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ABSTRACT

Cross-project software defect prediction (CPDP) aims to enhance defect prediction in target projects with limited
or no historical data by leveraging information from related source projects. The existing CPDP approaches rely
on static metrics or dynamic syntactic features, which have shown limited effectiveness in CPDP due to their
inability to capture higher-level system properties, such as complex design patterns, relationships between multiple
functions, and dependencies in different software projects, that are important for CPDP. This paper introduces
a novel approach, a graph-based feature learning model for CPDP (GB-CPDP), that utilizes NetworkX to extract
features and learn representations of program entities from control flow graphs (CFGs) and data dependency graphs
(DDGs). These graphs capture the structural and data dependencies within the source code. The proposed approach
employs Node2Vec to transform CFGs and DDGs into numerical vectors and leverages Long Short-Term Memory
(LSTM) networks to learn predictive models. The process involves graph construction, feature learning through
graph embedding and LSTM, and defect prediction. Experimental evaluation using nine open-source Java projects
from the PROMISE dataset demonstrates that GB-CPDP outperforms state-of-the-art CPDP methods in terms of
Fl-measure and Area Under the Curve (AUC). The results showcase the effectiveness of GB-CPDP in improving
the performance of cross-project defect prediction.
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1 Introduction

Software defect prediction (SDP) is a challenging task in software engineering that aims to identify
potential defects in software systems early during software development. Defect prediction aims to
help software developers and testers prioritize their efforts and resources toward the most likely
problematic areas of the software codebase, ultimately improving the software quality and reliability
[1-3]. Extracting features from source code is symbiotic with the software quality assurance model
and helps with the software testing process. Effective feature extraction not only aids in identifying
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potential defects and vulnerabilities early in the development cycle and aligns with the principles of
open-source software quality assurance [4—6]. By comprehensively analyzing code interdependencies,
design patterns, and intricate relationships, feature extraction techniques enhance the ability to identify
and rectify issues promptly, fostering higher software quality.

Early research in defect prediction focused mainly on within-project defect prediction (WPDP),
where data from a single project was used to build and test predictive models in the same project. The
underlying principle of this approach is that by leveraging patterns and trends within the historical
data of the projects, it becomes possible to pinpoint areas of high risk within the software codebase
[7,8]. One of the main advantages of WPDP is that it can be tailored to the specific characteristics and
context of the project, such as the programming language, development process, and team expertise.
However, WPDP can suffer from limited training data; within a single project, the available training
data for defect prediction may be limited, especially for rare or severe defects [9]. This challenge can
make it difficult to build accurate and reliable models. To address the issue of limited data in certain
single projects, researchers employed data from well-established software projects (known as the source
project) to construct an SDP model that can be applied to predict faults in another software project
(referred to as the target project). This approach is the fundamental concept behind the cross-project
defect prediction (CPDP) approach. The objective of CPDP is to utilize data from multiple software
projects to improve the accuracy and generalizability of defect prediction models [10-12].

Most previous studies in CPDP [13-21] have used traditional static features to train machine learn-
ing algorithms for predicting potential defects. These traditional CPDP models rely on handcrafted
features, such as code size, code complexity, and process features, to train machine learning models that
classify code parts as defective or non-defective. Traditional features-based CPDP approaches have
shown tangible success in predicting defects in new projects. However, these models often suffer from
low prediction accuracy and limited generalization to new projects due to the variability in software
projects and difficulty defining meaningful features for different projects.

Recently, deep learning has become increasingly popular for SDP. Some researchers have proposed
CPDP models that can automatically learn semantic (syntactic) features from source code. For
instance, Wang et al. [22] used a deep belief network (DBN) to extract syntactic features from Abstract
Syntax Trees (ASTs) of program modules. These learned features were subsequently utilized to build
the SDP model. Chen et al. [23] introduced the CPDP approach based on deep learning. They
extracted a simplified AST to represent each program module in the source code. Then they used Bi-
directional LSTM to learn syntactic features from simplified AST nodes. Dynamic syntactic features-
based approaches can help effectively differentiate the semantics of various code snippets, a task
that traditional features cannot address adequately. However, these methods often cannot capture
the complex relationships among software products, such as function calls and variable dependencies.
Fig. 1 shows a motivating example of a defect in a real-world Java code. The defect revolves around
three methods: the “fetchProductInfo” method (Method 1) retrieves information about a product
by utilizing the “getProductDetails” method (Method 3) to retrieve its details and then employs
the “getDataTypelnfo” method (Method 2) to validate and process the attribute data types. This
validation is crucial to find the appropriate description for the processed data node. However, the
defect arises due to inconsistencies in handling the case sensitivity of the attribute names. While
the attribute names within the data are lowercase (line 2, Method 2), the product identifier is not.
Consequently, the validation process in Method 2 might not function correctly due to this case
discrepancy. To address this defect, a fix is implemented by modifying the “getProductDetails” method
(Method 3). The developer introduced a method call to convert the product identifier into lowercase
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(lines 2-3, Method 3) before performing the lookup in the product details map. This modification
ensures consistency in handling case sensitivity and resolves the defect.

Method 1:
public ProductInfo fetchProductInfo(String productId) {
2 /...
else
5 Mo,
[ TypeInfo info = TypeInfoExtractor.extractTypeInfoFromaPI(
7 this.metaData.getProductDetails(productIdentifier).getDataTypeInfo());
8 description = new NodeDescriptor(info.getStructFieldTypeInfo(columnName), null);
9

= ®

Method 2:

1 public TypeInfo getDataTypeInfo(sString attribute) {
2 string attributeLowercase = attribute.toLowercCase();
3 for (int i = @; i < allattributenames.size(); i++)

4 if (attribute.equals(allattributenames.get(i))) {
5 return allAttributeTypeInfos.get(i);
: }
7 }
a8 throw new DataNotFoundException("Unable to locate attribute: " + attribute
E + " (in lowercase form: " +
19 attributeLowercCase + ) in " + allattributeNames);
11 }
Method 3:
1 public ProductDetails getProductDetails(String productId) {
2 [/ return this.productDetailsMap.get(productId); //this before fixing
3 return this.productDetailsMap.get(productId.toLowercCase()); //this after fixing

Figure 1: Motivating Java code example

Two important observations have been drawn from this example as the following:

Observation 1 (O1): This defect involves multiple methods, and to completely understand and
detect this defect, it is necessary to consider the dependencies and relationships among these methods.
However, existing CPDP approaches often examine code within a method individually without
considering interprocedural dependencies. For example, traditional features-based CPDP [15-19]
uses handcrafted features to train machine learning algorithms for predicting potential defects,
and semantic features-based CPDP [22,23] uses syntactic features extracted from ASTs of program
modules to train deep learning models and predict defects, cannot detect this defect because they
focus on individual methods and do not consider cross-method dependencies.

Observation 2 (02): Complex defects like the one described can have diverse paths and dependen-
cies contributing to their emergence. A uniform weighting of paths, as seen in existing approaches,
might not effectively capture these critical paths. GB-CPDP addresses this limitation by employing
graph-based embeddings that consider the significance of multiple graph representations that need to
be considered, such as CFGs and PDGs, allowing for more accurate defect detection by prioritizing
paths that are relevant to defects.

This example is a compelling motivation for adopting the proposed GB-CPDP model. By

leveraging graph-based feature learning, the model can comprehensively capture the intricate relation-
ships and dependencies between methods, enhancing the accuracy of CPDP. This paper introduces
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a graph-based feature learning approach for CPDP to address these challenges. In the proposed
approach, source code features are extracted and learned from CFG and DDG using NetworkX.
Subsequently, an LSTM is employed to learn a predictive model based on the acquired features.
Our approach consists of three main phases: (1) graph construction, where the software items are
represented as a graph and extract relevant features; (2) feature learning, where LSTM is used to
learn feature representations from the graph; and (3) defect prediction, where the classifier is trained
to predict defective code parts based on the learned features. The prediction performance of our
model is evaluated using commonly used measures in defect prediction models F1-measure and AUC.
According to experimental findings on nine Java projects, our proposed GB-CPDP outperforms
baseline techniques regarding F1-measure and AUC under CPDP.

The main contributions of this paper are as follows:

e We propose a new approach for CPDP using graph-based feature learning, which can capture
the complex relationships among software projects, transfer data from related source projects,
and handle missing or limited data in target projects.

e We build a defect prediction model using the LSTM for learning the extracted graph features
to enhance the defect prediction performance.

e We conduct extensive experiments on several benchmark datasets and demonstrate that our
approach outperforms several baseline methods and achieves competitive results compared to
the best-performing methods.

Following is a summary of the rest of this paper. Section 2 reviews the related works. Section 3
explains the proposed approach to constructing a graph, learning graph features, and then utilizing
the acquired features to predict defects. The experimental setup and results analysis is presented in
Section 4. Section 5 presents threats to validity. Finally, our study is summarized in Section 6.

2 Related Work
2.1 Cross-Project Software Defect Prediction (CPDP)

CPDP approaches focus on developing predictive models for detecting software defects in target
projects by leveraging data from related source projects [24,25]. The CPDP models aim to transfer data
learned from source projects, which possess sufficient training data and established defect patterns, to
target projects that may have limited or no historical data on defects. That leads to overcoming the
scarcity of labeled data in target projects and enhancing the prediction capability [26].

Over the past years, CPDP has gained significant interest from industrial and academic commu-
nities. Initially, studies [13,27] focused on exploring the feasibility of CPDP. Their findings highlighted
the potential risks of utilizing data from external projects to create a predictive model for a proprietary
project. Consequently, advanced transfer learning methods have been employed to enhance CPDP.
Recently, scholars [18,28-30] have increasingly focused on the CPDP model. Jin [18] introduced DA-
KTSVM, which is a defect prediction model created using domain adaptation (DA) incorporating
kernel twin (KT) with a support vector machine (SVM). The model aimed to create two nonparallel
hyperplanes, where one hyperplane was close to one class and maintained a specific distance from the
other. Limsettho et al. [28] introduced a model based on estimating the distribution of classes using
synthetic minorities to enhance the performance of CPDP and prevent oversampling. Their method
calculated the class distribution of the desired project. Subsequently, synthetic minority over-sampling
technique (SMOTE) is utilized to adjust the class distribution of the training data until it corresponds
with the inverse target project distribution.
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Sun et al. [21] introduced a source project selection technique termed collaborative filtering-
based project source selection (CFPS). CFPS comprises three steps: inter-project similarity identi-
fication, inter-project applicability assessment, and collaborative filtering-based recommendations.
Liuet al. [30] created a CPDP model involving two phases transfer learning (TPTL). During the initial
phase, they suggested using a source project estimator to choose two source projects that are most
similar in their distribution to a target project from a group of candidates. They prioritized the F1-
score and cost-effectiveness values during this selection process. Zhao et al. [1 1] proposed an approach
based on multiple data distribution simultaneously that improves the overall performance of CPDP.
Jiangetal. [12] proposed a transfer-learning approach to predict clone consistency in software projects.
The goal is to identify and predict consistent defects across clones, both at the time of creation and
change. Bai et al. [20] proposed a three-stage transfer learning framework for multi-source CPDP and
addressed multi-source and cross-project challenges. Table 1 introduces the summary and comparison
of related works in CPDP approaches.

Table 1: Summary of related CPDP approaches

Ref. No. Published Approach Advantages Disadvantages

year name

Zhaoetal. [11] 2022 Multi-task Considers multiple data Training multi-task learning
based CPDP distributions simultaneously using  models can be computationally

multi-task learning, which improves expensive.
performance compared to
single-task learning models.

Jiang et al. [12] 2023 CPDP based Utilizing code clones across projects Relies on the existence of clone
on transfer  enhances defect prediction code across projects which may
learning performance while addressing not always be available.

cross-project data distributions
through transfer learning.

Zimmermann 2009 CPDP Highlights data, domain, and Does not propose specific

etal. [13] feasibility process factors in CPDP. CPDP methods, which leads to
study Establishes the importance of Limited scope to feasibility

choosing appropriate data sources.  aspects.

Jin [18] 2021 DA-KTSVM 1t lies in its capacity to match the Lack of comparison with

data distribution among various alternative domain adaptation
software projects, enabling domain methods.
adaptation in CPDP.

Bai et al. [20] 2022 Three-stage  Improves performance on target Complex three-stage training
transfer projects and handles class process and requires tuning of
learning imbalance between defective and multiple hyperparameters.
framework  non-defective modules.

Sun et al. [21] 2021 CFPS Involves utilizing collaborative Focuses on homogeneous data

filtering to choose source projects  sources and neglects

and conducting empirical research  heterogeneous data scenarios.
to assess the applicability of

projects.

Turhan et al. [27] 2009 CPDP Compares cross-company and Cross-company data may not
feasibility within-company data for the generalize well across domains.
study feasibility of defect prediction.

(Continued)
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Table 1 (continued)

Ref. No. Published Approach Advantages Disadvantages
year name
Limsettho 2018 SMOTE- Improves cross-project defect Limited discussion on other
et al. [28] based prediction by applying the synthetic oversampling techniques.
CPDP minority oversampling technique

(SMOTE) to adjust the class
distribution of the target project.

Liu et al. [30] 2019 TPTL The two-phase transfer learning Needs evaluation on diverse
model for cross-project defect software projects
prediction tackles instability in Potential for further model

TCA+ by improving the selection ~ enhancement.
of source projects.

2.2 Long-Short-Term Memory (LSTM ) in Software Defect Prediction

There has been significant research interest in applying deep learning techniques to SDP tasks
in recent years. One prominent architecture that has gained attention in this field is LSTM. LSTM
is a Recurrent Neural Network (RNN) type designed to deal with long-term dependencies in data
[31]. This makes it particularly well-suited for modeling sequential data and capturing long-term
dependencies.

The LSTM architecture consists of three main gates, as shown in Fig. 2: input, forget, and output
gates. The input gate identifies the relevant input sequence elements that must be retained in the
memory cell. It takes input from the current step and the previous hidden state and applies a sigmoid
activation function to produce an output between 0 and 1. The role of the forget gate is to decide which
data from the previous memory cell state ought to be eliminated. The output gate controls the output
of the cell. It determines which memory cell information should be output to the next hidden state.
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Figure 2: LSTM architecture

Several studies have used LSTM in building software defect prediction models. For example,
Liang et al. [32] introduced an SDP model that combines LSTM and word embedding techniques. The
method involves extracting a token sequence from the source code and mapping each token to a real-
valued vector using an unsupervised word embedding model. Subsequently, they employed LSTM to
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acquire semantic information from programs and predict defects. Majd et al. [33] introduced SLDeep,
an SDP approach that utilizes deep learning models and statement-level metrics to predict defects in
software. The model was optimized using 32 metrics, including the number of operators in a given
statement. LSTM was employed as the learning model for experiments conducted on 119,989 C/C++
programs, demonstrating its potential for software defect prediction. Deng et al. [34] employed an
LSTM to capture contextual features from the source code. They extracted ASTs and evaluated the
preservation of information for different node types. By traversing the ASTs and inputting them into
the LSTM model, they successfully learned the program’s contextual features to identify defective files.
This study leverages the efficiency of LSTM to learn a predictive model based on the graphs feature
extracted from CFG and DDG. Our proposed model consists of three sequential steps for software
defect prediction. Firstly, the graph features are extracted from CFG and DDG using Networkx.
Secondly, these features are transformed into integer vectors by embedding Node2vec. Finally, the
resulting integer vectors are fed into an LSTM model, enabling the prediction of software defects.
This structured approach provides a systematic framework for effectively leveraging graph features,
embedding techniques, and LSTM networks to enhance cross-project software defect prediction
capabilities.

3 Proposed Approach

This section presents an overview of our methodology. The methodology consists of three main
steps: graph construction, feature learning, and defect prediction, as shown in Fig. 3. Here is a more
detailed explanation of the three steps:

Graph construction Feature learning

CFG Graph embedding

®
_‘,/\," Nu‘.‘lcz\' Learning Model
™ M 7 Defect Prediction

CFG vectors LSTM Layers Dense Layﬂ

_ I
Networkx _ J49—g—L
® t f"t ~ Classifiers

Code
snippet
dataset

( _j - Q Buggy or clean
i M) Q NuduZ\rec
\\/’I/—"{
U DDG vectors

Figure 3: The architecture of the proposed model

3.1 Graph Construction

Graph construction of source code is a technique to represent the dependencies and relationships
between different parts of the source code. This can be done for various purposes, such as understand-
ing the system’s structure, identifying potential defects, or tracking changes to the system over time.
In this work, the CFG and DDG are used to represent the code as a graph, analyze the code elements’
structure and dependencies, and predict the potential defects in the source code parts.
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3.1.1 Control Flow Graph (CFG)

The CFG is a graphical representation of a program’s control flow or the sequence of statements
and blocks. It visually represents how the program’s execution flows from one statement or block to
another. The CFG helps to capture control flow within the code, analyze the program’s behavior and
identify areas where errors may exist which leads to tracing the execution path, identifying unreachable
code, detecting potential control flow issues like loops or conditional statements, and pinpointing
potential sources of defects. The NetworkX is utilized to construct a graph G = (N, E) for each
code in our dataset, where N represents a collection of nodes and E denotes a collection of edges.
Each node, represented as n € N, corresponds to a fundamental block within the code. Likewise,
each edge, denoted as e = (n;, n;) € E, symbolizes a potential control flow from block n; to block
n;. Algorithm 1 illustrates extracting the nodes from the basic blocks and the edges from the control
transfer statements, ensuring an accurate representation of the code’s control flow structure.

Algorithm 1: Extracting the CFG nodes and edges from source files
Read the program (P).
Initialize an empty set of nodes N
Initialize an empty set of edges E.
While Find LEADERS (blocks) in the program:
Initialize a variable PreL to store the previous line number.
Initialize a variable NextL to store the next line number.
If PreL equals NextL:
Add the current line (L) as a node to N.
While finding CONTROL (transfers) in the program:
Add an edge (n;, n;) to E, (where n; and n; are the nodes corresponding to the control flow from
block n; to block n;.)
Draw the graph G(N, E)

3.1.2 Data Dependence Graph (DDG)

This work aims to use every important information in the source code graph representation, which
enables predict defects accurately.

Algorithm 2: Extracting the DDG from source files
Read the program (P).
Parse the source code to AST Tree (T)
Initialize an empty graph G as the DDG
Initialize an empty set of nodes N and edges E
for N in T.body:
Add N to the graph
for child in N.children:
Add E to the graph
if isinstance(child, Assign):
for target in child.targets:
if isinstance(target, Name):
G.add_edge(child, N, target.id)
return graph DDG
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The DDG is a graphical representation that depicts the dependencies between data elements
within a program. It focuses on capturing how variables or memory locations are related to each other
based on the data flow between them. In a DDG, nodes represent variables or memory locations, while
edges represent the data dependencies between them. DDGs are relationships between statements
in which one statement’s value depends on another statement’s value. For example, if statement A
assigns a value to a variable, and statement B uses that variable, then statement B is data-dependent
on statement A. Algorithm 2 introduces the process of representing the DDG of the source code.

3.2 Feature Learning

This section is divided into graph embedding and the learning model. In the graph embedding
part, the Node2Vec algorithm is used to embed the CFGs and DDGs into integer vectors. In the
second part, the LSTM model is utilized to learn feature representations from these vectorized graphs.

3.2.1 Graph Embedding

This study leverages the power of Node2Vec, an algorithm specifically designed for graph
embedding, to transform CFGs and DDGs into numerical vectors. By employing Node2Vec, the nodes
in the CFGs and DDGs are represented as dense, low-dimensional vectors. Node2Vec utilizes random
walks to explore the local neighborhood around each node. Then it applies the Skip-gram model to
learn the vector representations based on the relationships and context within the graph. Here’s an
explanation of how Node2Vec works for embedding CFGs and DDGs:

e Random Walks: Node2Vec generates random walks on the graph to capture each node’s
immediate surroundings. It simulates a random walker navigating the graph by iteratively
traversing the edges. The walker can explore or exploit the neighborhood based on specific
parameters such as walk length(walk_length) and walk numbers(num_walks). These random
walks serve as sequences of nodes that encode the graph’s structural properties.

e Skip-Gram Model: Once the random walks are generated, Node2Vec applies the Skip-gram
model, which is a type of word embedding technique commonly used in natural language
processing. The Skip-gram model learns dense vector representations for each node in the graph
by predicting the context nodes given a target node.

e Embedding Learning: The Skip-gram model learns the node embeddings by optimizing an
objective function using stochastic gradient descent. It adjusts the node vectors to maximize
the likelihood of predicting the context nodes accurately. This process captures the structural
similarities and relationships between nodes in the graph.

e Vector Representation: After training the Skip-gram model, each CFG node or DDG node is
represented as a numerical vector, often with a fixed dimensionality. These vector represen-
tations, called node embeddings or latent representations, encode the graph’s topological and
contextual information in a continuous vector space.

The vector representations are obtained using Node2Vec for nodes in CFGs and DDGs, which
can then be used as inputs to LSTM.

3.2.2 Learning Model

The learning model is a crucial component of the proposed GB-CPDP and has been created using
LSTM. To determine the optimal number of nodes and levels, multiple trials are conducted, which is
a common practice in deep learning research. Our learning model architecture consists of eight layers,
initiating with two LSTMs; each LSTM layer consists of 128 nodes. The remaining layers adhere to a
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standard neural network structure, with node counts of 128, 64, 32, 16, 8, and 2 for the third through
eighth layers. The overall structure of our learning model is depicted in Fig. 4. As shown in Fig. 4, the
input to the first LSTM layer is a sequence composed of semantic graph vectors. Except for the last
layer, all dense layers utilize the ReLU as their activation function. The activation function employed in
the last layer is softmax. Dropout refers to the probability of each node being excluded or dropped out.

Dense_1 Dense_2 Dense_3 Dense_4 Dense_5
LSTM LST™M 128 64 32 16 8
128 128 Nodes Nodes Nodes Nodes Nodes
Nodes Nodes
(dropout: (dropout: (dropout: (dropout: (dropout:
dropout: 0.2)) | (dropout: 0.2) 0.2) 0.25) 0.3) 0.3) 0.4)
ReLU ReLU ReLU ReLU ReLU

Defect Prediction

2 Nodes
(softmax)

Graph features
(Shape = (n, 50))

Results
Buggy or Clean

Figure 4: The overall architecture of the GB-CPDP learning model

3.3 Defect Prediction

This step is the final stage in our model, where the model can predict whether the software module
is defective or clean. The final output is presented as follows:

y = softmax(W.X + b) (1)
where y represents the final output of the model, and X represents the output of the Dense_5 layer.

Softmax is the activation function applied element-wise to the output vector. It transforms the
raw output values into a probability distribution over the two classes (defective or clean).

W represents the weight matrix of the softmax, and b represents the bias vector of the dense layer.

The binary_crossentropy is the chosen loss function in this stage. It evaluates the variance between
the predicted and real output and quantifies the model’s performance, and it is commonly used in
binary classification problems. The binary cross-entropy loss is computed using the equation:

loss(y_true, y_pred) = —(y_true* log(y_pred) + (1 — y_true)* log(1 — y_pred)) 2)
where y_true represents the true labels, and y_pred represents the predicted probabilities.

The optimizer used in this model is the ‘Adam’ optimizer. Adam (Adaptive Moment Estimation)
is a popular optimizer that combines the benefits of two other methods: AdaGrad and RMSProp. It
efficiently adapts the learning rate based on the gradients to converge faster.

4 Experimental Setup and Results Analysis

This section provides the experimental setup and analyze the results derived from the proposed
approach. The primary objective is to provide an overview of the dataset, evaluation metrics, and base-
line methods. Furthermore, the results are discussed and compared with state-of-the-art approaches
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to assess the effectiveness and performance of our proposed approach. This section is divided into two
main subsections: experimental setup and results analysis.

4.1 Experimental Setup

This subsection comprises the dataset, evaluation metrics, and baseline methods.

4.1.1 Dataset

The experiments are validated in this study by utilizing the publicly accessible dataset obtained
from the PROMISE repository. We specifically focus on selecting nine Java projects from the
PROMISE dataset (https://github.com/ahmedabd39/promisedataset). The utilization of the PROMISE
dataset in this research is motivated by two main factors. Firstly, the PROMISE dataset possesses
a well-organized structure and encompasses comprehensive details concerning each project. These
details include lines of code (LOC) and version numbers for individual projects. Such inclusivity
facilitates the identification of defects across diverse behaviors, such as those occurring within a
project or extending across multiple projects. Secondly, the PROMISE dataset incorporates real-
world software projects, rendering it more pertinent to industry professionals and enabling a more
authentic evaluation of the effectiveness of various approaches in predicting software defects. This
aspect strengthens the practical relevance and validity of our assessments. Table 2 presents relevant
details regarding the chosen projects, encompassing their project names, version numbers, concise
descriptions, average source files, and average buggy rates.

Table 2: Dataset description

Project  Description Versions Avg files  Avg buggy rate (%)
ant Code files built using Java. 1.5,1.6,1.7 464 22
jedit Software tool developed specifically for  3.2,4.0,4.1 297 28.1
programmers.
camel An integration framework designed for 1.2, 1.4, 1.6 815 24.8
enterprise-level applications.
log4j A Java-based logging library. 1.0, 1.1 121.8 30.3
xalan A Java library for processing XML files. 2.4,2.5,2.6 782 36.8
synapse  Adapters for transmitting data. 1.1,1.2 239 30.5
lucene An open-source text search library. 2.0,2.2,24 261 56.3
poi Java library for accessing Microsoft files. 1.5,2.5,3.0  354.7 63
xerces XML parser. 1.2,1.3 447.2 15.7

4.1.2 Evaluation Metrics

The effectiveness evaluation of our software defect prediction model is conducted using two widely
adopted metrics: Fl1-measure and AUC.

F1-measure evaluates the accuracy of a model by considering both recall and precision. It is
determined by taking the harmonic mean of recall and precision, resulting in a fair evaluation of the
model’s overall performance. The equations for recall, precision, and F1-measure are as follows:
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TP
Recall = ———— 3
Al =P+ FN) ®)
TP
Precision = m (4)

2 * (Precision * Recall)

F1—measure = —
(Precision + Recall)

)

In these equations, where the True positive (TP) is the number of defective files predicted as
defective. In contrast, the number of predicted defective files that are not defective is defined as the
False positive (FP). False negative (FN) defines as the number of predicted defect-free files that are
truly defective.

AUC (Area Under the Curve) is a frequently employed metric for assessing the effectiveness of
binary classifiers. It quantifies the model’s overall performance by computing the area beneath the
Receiver Operating Characteristic (ROC) curve. The ROC curve depicts the balance between the true
positive rate (TPR) and the false positive rate (FPR). The equation for AUC is as follows:

AUC = integral(TPR, FPR) (6)

These evaluation metrics provide valuable insights into the performance of the proposed GB-
CPDP model, allowing for a comprehensive assessment of its predictive capabilities.

4.1.3 Baseline Methods

To evaluate the efficacy of our GB-CPDP method, a comparative analysis is performed by
evaluating its prediction performance against four state-of-the-art CPDP methods, as outlined below:

TPTL [30]: CPDP model that was built using a two-phase transfer learning approach. In the initial
phase, TPTL uses the Source Project Estimator (SPE) tool to select source projects that are most
similar in distribution to a target project from a group of possible source projects.

DA-KTSVMO [18]: DA-KTSVMO is a CPDP model incorporating an optimized quantum
particle swarm optimization algorithm to enhance performance. DA-KTSVMO aimed to enhance
prediction accuracy in CPDP tasks by effectively aligning training data distributions across diverse
projects.

DBN [22]: Defect prediction model with syntactic features and source code change features
generated by DBN. They evaluated the efficacy of their approach in the context of CPDP at both
the file and change levels.

4.2 Results Analysis and Discussion
This section discusses the results of our experiments according to the following research questions:

RQI: How does the effectiveness of the GB-CPDP approach compare to the state-of-the-art
CPDP methods?

RQ2: How does the performance of GB-CPDP vary in response to external parameters?

For RQ1# As mentioned in Section 4.1.3, a comparative analysis is conducted by evaluating the
prediction performance of the proposed GB-CPDP model against three baseline methods: TPTL,
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DA-KTSVMO, and DBN. The results in Table 3 compare the performance of the proposed GB-CPDP
model against these three state-of-the-art methods in terms of AUC and F1-measure.

Table 3: AUC and Fl-measure scores of TPTL, DA-KTSVMO, DBN, and GB-CPDP

Projects AUC F1-measure
Source Target TPTL DA- DBN GB- TPTL DA- DBN GB-
KTSVMO CPDP KTSVMO CPDP

synapse_1.2 poi-2.5 0.485  0.498 0.604 0.593 0.462 0.533 0.609 0.631
synapse_1.2 xerces-1.2  0.485 0.563 0.588 0.681 0.433 0.542 0.423 0.466
camel-1.4 ant-1.6 0.541  0.655 0.481 0.532 0.575 0.463 0472 0.416
camel-1.4  jedit_4.1 0.329 0.441 0.398 0.466 0.396 0.402 0.301 0.356
xerces-1.3  poi-2.5 0.588 0.477 0.521 0.568 0.349 0.537 0.521 0.544
xerces-1.3  synapse_I.1 0.488  0.468 0.402 0.502 0.536 0.329 0.392  0.469
xerces-1.2  xalan-2.5 0471 0.437 0.610 0.696 0.447 0.462 0.503 0.383
lucene_2.2  xalan-2.5 0.621  0.702 0.713 0.568 0.506 0.438 0.478 0.502
synapse_l.1 poi-3.0 0.493  0.510 0.543 0571 0.342  0.566 0.462 0.537
ant-1.6 poi-3.0 0.518 0.383 0.609 0.572 0.353 0.315 0.360 0.384
camel-1.4 ant-1.6 0.603  0.642 0.533 0.661 0.556 0.511 0.512  0.652
lucene_2.2  ant-1.6 0.411 0.570 0.465 0.658 0.377 0.539 0.543  0.669
log4j-1.1 ant-1.6 0.631  0.509 0.710 0.682 0.595 0.585 0.662 0.676
logdj-1.1 lucene_2.0  0.529  0.621 0.602 0.613 0478 0.576 0.712 0.622
lucene_2.0  logdj-1.1 0.546  0.571 0.512 0.647 0.419 0.561 0.381 0.489
lucene_2.0  xalan-2.5 0.632 0.604 0.530 0.594 0.510 0.510 0.266 0.514

jedit_4.1 camel-1.4  0.267  0.355 0.542 0.556 0.447 0.502 0.411 0.501
jedit_4.1 xalan-2.4 0.425 0.563 0.613 0.669 0.332 0.386 0.379  0.443
Average 0.504 0.532 0.554 0.602 0.451 0.487 0.466 0.514

Analyzing the AUC results, the GB-CPDP model demonstrates competitive performance. It
achieves an average AUC of 0.602, outperforming TPTL (0.504) and DA-KTSVMO (0.532), but
being slightly outperformed by DBN (0.554). The individual dataset comparisons show that GB-
CPDP consistently achieves competitive AUC scores across various source-target pairs. For example,
in the synapse_1.2 to xerces-1.2 comparison, GB-CPDP achieves an AUC score of 0.681, which
outperforms all the other methods. Similarly, in the log4j-1.1 to ant-1.6 comparison, GB-CPDP scores
0.682, slightly outperforming DBN’s score of 0.710. It is worth noting that there are cases where GB-
CPDP’s performance is lower than that of the other methods. For instance, in the camel-1.4 to ant-1.6
comparison, GB-CPDP achieves an AUC score of 0.532, while both DA-KTSVMO and DBN achieve
higher scores of 0.655 and 0.642, respectively. Table 3 also provides the F1-measure scores of the GB-
CPDP model and three other state-of-the-art CPDP approaches: TPTL, DA-KTSVMO, and DBN.
As shown in Table 3, the GB-CPDP model demonstrates promising results in cross-project defect
prediction, outperforming the other three methods regarding the average F1-measure. The average F1-
measure of GB-CPDP is 0.514, while TPTL, DA-KTSVMO, and DBN achieve average scores of 0.451,
0.487, and 0.466, respectively. This suggests that the graph-based feature learning approach, which
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involves extracting features from CFG and DDG using NetworkX, followed by learning with LSTM,
effectively captures meaningful representations for defect prediction. The variability in performance
across different project pairs is observed for all methods, indicating that the choice of source and
target projects significantly impacts the predictive performance. Some project pairs show higher F1-
measure scores, indicating better prediction accuracy, while others exhibit lower scores. It highlights
the importance of project selection and the influence of project characteristics on the effectiveness of
the CPDP methods.

In this work, Wilcoxon Signed Rank Test (WSRT) and Cliff’s delta are used to check if the
performance difference between GB-CPDP and the baseline model is statistically significant. The
WSRT is a statistical hypothesis test that does not rely on specific distribution assumptions. It is
employed to assess if two paired samples originate from the same distribution. A p-value less than
0.05 from the test indicates a significant difference between the matched samples; otherwise, the
difference is not deemed significant. To counter the influence stemming from numerous tests, the
Win/Tie/Loss indicator is employed to evaluate the performance of distinct models. This approach
has been utilized in previous studies to compare the performance of different methods [35,36]. The
Cliff’s delta, nonparametric effect size test quantifies the practical degree of difference between two
observational data sets. It serves as a complementary analysis to the WSRT. Table 4 provides the
associations between Cliff’s delta (|8]) values and their corresponding practical significance levels.

Table 4: Mapping between the absolute values of Cliff’s delta (|8]) and the corresponding levels of
effectiveness

Cliff’s delta Effective levels Cliff’s delta Effective levels
0.474 < |5] Large (L) 0.147 < 16| < 0.33  Small (S)
0.33 <|8] < 0.474 Medium (M) |8] < 0.147 Negligible (N)

Table 5 illustrates the outcomes of Win/Tie/Loss indicators for F-measure values and AUC values.
Each column presents the respective p-values of WSRT and Cliff’s delta values. The original value is
shown in cases where the WSRT p-value is not less than 0.05; alternatively, if it is less than 0.05, it
is replaced with “<0.05”. The corresponding practical significance level from Table 4 is employed
for Cliff’s delta value. The effective level is accompanied by a “+” or “—” sign to differentiate
between positive and negative Cliff’s delta values. For instance, in comparing GB-CPDP with TPTL
on synapse_1.2-poi-2.56, the p-value is below 0.05, and Cliff’s delta value exceeds 0.474. Thus, the
“p(8)” of “GB-CPDP vs. TPTL” is denoted as “<0.05(4+L)”. Following the Win/Tie/Loss indicator
guidelines, GB-CPDP is categorized as a “Win”. By inspecting the WSRT and Cliff’s delta columns
and the “Win/Tie/Loss’ row in Table 5, it is evident that our GB-CPDP model significantly surpasses
other models in most tasks.
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Table 5: WIN/TIE/LOSS indicators on AUC and F1-measure scores of TPTL, DA-KTSVMO, DBN,
and GB-CPDP

Projects GB-CPDP vs. TPTL GB-CPDP vs. DA-KTSVMO GB-CPDP vs. DBN
AUC Fl-measure AUC Fl-measure AUC Fl-measure

synapse_1.2 - poi-2.5 <0.05(+L) <0.05(+L) <0.05(+L) <0.05 (+L) 0.167(—S)  <0.05(+L)
synapse_1.2 - xerces-1.2  <0.05 (+L) <0.05(+L) <0.05(+L) <0.05 (-L) <0.05(+L) <0.05(+L)

camel-1.4 - ant-1.6 <0.05(+L) <0.05(—L) <0.05(-=L)  0.379 (=S) <0.05(+L) <0.05(+L)
camel-1.4 - jedit_4.1 <0.05(+L) 0.211(=S) <0.05(+L)  0.142 (+S) <0.05(+L) <0.05 (+L)
xerces-1.3 - poi-2.5 <0.05(=L) <0.05(+L) 0.497(+M)  <0.05(+L)  <0.05(+L) <0.05(+L)

xerces-1.3 - synapse_1.1 <0.05(+L) 0.396 (—N) <0.05(+L) <0.05 (+L) <0.05(+L) <0.05(+L)
xerces-1.2 - xalan-2.5 <0.05(+L) <0.05(+L) <0.05(+L) <0.05 (+L) <0.05(+L) <0.05(-L)

lucene_2.2 - xalan-2.5 <0.05(+L) 0.087 (+S) 0.636 (+V) <0.05 (+L) 0.109 (+S)  <0.05 (+L)
synapse_1.1 - poi-3.0 <0.05(+L) <0.05(+M) <0.05(+L) <0.05(-L) <0.05(+L) <0.05(+L)

ant-1.6 - poi-3.0 <0.05(+L) <0.05(+L) <0.05(+L)  <0.05(+L)  <0.05(=L) 0.379 (=S)
camel-1.4 - ant-1.6 <0.05(+L) <0.05(+L) <0.05(+L)  <0.05(+L)  <0.05(+M) <0.05(+M)
lucene_2.2 - ant-1.6 <0.05(+L) <0.05(L)  <0.05(+L)  <0.05(+M)  <0.05(+L) <0.05(+L)
logdj-1.1 - ant-1.6 <0.05(+L) <0.05(+L) <0.05(+L)  <0.05(L) 0.381 (+M)  <0.05 (+L)
logdj-1.1 - lucene_2.0  <0.05(+L) <0.05(—=M) <0.05(-L)  <0.05(+L)  <0.05(+L) 0.411(-S)
lucene_2.0 - logdj-1.1 ~ <0.05(+L) <0.05(+L) <0.05(+L)  0.185(-S) <0.05(+L) <0.05 (+L)

lucene_2.0 - xalan-2.5  0.127(-S)  <0.05(+L) <0.05(+L)  0.521 (+N)  <0.05(+L) <0.05(+L)
jedit_4.1 - camel-1.4 <0.05(+L) <0.05(+L) <0.05(+L)  0.137 (+S) <0.05(+L) <0.05(+L)
jedit_4.1 - xalan-2.4 <0.05(+L) <0.05(+L) <0.05(+L)  <0.05(+L)  <0.05(+L) <0.05(+L)
Win/Tie/Loss 16/1/1 14/3/1 141212 11/5/2 14/3/1 15/2/1

Fig. 5 presents the AUC boxplots for GB-CPDP and the three baseline methods (TPTL, DA-
KTSVMO, and DBN) for all 18 experiments indicated in Table 3. Fig. 6 presents the F1-measure
boxplots for GB-CPDP and the three baseline methods for all 18 experiments indicated in Table 3. For
all 18 experiments, the F1-measure and AUC distribution (upper/lower and median quartiles) of each
of the four approaches are presented in each boxplot. The boxplots show that GB-CPDP performs
better than the four baseline approaches in Fl1-measure and AUC on almost all tasks. In conclusion,
GB-CPDP outperforms the other baseline approaches when F1-measure and AUC are considered.
These results show that semantic graph feature learning can enhance a cross-project software defect
prediction.
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Figure 5: Comparison of AUC scores for TPTL, DA-KTSVMO, DBN, and GB-CPDP
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Figure 6: Comparison of F1-measure scores for TPTL, DA-KTSVMO, DBN, and GB-CPDP

In conclusion, the GB-CPDP model shows promise in CPDP, offering improved performance
compared to the baseline approaches. The effective representation and prediction of defects are
achieved through graph-based feature learning, which involves extracting features from CFG and
DDG, along with LSTM-based learning.

For RQ2# In this section, we explore the impact of semantic graphs’ embedding dimensions as an
external factor on the GB-CPDP model’s effectiveness. To determine the influence of semantic graphs’
embedding dimensions on the prediction performance of GB-CPDP, the Node2vec model is retrained
using various dimension parameters: 20d, 40d, 60d, 80d, and 100d. Subsequently, the semantic features
are regenerated using the corresponding Node2vec model. The F1-measure values for these 18 tasks
with the five different dimensions are listed in Fig. 7.

—a—synapse_1.2 ~poi-2.5  —e—synapse_l.2~xerces-1.2 —o—camel-1.4~ant-1.6 camel-1.4~jedit_4.1
—e—xerces-1.3~poi-2.5 —e—xerces-1.3~synapse_1.1 —e@—xerces-1.2~xalan-2.5  —e—lucene_2.2~xalan-2.5
—e—synapse_l.1~poi-3.0  —e—ant-1.6~poi-3.0 —e—camel-1.4~ant-1.6 —e—lucenc_2.2~ant-1.6
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Figure 7: F1-measure of GB-CPDP under different semantic graphs’ embedding dimensions

As shown in Fig. 7, the choice of embedding dimensions significantly influences the prediction
performance of the GB-CPDP model. Certain tasks exhibited higher F1-measure values with specific
dimension parameters, while others displayed varied performance across the dimensions. For instance,
when considering the task “synapse_1.2 poi-2.5”, the Fl1-measure values consistently increased from
0.602 for 20d to 0.631 for 100d. Similarly, for the task “synapse_1.1poi-3.0”, the F1-measure values
improved as the dimensions increased, with the highest value recorded for 100d. On the other hand,
some tasks demonstrated fluctuating F1-measure values across different dimensions. For example, the
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task “camel-1.4~ant-1.6" achieved the highest F1-measure value of 0.652 at 80d and 100d, while the
Fl-measure values were slightly lower at 60d and 40d.

These findings highlight the importance of carefully selecting the embedding dimensions for
semantic graphs when using defect prediction models. It is crucial to consider the specific task and
assess the performance across various dimension parameters to achieve optimal prediction accuracy.

5 Threats to Validity
5.1 Datasets Selection

A subset of nine open-source Java projects sourced from the PROMISE dataset is tested to
validate our experiments. However, it should be noted that these selected projects may not represent the
entirety of software projects. Furthermore, our evaluation just focused on Java projects, and therefore,
the applicability of our model to other programming languages cannot be assured. As a result, our
proposed method may produce varying outcomes for projects not included in the nine selected projects
or those developed using different programming languages, such as Python or C.

5.2 Implementation of Baselines

Our prediction model is evaluated for comparative analysis against three state-of-the-art meth-
ods: TPTL, DA-KTSVMO, and DBN. Since these methods’ original versions were unavailable, we
implemented them ourselves. While we followed the instructions provided in their respective works,
it is possible that certain implementation details from the original versions may be absent in our new
implementations. We used the data used in the original works to test our new implementations. We are
confident that our new implementation faithfully represents the performance of these methods.

6 Conclusion

This study proposed a novel approach called GB-CPDP for cross-project software defect predic-
tion. Our approach employed NetworkX to extract features from CFGs and DDGs. By leveraging
Node2Vec, the CFGs, and DDGs have been transformed into numerical vectors, serving as graph
features. LSTM was then used to learn a predictive model based on these acquired features. We con-
ducted extensive experiments using nine Java projects from the PROMISE dataset and compared the
performance of GB-CPDP with three state-of-the-art CPDP methods. Our results demonstrated that
GB-CPDP outperforms the existing methods in terms of Fl1-measure and AUC, with improvements
ranging from 2.7 to 6.3 and from 4.8 to 9.8, respectively, showcasing its efficacy in defect prediction.
Despite the proposed GB-CPDP model is promising for cross-project software defect prediction, the
proposed approach has limitations regarding its focus on Java projects and utilizing only CFG and
DDG as graph features. While Java is a widely used programming language, the generalizability of the
approach to other programming languages and domains may be limited. Additionally, relying solely on
CFG and DDG may not capture all relevant contextual information for defect prediction. Other types
of dependency graphs, such as Value Dependency Graphs (VDG), could provide additional insights
and improve the model’s accuracy.

There are several avenues for future research and improvements. For example, extending the
evaluation to a broader range of software projects, encompassing different programming languages
such as C++ and Python and domains such as Mobile Apps, would provide a more comprehensive
understanding of GB-CPDP’s performance. Exploring and incorporating other graph-based features
beyond the CFG and DDG could further enhance the predictive capabilities of GB-CPDP. For
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example, data flow or module dependency graphs may capture additional contextual information
relevant to defect prediction.
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