
method.

Nataraj et al. [15] designed an image processing classification method for visualizing and iden-
tifying malware that first converts malware binaries to grayscale images. The visualization approach
has been widely used due to fast processing for achieving high accuracies and detections of malware
binaries. The authors concluded that the malware binary must first be converted to “image” before
executing the classification method.

Three-branch embedding network (TBE-Net) is another approach with complementary learning
maps proposed in [16]. They used global appearance and local region features in the form of images for
feature learning to differentiate the vehicle from others. Another features map approach presented by
Sun et al. [17], was presented for Unmanned Aerial Vehicles (UAVs) in automobile systems encourage
the establishment of object detection techniques for collecting real-time traffic data.

An image-based mobile botnet detection was proposed CNN in [18]. Detection is achieved
by analyzing applications and extracting permissions that belong to malicious applications. In the
suggested methodology, the authors transformed the features into images and trained a CNN model.
Furthermore, the proposed model can be classified as an initial classifier to discriminate between
benign and botnet image samples with a precision of 0.955%, recall of 0.96%, f-measure of 0.957,
and obtained 97.2% accuracy. Recently, another approach [19] was presented based on the feature
extraction phase for an android botnet detection. These features are API calls, Commands, Intents,
and extra files and trained a CNN model. In contrast, we have used learning features maps of image
processing using visualization technique on bytecode files of android applications, whereas research
studies are based upon some specific features such as API Calls, Permissions, strings, and intents for
detection of the Botnet Applications. Moreover, we used the reverse engineering technique only for
dataset preparation in the form of images. Furthermore, our approach is of particular use for the
detection and classification of android applications with the help of image processing and the CNN
model.

3 Methodology

We propose an image-based CNN model detection approach to avoid employing sophisticated
dataset analysis techniques to extract the feature representation of android applications.

3.1 Dataset

For detection of botnet android applications from benign ones, we have collected datasets for
both benign and botnet android applications. For the implementation of the CNN model, initially, it
is important to observe the dataset which contains a significant number of samples for the analysis.
The dataset largely consists of two parts: the first one is an android botnet application and the other
one is a benign applications dataset. Furthermore, we have collected 1288 Benign Android Packages
(APKs) from CICAND Malware Dataset [20] which comprised 6,500 benign APKs obtained from
the Google Play store. In addition, to ensure that the APKs do not consist any malicious code, we
have used the website Virus Total and obtained results with the secure APK files that we require. For
Botnet APK files, we used ISCX [10] android botnet dataset which includes 1,929 botnet apps from
14 families. Additionally, we have selected 612 botnet APKs for our experiment.



2128 CMC, 2023, vol.77, no.2

3.2 APK Files Reverse Engineering

After the collection of benign and botnet APK files, we used the reverse engineering technique to
unzip the files as shown in Fig. 2. An android package normally contains the following files:

• Classes. dex: android opcode file, which can be compiled by the Dalvik Virtual machine.
• AndroidManifest.xml: includes important the applications such as android compatibility,

platform, permissions and API Calls, etc. that must be executed before any of the opcode files.
• The Resource and lib folder contains the binary compiled code and needs by the APK files.

Figure 2: Reverse engineering

For our work, we have utilized the classes.dex files from android package files because all android
application code contains the byte code of the application, in addition, to initializing and executing
the apps.

3.3 Representation of Classes.dex Files

After the extraction of required classes.dex files for each android application, we need to represent
the Classes.dex in byte series of sequence. For this purpose, we have adopted a hexadecimal approach
to the representation of bytes series. The key idea for the representation of the hexadecimal view is
taken from research study in [21]. The reason to choose the hexadecimal approach is that the byte
series is displayed in the consequence of sequential 16-byte blocks, as shown in Table 1, in which each
byte file is processed as a binary byte. Precisely, each byte highlights the important information of
classes.dex files, such as instruction codes or data.

Table 1: Hexadecimal view of bytes

Address of machine code Hexadecimal view

10918000 E6 01 00 00 20 0C 75 07 8B 40 00 00 21 0C CA 08 . . .

3.4 Files Visualization as Images

In the proposed study, the CNN-based model plays a vital role in image classification. As the
model only deals with two-dimensional data such as images, therefore, we need to transform the
bytecode files of android applications into images. For this purpose, we studied the bytecode files
and these files contain 2-digit hexadecimal values that go from 00 to FF and are equivalent to 0–255



CMC, 2023, vol.77, no.2 2129

in decimal format. Additionally, we have evaluated the bytecode code files and converted them into
RGB images by using the python script of a pillow as shown in Fig. 3.

Figure 3: File visualization

3.5 Convolutional Neural Network

Initially, we selected classes.dex files from botnet and benign applications to detect the malicious
patterns of applications with the help of image processing discussed in file visualization as images.
In order to correctly differentiate botnet applications from benign, we need to train an image dataset.
For this purpose, we have adopted a CNN-based model to classify the images dataset and achieve high
accuracy.

CNN is a normally used neural network to detect botnet images from benign through the trained
model. Initially, we use bytecode images to meet the requirements of the CNN model and detect
botnets during the training period. Additionally, CNN layers such as ConvNet, MaxPooling, and
Fully Connected layer patterns, are linked together to produce accurate predictions from the training
period. For accurate predictions, the CNN model adjusts the Convolutional layer which consists
several kernels and analyzes the features of images in the form of pixels. Each kernel is made up
of a layer of connection weights with the width and height of the input patch during the forward
phase and builds a two-dimensional feature map of the kernel as shown in Fig. 4. Pooling layer uses to
decrease the dimensions images of the previous convolutional layer and summaries the computational
weightage to reduce the overfitting problem in the model.

For our work, we use the LeNet-5 architecture and which is comprised of 3 conventional layers,
two Max Pooling layers, and 2 Fully connected layers. For the input layer of CNN model, the height
and width of the input images are 28 ∗ 28 ∗ 3 with 32 feature maps. In addition, the kernel size of each
feature map is 5 ∗ 5 strides and uses ReLU function to measure the dimensions of images and reduce
the overfitting problem. After the Convolutional layer, an additional layer known as max pooling is
used to overcome the downsampling of the model and its size is 2 ∗ 2. In addition, the computational
weights are calculated through the max pooling layer on the input layer of CNN model. Next, a fully
connected layer with 1024 units is passed with a flattening layer which is used to convert the data into



2130 CMC, 2023, vol.77, no.2

a 1-dimensional array for inputting it to the output layer value. For the last output layer, another fully
connected layer is used with binary classes and passes the SoftMax function used for the accurate
classification of images. In our last step, we feed the images to train the CNN Model and the dataset is
split into 65% training samples and 35% test sample images. During the training phase of the model, we
keep track of the validation and training sets accuracy. The model will be terminated and weights will
be restored for classifying the test images with an accuracy of 94.34%. The Construction parameters
are shown in Table 2.

Figure 4: Proposed framework of the CNN model

Table 2: Construction of CNN model

Layers Parameters Function Filter Filter size Strides

1 Conv2D ReLU 32 5 ∗ 5 1 ∗ 1
2 MaxPooling2D - - 2 ∗ 2 2 ∗ 2
3 Conv2D ReLU 50 5 ∗ 5 1 ∗ 1
4 MaxPooling2D - - 2 ∗ 2 2 ∗ 2
5 Conv2D ReLU 64 5 ∗ 5 1 ∗ 1
6 Dense (Fully connected-1) ReLU 1024 - -
7 Dense (Fully connected-2) Softmax - - -

4 Experimental Results and Discussion

All experiments were performed on the windows server 2019 operating system and using 128 GB
RAM and GPU with Keras [22] library and TensorFlow backend. Tensorflow is a machine learning
backend library that can be used for a wide range of applications, whereas Keras is generally a part
of the deep learning and self-contained structure. For our work, the convolutional neural network



CMC, 2023, vol.77, no.2 2131

is built using Keras and TensorFlow, including the OpenCV classes architecture. To examine the
suggested method, we acquired malicious and benign Android applications and investigated the
method’s performance in other existing studies.

4.1 Experimental Results

Through the trained CNN, quantitative measurements have been performed to examine the
performance of the model using image classification of benign and botnet image samples. For this
purpose, we define measurement parameters as described in Table 3. in which the learning rate is
defined as a floating point value. For accuracy of android images applications, we adapt the Adam
optimizer and loss calculated as binary cross-entropy. Furthermore, the proposed method’s quality
has been measured using accuracy, recall, precision, and F1_Measure. The metrics can be defined
as follows [18]:

Recall = TP
TP + FN

(1)

Precision = TP
TP + FP

(2)

Accuracy = TP + TN
TP + TN + FP + FN

(3)

F1_Measure = 2 × Presision × Recall
Precision + Recall

(4)

Table 3: Measurement parameters of the proposed methodology

Parameters Measurement values

Learning rate 1e-3
Test split 0.35
Optimizer Adam
Loss Binary cross entropy
Classifier Binary (0 or 1)

In Eqs. (1)–(3) FP, TN, TP, and FN are respectively denoted as False Positive, True Negative,
True Positive, and False Negative. From the measurement evaluation, our model shows an accuracy
of 94.34%, F1 score of 92%, Precision of 92.9%, and Recall of 92% with cross-entropy loss of 0.139.

4.2 Variations of Accuracy and Loss on Network Training

As shown in Fig. 5, we have examined the performance of the model at 85, 90, 95, and 100 epochs
and analyzed that no major change in both train_ac and val_acc after 90 epochs. Moreover, the model
returns the best prediction results with 94.34% accuracy, 92% of recall, and a precision of 92.9%.
Precisely, the training accuracy is improving as the model processes and is varying passage time.
Similarly, training loss has a specific amount in the completion, while validation loss varies. After
completing the training phase, the statistical analysis is saved and used in the testing process after
several training and testing iterations.



2132 CMC, 2023, vol.77, no.2

Figure 5: Loss/Accuracy over 100 iterations of the training phase

4.3 Comparative Analysis with Existing Work

To emphasize the importance of our study, we evaluate the proposed method to existing neural
model approaches in this section. Existing methods use dynamic, static, or hybrid analysis to detect
malware in general. As a result, the exact comparison is not possible. Nevertheless, we can compare
the performance results in terms of neural network models, Feature source application characteristics
and accuracy.

The static analysis approach presented in [23] used a Recurrent Neural Network (RNN) model
for training and testing the applications and obtained 0.897% accuracy. The researchers used a
feature analysis approach to extract permissions from androidmanifest.XML files for the classification
of malicious applications. Another study in [24] was based on dynamic analysis and the authors
employed reverse engineering technique and used permissions from Androidmanifest.XML files with
two different models such as RNN and Long Short-Term Memory (LSTM) models that have acquired
0.93% accuracy. In addition, another research [25] proposed a general android malware detection
using the CNN model. The authors concluded that the CNN model is feasible for detecting malicious
applications with the usage of APK file dissembler and extracting android manifest.xml files. Then,
the extract android manifest.xml file is converted into feature vectors and these feature vectors are fed
into the CNN model for training. The authors experimented on 200 malicious samples with 500 clean
samples and obtained 0.93% accuracy.

In [26] and [27], authors investigated malicious android applications using CNN model which
assists the user to predict maliciousness in applications by generating the images for each android
malware detection. The authors used the reverser engineering technique and extract the classes.dex
files then transformed into images. The study in [26] is somewhat related to our approach. However,
our objective of this study has presented an approach to detecting android botnet applications from
benign ones. However, this approach generaly applies for mobile malware detection. Moreover, the
researcher used Convolutional Neural Network Model for training and testing the android malware
applications and obtained 0.93% accuracy.

On the other hand, our proposed model uses 1288 benign and 612 botnet applications for
classification. Initially, we used the reverse engineering technique to dissemble the APK application



CMC, 2023, vol.77, no.2 2133

and extract the classes.dex files. After extraction of the classes.dex files, these files are transformed into
images and trained in a CNN-based model. As a result, we achieve the highest accuracy of 0.9434%
as compared to other existing studies. As shown in Table 4 compares the proposed method to other
Neural Models. According to the table, the proposed method is entirely effective in detecting botnet
applications.

Table 4: Comparative analysis of existing studies

Reference Neural model Platform Application
characteristics

Features source Accuracy

Vinayakumar
et al. [23]

RNN/LSTM Android Android
permission
sequence

AndroidManifest.xml 0.897%

Vinayakumar
et al. [24]

LSTM Android Permissions,
dynamic
behaviors

AndroidManifest.xml
dynamic analysis

0.939%

Ganesh
et al. [25]

CNN Android Android
permission
Sequence

Permissions 0.93%

Vinayakumar
et al. [23]

R2-D2: CNN Android Android
bytecode

Classes.dex files 0.93%

Our model CNN Android Android
bytecode

Classes.dex files 0.9434%

5 Conclusions

In recent years, there has been a rising security concern in all android and handheld devices
because of internet facilities. Nowadays, smartphones and handheld devices have become analogous to
personal computers due to the same facilities of battery power and memory capacities of such devices.
Mobile devices are usually linked to the Internet at all times which are more susceptible to cyberattacks.
Botnet attacks have proven to be a significant concern for internet security. Therefore, developing a
model of botnet application detection is necessary for security admins. In this paper, we proposed a
CNN approach as a learning model and used images sample of android applications for the detection
of botnet applications. In the first step, the reverse engineering is used on 1288 benign applications
from CICAND Malware Dataset and 612 Botnet applications from the ISCX dataset to extract the
classes.dex files. In the second step, we used the classes.dex files as a features representation method
in the form of hexadecimal view and transformed into images using the visualization technique. At
last, we trained and tested a proposed CNN model using the images to detect botnet applications
from benign ones. As a result, the model gives the best prediction results and obtained an accuracy of
94.34%, 92% of recall, and a precision of 92.9%. Furthermore, experimental results showed the best
accuracy result when we compare the performance of the model to other existing research studies. In
the future, we plan to provide an internet service that allows users to check if an application is benign
or botnet before downloading it. This measure would go a long way toward ensuring the security of
android smartphones.



2134 CMC, 2023, vol.77, no.2

Acknowledgement: The authors extend their appreciation to King Saud University of Saudi Arabia
for funding this work.

Funding Statement: This works was supported by King Saud University for funding this work through
Researchers Supporting Project Number (RSP2022R426), King Saud University, Riyadh, Saudi
Arabia.

Author Contributions: The authors confirm contribution to the paper as follows: study conception and
design: M. Arshad, A. Karim, S. Naseer, S. Ahmad, M. Shafiq; data collection: M. Alqahtani, A.A.
Gardezi, M. Shafiq, J.G. Choi; Data curation, analysis and interpretation of results: M. Arshad, A.
Karim, S. Naseer, S. Ahmad, M. Shafiq; draft manuscript preparation: M. Alqahtani, A.A. Gardezi,
M. Shafiq, J.G. Choi. All authors reviewed the results and approved the final version of the manuscript.

Availability of Data and Materials: The data underlying this article will be shared (after the patent of
the underlying research is filled) upon reasonable request to the corresponding author.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] G. Geng, G. Xu, M. Zhang, Y. Yang and G. Yang, “An improved SMS based heterogeneous mobile botnet

model,” in Proc. of Int. Conf. on Information and Automation, Shanghai, China, pp. 198–202, 2011.
[2] H. Singh and A. Bijalwan, “A survey on malware, botnets and their detection,” International Journal of

Advanced Engineering Research & Science, vol. 3, no. 3, pp. 258842, 2016.
[3] H. Pieterse and M. S. Olivier, “Android botnets on the rise: Trends and characteristics,” in Proc. of

Information Security for South Africa, Johannesburg, South Africa, pp. 1–5, 2012.
[4] I. Letteri, M. Del Rosso, P. Caianiello and D. Cassioli, “Performance of botnet detection by neural networks

in software-defined networks,” in Proc. of Italian Conf. on Cyber Security, Milan, Italy, 2018.
[5] A. Karim, S. A. A. Shah and R. Salleh, “Mobile botnet attacks: A thematic taxonomy,” in New Perspectives

in Information Systems & Technologies, 1st ed., vol. 1. NY, USA: Springer International Publishing,
pp. 153–164, 2014.

[6] S. Anwar, J. M. Zain, Z. Inayat, E. U. Haq, A. Karim et al., “A static approach towards mobile botnet
detection,” in Proc. of Int. Conf. on Electronic Design, Phuket, Thailand, pp. 563–567, 2016.

[7] A. Karim, R. Salleh and S. A. A. Shah, “DeDroid: A mobile botnet detection approach based on static
analysis,” in Proc. of Int. Conf. on Autonomic and Trusted Computing, Toulouse, France, pp. 1327–1332,
2015.

[8] S. Jadhav, S. Dutia, K. Calangutkar, T. Oh, Y. H. Kim et al., “Cloud-based android botnet malware
detection system,” in Proc. of Int. Conf. on Advanced Communication Technology, Pyeongchang, South
Korea, pp. 347–352, 2015.

[9] A. F. A. Kadir, N. Stakhanova and A. A. Ghorbani, “Android botnets: What urls are telling us,” in Proc.
of Int. Conf. on Network & System Security, Cham, Springer, pp. 78–91, 2015.

[10] Android Botnet Dataset. [Online]. Available: https://www.unb.ca/cic/datasets/android-botnet.html
[11] J. F. Alqatawna and H. Faris. “Toward a detection framework for android botnet,” in Proc. of Int. Conf. on

New Trends in Computing Sciences, Amman, Jordan, pp. 197–202, 2017.
[12] Z. Abdullah, M. M. Saudi and N. B. Anuar, “Mobile botnet detection: Proof of concept,” in Proc. of

Control & System Graduate Research Colloquium, Shah Alam, Malaysia, pp. 257–262, 2014.
[13] X. Meng and G. Spanoudakis, “MBotCS: A mobile botnet detection system based on machine learning,”

in Proc. of Int. Conf. on Risks & Security of Internet and Systems, Cham, Springer, pp. 274–291, 2015.

https://www.unb.ca/cic/datasets/android-botnet.html


CMC, 2023, vol.77, no.2 2135

[14] M. Yusof, M. M. Saudi and F. Ridzuan. “A new mobile botnet classification based on permission and API
calls,” in Proc. of Int. Conf. on Emerging Security Technologies, Amman, Jordan, pp. 122–127, 2017.

[15] L. Nataraj, S. Karthikeyan, G. Jacob and B. S. Manjunath, “Malware images: Visualization and automatic
classification,” in Proc. of Int. Symp. on Visualization for Cyber Security, PA, USA, pp. 1–7, 2011.

[16] W. Sun, G. Dai, X. Zhang, X. He and X. Chen, “TBE-Net: A three-branch embedding network with
part-aware ability and feature complementary learning for vehicle re-identification,” IEEE Transactions
on Intelligent Transportation Systems, vol. 23, no. 9, pp. 1–13, 2021.

[17] W. Sun, L. Dai, X. Zhang, P. Chang and X. He, “RSOD: Real-time small object detection algorithm in
UAV-based traffic monitoring,” Applied Intelligence, vol. 52, pp. 1–16, 2011.

[18] S. Hojjatinia, S. Hamzenejadi and H. Mohseni. “Android botnet detection using convolutional neural
networks,” in Proc. of Iranian Conf. on Electrical Engineering, Tabriz, Iran, pp. 1–6, 2020.

[19] S. Y. Yerima and M. K. Alzaylaee. “Mobile botnet detection: A deep learning approach using convolutional
neural networks,” in Proc. of Int. Conf. on Cyber Situational Awareness, Data Analytics and Assessment,
Dublin, Ireland, pp. 1–8, 2020.

[20] Android Malware Dataset, 2017. [Online]. Available: Available from: https://www.unb.ca/cic/datasets/
andmal2017.html

[21] M. Ahmadi, D. Ulyanov, S. Semenov, M. Trofimov and G. Giacinto, “Novel feature extraction, selection
and fusion for effective malware family classification,” in Proc. of ACM Conf. on Data & Application
Security and Privacy, New Orleans, USA, pp. 183–194, 2016.

[22] Keras, 2020. [Online]. Available: https://keras.io/
[23] R. Vinayakumar, K. P. Soman and P. Poornachandran, “Deep android malware detection and classifica-

tion,” in Proc. of Int. Conf. on Advances in Computing, Communications and Informatics, Udupi Karnataka,
India, pp. 1677–1683, 2017.

[24] R. Vinayakumar, K. P. Soman, P. Poornachandran and S. Sachin Kumar, “Detecting android malware
using long short-term memory (LSTM),” Journal of Intelligent & Fuzzy Systems, vol. 34, no. 3, pp. 1277–
1288, 2018.

[25] M. Ganesh, P. Pednekar, P. Prabhuswamy, D. S. Nair, Y. Park et al., “CNN-based android malware
detection,” in Proc. of Int. Conf. on Software Security & Assurance, PA, USA, pp. 60–65, 2017.

[26] T. Hsien-De Huang and H. Y. Kao, “R2-d2: Color-inspired convolutional neural network (CNN)-based
android malware detections,” in Proc. of Int. Conf. on Big Data, WA, USA, pp. 2633–2642, 2018.

[27] X. Wang, S. Yin, M. Shafiq, A. A. Laghari, S. Karim et al., “A new V-Net convolutional neural network
based on four-dimensional hyperchaotic system for medical image encryption,” Security & Communication
Networks, vol. 2022, no. 4260804, pp. 1–14, 2022.

https://www.unb.ca/cic/datasets/andmal2017.html
https://www.unb.ca/cic/datasets/andmal2017.html
https://keras.io/

	Detecting Android Botnet Applications Using Convolution Neural Network
	1 Introduction
	2 Related Works
	3 Methodology
	4 Experimental Results and Discussion
	5 Conclusions
	References


