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ABSTRACT

Brain tumor significantly impacts the quality of life and changes everything for a patient and their loved ones.
Diagnosing a brain tumor usually begins with magnetic resonance imaging (MRI). The manual brain tumor
diagnosis from the MRO images always requires an expert radiologist. However, this process is time-consuming
and costly. Therefore, a computerized technique is required for brain tumor detection in MRI images. Using the
MRI, a novel mechanism of the three-dimensional (3D) Kronecker convolution feature pyramid (KCFP) is used
to segment brain tumors, resolving the pixel loss and weak processing of multi-scale lesions. A single dilation
rate was replaced with the 3D Kronecker convolution, while local feature learning was performed using the 3D
Feature Selection (3DFSC). A 3D KCFP was added at the end of 3DFSC to resolve weak processing of multi-scale
lesions, yielding efficient segmentation of brain tumors of different sizes. A 3D connected component analysis with
a global threshold was used as a post-processing technique. The standard Multimodal Brain Tumor Segmentation
2020 dataset was used for model validation. Our 3D KCFP model performed exceptionally well compared to other
benchmark schemes with a dice similarity coefficient of 0.90, 0.80, and 0.84 for the whole tumor, enhancing tumor,
and tumor core, respectively. Overall, the proposed model was efficient in brain tumor segmentation, which may
facilitate medical practitioners for an appropriate diagnosis for future treatment planning.
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1 Introduction

A tumor is a human’s uncontrollable growth of cancer cells [1]. A tumor that grows inside the brain
and spreads to nearby locations constitutes the primary tumor. By contrast, a secondary brain tumor
has more than one point of origin and then reaches the brain via the process known as brain metastasis
[2]. Meanwhile, a glioma is a brain tumor originating from surrounding infiltrating nerve tissues and
glial cells [3]. Like other cancers, brain tumors comprise two types: benign and malignant. They are
divisible into four grades, i.e., I, II, III, and IV (World Health Organization, year 2000). Grades I
and II brain tumors are low-grade benign gliomas, while grades III and IV are high-grade gliomas.
Benign brain tumors include meningioma and glioma, while malignant ones are astrocytoma and
glioblastoma. Grade IV tumors are the most hazardous tumor; histopathology is a primary method
that can be used to classify grade IV tumors from other ones [4].

Based on the attributes of the intra-tumoral regions, brain tumors can be separated into four
groups, i.e., edema, non-enhancing nucleus, necrotic and active nucleus [5]. The groups mentioned
above derived three classes which further make the segmentation map. The first class is the whole
tumor that comprises all four tumor groups. The second class is the core tumor which encompasses
all tumor groups except for the edema, and the third class is the enhancing tumor which consists of
just the enhancing core [6].

With the technological advancement of medical imaging, modalities are crucial for curing brain
tumors. Imaging modalities such as positron emission tomography, ultrasonography, and Magnetic
Resonance Imaging (MRI) help to understand many aspects of a brain tumor [4]. In MRI, soft
tissues are contrasted to provide vital information about different parameters of brain tumors
with nearly no harmful effects of high radiation on humans [7]. MRI scans for diagnosing tumor
regions are produced in three anatomical views: coronal, sagittal, and axial [8], segmenting gliomas
and other tumor structures for more efficient treatment planning. However, the intensity of MRI
images is not homogeneous [9], and scanner are costly [10]. Also, manual segmentation is time-
consuming. Consequently, physicians often use rough measures and are prone to errors [11]. Automatic
segmentation also encounters challenges with different sizes, shapes, and dimensions of abnormal
brain tumors [12].

Meanwhile, Convolutional Neural Network (CNN) is widely used to automatically segment brain
tumors, extracting more relevant and accurate features by enhancing the receptive field. However,
CNN is computationally intensive, requiring a large kernel size [13]. Different CNN architectures were
proposed to resolve the complexity of high computational costs [14]. Other techniques were also used
to reduce the filter parameters to improve network performance. For example, Atrous convolution is
used to enlarge the receptive field while maintaining a similar resolution for a feature. It captures more
contextual information at the same kernel size. Specifically, Atrous filters use zeros to expand vacant
positions, preserving the feature size from one layer to another, capturing the global information,
and keeping the number of parameters constant [15]. However, due to the increment of the dilation
rate, Atrous convolution losses between-pixel information, missing some vital data and yielding
inaccurate segmentation [16]. Besides, Deep Convolution Neural Network (DCNN) uses repeated
striding convolutional kernels and multiple pooling layers to extract more tissue features [17]. However,
it reduces the feature resolutions. In general, most of the existing DCNN techniques have limited
capacity for multi-scale processing, hindering the model from improving the performance of brain
tumor segmentation. Some deep learning techniques used 3D convolutional networks [18], parallelized
long short-term memory (LSTM) [19], and fully connected networks (FCN) [20]. Machine learning-
based probabilistic models were merged in many studies to produce a deep-learning model [21],
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performing automated brain tumor segmentation. Other segmentation methods used the capabilities
of 3D-CNN [22] and 2D-CNN [23]. However, 3D-CNN used all 3D information of MRI data, yielding
computational complexity due to an increment in the number of parameters. Therefore, 2D-CNN was
used for efficient and cost-effective brain tumor segmentation.

Another study [24] proposed a Kronecker approach to resolve the Atrous convolution problem
while keeping the number of parameters consistent. Kronecker convolution generates a lightweight
model with many trained batches without extensive hardware while increasing the receptive field and
implementing the computation of lost features. Also, the discrimination of cancerous and healthy
cells becomes possible with contexts around the lesion. The generated feature maps from the three-
dimensional (3D) Feature Selection (FSC) block are fed into the multi-input branch pyramid to fuse
contexts with lesion features. This ultimately improves model identification for accurate and efficient
segmentation without information loss. The key contributions of this study are as follows:

• We have used 3D Kronecker to resolve the loss of pixels in Atrous convolution caused by
increased dilation rates.

• The 3D Kronecker Convolution Feature Pyramid (KCFP) model captured multi-scale features
of brain tumors.

• Pyramid features are used through the skip connections from the 3D FSC network to overcome
the vanishing gradient problem while preserving local features.

• The connected component analysis is combined with a global threshold to reduce false positives
for effective structural segmentation.

The rest of this paper is organized as Section 2, literature review. Section 3 gives a detailed overview
of our proposed KCFP model. Section 4 presents the Results, and their Discussion Section 5 contains
the conclusion.

2 Literature Review

In 2012, Medical Image Computing and Computer-Assisted Intervention (MACCAI) challenge
was introduced. The medical imaging computing and computer-assisted intervention society provided
the BraTs dataset to facilitate brain tumor segmentation [25]. Two automated techniques were
introduced to segment brain tumors in the past decade. The first was the machine-learning techniques
that used various classifications to learn different and diverse features, solving the issue of multi-classes
[26]. In addition, these techniques yielded hierarchical segmentations with effective fine scales [27].

Another study [28] used a 2.5D CNN architecture but began with 2D kernels that overlooked inter-
size interactions, and hence, crucial contextual information was not captured [29]. Meanwhile, many
FCNs prognosticated the predicted segmentation masks effectively [30], but they could not model the
context of the label domain [31]. Consequently, a new variant of FCN, that is, U-Net, was developed
[32]. Fully connected layers were absent in U-Net. Thus, it would miss the context when identifying the
boundary images. The missing contexts were retrieved by merging the images in a mirrored manner.
Compared to FCN, U-Net was better because it could capture the skip connections among different
pathways.

These skip connections allowed the original image data to repair the details. Also, a modified U-
Net was proposed [33], implementing a dice-loss function to resolve overfitting in tumor segmentation.
Besides, zero-padding was used to keep the output dimension constant in down and up-sampling paths
[34]. Meanwhile, a U-Net with multiple input channels was used for identifying lesions [35]. In the
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same way, many other approaches are used to improve the segmentation process [36]. Another study
proposed a fully connected CNN [37], using low-and high-level feature maps in the final classification.

Similarly, another study [38] developed a V-Net, i.e., a modified 3D U-Net with a dice-loss
function, to capture crucial information from the 3D data. Also, a 3D U-Net was developed, using
the ground truth of the whole tumor to detect the tumor core. Besides, two U-Nets were used in post-
processing to improve the prediction, yielding a better classification of brain tumors [39].

The primary drawback of FCN was that the up-sampling results were unclear, thus decreasing the
analytical performance of the medical images. The cascaded architecture was then used to overcome
this problem, converting multi-segmentation into binary segmentation [40]. In this respect, two
cascades of V-Nets were used to ensure that the training methods concentrated the essential voxels [41].
A multi-class cascaded classifier was also reported [42]. Besides, feature fusion was accomplished using
various feature-extraction methods. In general, cascaded networks accounted for the spatial linkages
between sub-regions. However, training numerous sub-networks was more complex than just a single
end-to-end network. Attention mechanisms were also used to improve brain tumor segmentation [43].

Another study [44] introduced a novel attention gate that targeted structures of various sizes
and shapes. Models trained with attention gate suppressed superfluous elements of an input image
while emphasizing key features. Also, a 2D U-net-based confined parameter network was developed
[45]. It contained an attention learning algorithm to prevent the model from becoming redundant by
adaptively weighing each input channel. Besides, a multi-scale network was used to provide enough
information to interpret segmentation features [46].

These architectures (machine learning and deep learning) were computationally intensive, requir-
ing a costly hardware setup. Consequently, the segmentation process became highly expensive.
Numerous studies were conducted to mitigate the complexity of 3D-CNN.

In particular, the Atrous convolution-based methods were widely used to address this issue. In this
respect, a multi-fiber network with Atrous convolution effectively integrated group convolution [47].
It reduced the computational cost of the 3D convolution by merging features at various scales. Besides,
weighted Atrous convolutions were used to collect multiple-scale information, reducing inference
time and model complexity. Likewise, a multi-scale Atrous convolution was used [48] to sample the
high-level refined characteristics of objects. However, Atrous convolution suffers from the loss of
information due to missing pixels. Hence, Kronecker convolution was used to mitigate information
loss by increasing the receptive field while keeping the same parameters [21]. The related work on
medical image segmentation is presented in Table 1.

Table 1: Related work on medical image segmentation

Authors Proposed technique Limitations or future work

Sharif et al. [16] Multi-level dilated convolutional network,
BM segmentation, and radiomic features

Skipping of pixels due to
the dilation rate

(Continued)
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Table 1 (continued)

Authors Proposed technique Limitations or future work

Kamnitsas et al. [19] Cascading architecture considers the
output from CNN as input and important
information for further CNNs. The
imbalanced tumor labels problem is solved
using fully connected layers that have 40
folds speed up

This model is not capable
of using 3D contextual
information

Shen et al. [32] A densely connected network is used for
brain tumor segmentation, 3D dense
network fuses multiscale information

Computationally expansive
and pixel skipping issue

Zhang et al. [49] Multi-encoder net framework for
segmentation, Multiple encoders reduce
the difficulty of feature extraction

3D contextual information
lost, standard convolution
has a large number of
parameters

The next section elaborates on the brain tumors segmentation using 3D Kronecker convolution
feature pyramid with details of dataset preprocessing, proposed model, post-processing, and perfor-
mance evaluation metrics.

3 Brain Tumors Segmentation Using 3D Kronecker Convolution Feature Pyramid

This section presents the dataset and pre-processing of the proposed model, performance evalua-
tion, post-processing, and training and model validation.

3.1 Dataset and Preprocessing

This study used the standard Multimodal Brain Tumor Segmentation (BraTs) data for brain
tumor segmentation. In the BraTs dataset, the primary focus is given to the segmentation of intrin-
sically heterogeneous (gliomas) by utilizing a dataset of MRI scans from distinct sources. The BraTs
2020 training consisted of 369 volumes, of which 125 were given for validating the dataset. These BraTs
datasets comprised MRI scans with four modalities, namely, T1, T2, Flair, and T1-Contrast Enhanced
[50]. The dimension of MRI volume dimension is 240 × 240 × 155. The ground truth of the training
dataset for each patient was also given. The ground truth contained four classes of segmentation:
necrotic, edema, non-tumor, and non-enhancing core. These MRI scans were re-sampled to isotropic
voxel resolution at 1 mm∧3 as skull stripped. Segmentations were validated on the leaderboard to check
the effectiveness of our proposed model. The intensity of the MRI depended on the image acquisition.
In this study, variations in intensity and contrast in MRI volume were reduced via normalization, and
Z-score [51] was used to normalize the MRI modalities via Eq. (1).

Z = (X − μ)/α (1)

Here, Z describes Z-score, μ represents the mean pixel intensity, and α denotes the standard
deviation of the pixel intensity, and X is the pixel value. Normalization wrapped and aligned the image
data in the anatomic template for model convergence by attaining the optimal global solution.



2866 CMC, 2023, vol.76, no.3

Segmentation of the proposed model is comprised of four steps. Firstly, the nibble library was used
to load the BraTs multi-modality data, followed by Z-score normalization since deep learning models
were sensitive to data diversity. We trained our model simultaneously with all three brain views, i.e.,
axial, coronal, and sagittal. The data was flipped to coronal, sagittal, and axial planes randomly at the
probability of 0.5 to benefit from brain multi-view while augmenting the data to generalize our model.
Consequently, when visualizing a slice in a single view (e.g., axial), neighboring pixels in the region
of interest could be compared with two other views (sagittal and coronal) [45]. Also, the Gaussian
blurring was added to the data to remove noise from MRI images.

Secondly, the model is trained on all three brain views once with brain view augmentation on
run time. This pre-processed data, i.e., multi-view data, was then used to train the model. Thirdly, the
model was data-validated. Lastly, the validations were post-processed. In this respect, a 3D connected
component analysis with a global threshold was used to reduce false positives from model predictions.

3.2 The Proposed Model

This study used a 3D KCFP model to segment brain tumors automatically. The model consisted
of three modules: 3D feature selection using a 3DFSC network, multi-scale feature learning using
featured pyramids, and post-processing based on 3D connected component analysis with a global
threshold. The main flow is shown in Fig. 1.

Figure 1: Overview of the methodology

In this study, all pixels contained small and essential information that must be captured for better
segmentation. The inter-dilation factor, represented by r1 (Fig. 2), controlled the dilation rate. The
intra-sharing factor, denoted by r2, regulated the sub-region size, capturing feature vectors and sharing
filter vectors. Kronecker convolution averaged all intra-sharing factors, i.e., r2 × r2 pixel values to
capture the partial information missed by Atrous convolution. In this study, Kronecker convolution
functioned at r1 = 4 and r2 = 3 (Fig. 2a) while Atrous convolution at r1 = 4 (Fig. 2b).
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Figure 2: (a) Kronecker convolution with r1 = 4 and r2 = 3 and (b) Atrous convolution with r1 = 4

This study used the 3DFSC network associated with a feature pyramid to generate hierarchical
features of multi-scale intrinsic for segmenting tumors. The 3DFSC network learned the dense and
non-destructive features of detailed lesions. The pyramid fused multi-scale features of lesions to
handle tumors of various sizes. When the network got deeper, local features were preserved using skip
connections to overcome the vanishing gradient, ensuring proper gradient flow within the network.

The contextual information supplied by these local features was sufficient to determine the
boundaries of various lesion tissues. The contexts around the lesion became valuable auxiliary
information to discriminate different tissues, including the cancerous and healthy cells. Each feature
map in the network was combined using concatenation by aiming at learning the valuable features of
the boundary to improve identifying the model for the anatomy of the lesion. Therefore, our network
efficiently propagated complex and vital information without compromising essential data features.
Our model segmented different cancerous lesions while preventing information loss with no increment
in parameter numbers. Also, a single model was used to capture the contextual information from a
multi-view for brain tumor segmentation. An adequate kernel size was used to address the varying
tumor sizes among patients and different sizes of the tumor sub-region.

Also, this study has used feature maps to develop a 3D structure that helped multi-scale feature
learning, as shown in Fig. 3. This block was added at the end of the 3DFSC network while KCFP fused
the local and global features using a multi-input pyramid structure. Besides, the mapped features of the
3DFSC network were then propagated to each branch of the 3D Kronecker convolution with different
intra–dilation and inter-dilation rates. Different dilatation rates were used at each pyramid level to
generate three varying receptive fields for capturing multi-scale lesions. The small receptive field of
this pyramid was responsible for segmenting the enhancing tumor, the medium for the non-enhancing
tumor, and the large for the whole tumor. The last layer in our proposed model is the classification
layer and it uses Multi-class Logistic Regression for segregating the classes. This regression based
classification follow probability distribution between the range [0, 1].

Up-sampling layers were inserted to concatenate the feature maps at three different pyramid levels.
Up-sample kept the dimension of each branch consistent with the previous one. This study also used
an up-sample 3D block in the proposed pyramid learning mechanism to scale up the size of different
feature maps without any learnable parameters. We also used Group Normalization (GN) for all layers
in the network, further improving the performance of our model.
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Figure 3: The architecture of the proposed methodology

3.3 Performance Evaluation

The performance of our segmentation model was evaluated using three metrics, i.e., dice similarity
coefficient (DSC), sensitivity, and specificity. DSC metric was used for three labels, i.e., tumor core
(TC), whole tumor (WT), and enhancing core (EC). WT and TC contained foreseen regions of EC,
non-EC, and necrosis. However, WT had an additional prediction region, i.e., edema. The DSC metric
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was calculated using Eq. (2) [52].

DSC = |P ∩ T |
|P ∩ T |

2

(2)

where T is the manual label, P is the predicted region, |P| is the total area of P, |T| is the total area of
T, and |P ∩ T| denotes the overlapped region between P and T.

Meanwhile, sensitivity is the proportion of correctly identified positives [5]. It was estimated using
Eq. (3) [52].

Sensitivity = TP
TP + FN

(3)

where TP is the true positive and FN denotes the false negative. Specificity, the measure of the
accurately identified proportion of actual negatives [7], was estimated using Eq. (4) [52].

Specificity = TN
TN + FP

(4)

where TN is the true negative and FP denotes the false positive. Also, the smaller the value, the closer
the prediction of the actual value is calculated using Eq. (5).

Hausdorff (X, Y) = max{maxxεX minyεY d (x, y) , maxyεY minxεX d (x, y)} (5)

where X is the volume of the mask, Y is the volume predicted by the model, and dx∈X represents the
distance from X to Y.

3.4 Post-Processing

Post-processing was performed to mitigate the impacts of false positives. Images were processed
using the algorithm 3D Connected Component Analysis (CCA). This algorithm grouped the pixels
into components based on the connectivity of the pixels to reduce false positives by removing outliers.
Removing small, isolated clusters from the prediction results was essential because brain tumors were
taken from the single connected domain.

Besides, the connected domain was analyzed to remove other small clusters. Some patients
had benign tumors with gliomas consisting of non-enhancing and edemas tumors. In such a case,
uncertainty arose when clusters of benign tumors were misclassified as enhancing tumors, causing
inefficient segmentation. Therefore, volumetric constraints were imposed to remove enhancing tumors
with values lower than the threshold. The 3D connected components were used to remove non-tumoral
regions using a threshold. We experimented extensively with different pixels, i.e., 80, 100, 120, 150, 200,
etc. Given that a global threshold of 500 pixels yielded the best prediction, all connected components
smaller than this value were removed.

3.5 Training and Model Validation

We implemented our model with the PyTorch framework. For model training, the cross-validation
evaluation of the training set is used. For validating the trained model, BraTs 2020 validation dataset
was used. The patch size for training and validation was 128 × 128 × 128, containing most of the brain
parts. This patch size was ideal for maximal information. Besides, we used the Adam optimizer with
a learning rate of 0.001 and updated using the cyclic learning rate strategy after each iteration. For
the brain tumor segmentation, we have utilized 3 million trainable parameters. Furthermore, we have
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trained our model with 400 epochs. Also, L2 regularization was used to prevent overfitting, while the
Generalized Dice Loss function was used to resolve the class imbalance. Generalized Dice Loss is the
cost function for our segmentation process, which is estimated using Eq. (6).

Generalized Dice Loss = 1 − 2

∑2

l=1 Wl

∑
n Slnpln

∑2

l=1 Wl

∑
n Slnpln

(6)

Meanwhile, Nvidia Titan X Pascal with NVIDIA Cuda core 3584 GPU was used to train the
model for the experiments. Also, we measured the computational time of the network on NVidia Titan
X Pascal with NVIDIA Cuda core 3584 GPU and Intel(R) Core(TM) M-5Y10c computer with a
1.80 GHz processor and 8 GB RAM.

4 Results and Discussion

The semantic segmentation process before and after the post-processing is shown in Fig. 4.
Overall, segmented tumor boundaries became smooth and accurate after post-processing.

Figure 4: Patient samples from BraTs 2020 data: (a) brain volumetric MRI, (b) results before post-
processing, and (c) results after post-processing

Table 2 shows the results of the evaluation with and without post-processing. Overall, post-
processing enhanced efficiency.

Table 2: Evaluation with post-processing and without post-processing

Methods Dataset DSC Sensitivity Specificity Hausdorff 95

ET WT TC ET WT TC ET WT TC ET WT TC

KCFP + 3D CCA BraTs 2019 0.79 0.88 0.82 0.81 0.88 0.80 0.99 0.99 0.99 - - -
KCFP BraTs 2020 0.78 0.89 0.80 0.78 0.88 0.76 0.99 0.99 0.99 3.19 5.02 6.47
KCFP + 3D CCA BraTs 2020 0.80 0.90 0.84 0.83 0.92 0.83 0.99 0.99 0.99 3.06 4.66 6.43

Table 3 compares the results of our KCFP model with the result of other benchmark schemes.
The multilayer dilated convolutional neural network (MLDCNN) model [53] achieved a DSC of 0.76
on ET, 0.87 on WT, and 0.77 on TC. Its Hausdorff was promising compared to other methods. The
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Lesion encoder model used the spherical coordinate transformation as a pre-processing strategy to
increase the accuracy of segmentation in combination with normal MRI volumes. It achieved a DSC
of 0.71 on ET, 0.86 on WT, and 0.80 on TC [54]. Similarly, the ME-Net model used a multi-encoder
for feature extraction with a new loss function known as Categorical Dice. It achieved a DSC of 0.73
on ET, 0.85 on WT, and 0.72 on TC. The AFPNet used a dilated convolution at multiple levels, fusing
multi-scale features with context with a conditional random field as post-processing [55]. This model
achieved a DSC of 0.71 on ET, 0.83 on WT, and 0.74 on TC. The AEMA-Net model achieved a DSC
of 0.71 on ET, 0.83 on WT, and 0.74 on TC [56]. It used a 3D asymmetric expectation-maximization
attention network to capture long-range dependencies for segmentation. The Transbts model exploited
the transformer into 3D CNN using an encoder-decoder structure. It achieved a DSC of 0.76 on ET,
0.86 on WT, and 0.77 on TC [57]. The proposed model outperformed others in DSC, sensitivity, and
Hausdorff 95. Our model achieved an average DSC of 0.80, 0.90, and 0.84 on the BraTs 2020 dataset
for ET, WT, and TC, respectively.

Table 3: Comparison of the KCFP model with other state-of-the-art models

Models Dataset DSC Sensitivity Specificity Hausdorff 95

ET WT TC ET WT TC ET WT TC ET WT TC

KCFP BraTs 2020 0.78 0.89 0.80 0.78 0.88 0.76 0.99 0.99 0.99 3.19 5.02 6.47
KCFP + 3DCCA BraTs 2020 0.80 0.90 0.84 0.83 0.92 0.83 0.99 0.99 0.99 3.06 4.66 6.43
ML-DCNN [53] BraTs 2020 0.76 0.87 0.77 0.76 0.86 0.74 0.99 0.99 0.99 3.46 5.4 6.6
Lesion encoder [54] BraTs 2020 0.71 0.86 0.80 0.72 0.86 0.81 0.99 0.99 0.99 26.3 6.18 8.10
AFPNet [55] BraTs 2020 0.71 0.83 0.74 - - - - - - - - -
TransBTS [56] BraTs 2020 0.76 0.86 0.77 - - - - - 0.99 18.9 5.96 8.76
AGSE-VNet [57] BraTs 2020 0.70 0.68 0.83 - - - - - - - - -

Fig. 5 shows the box plots of sensitivity, Hausdorff, and dice scores for three tumor regions. The
dice score for the three tumor regions ET, TC, and WT are 0.80, 0.84, and 0.90, respectively (Fig. 5a).
Based on the dice score, our model effectively improved the segmentation.

Figure 5: Plot-boxes: (a) dice score, (b) sensitivity, and (c) Hausdorff. The horizontal line in each box
represents its median value. The hollow circle shows the outliers

Meanwhile, sensitivity reflects the impact of features on predicting models [58]. Fig. 5b shows
that the sensitivity of our model is 0.83, 0.92, and 0.83 for ET, WC, and TC. Our KCFP model used
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size, location, and texture as features to identify the defective tissues, enhancing the final prediction
that distinguished all healthy tissues from the damaged ones. Fig. 5c shows that the Hausdorff of our
model is 3.06, 4.66, and 6.43 for ET, WC, and TC, respectively.

Fig. 6 shows the performance of the segmentation model with FLAIR-input MRI in three views:
coronal, sagittal, and axial. The tumor predicted by our proposed model was very close to the
ground truth, indicating that our model effectively segmented the brain tumors. The performance of
segmentation of a patient taken from BraTs 2020 training set. The first column shows the brain MRI
views, the second displays the ground truth labels, and the third depicts the predicted segmentation of
patients using KCFP. The aquamarine-colored area represents a non-enhancing tumor, the red zone
denotes enhancing tumor, and the dandelion-colored area indicates edema.

Figure 6: Results of a patient taken from BraTs 2020 training set

The automatic segmentation of brain tumors minimizes the burden of doctors while enhancing
treatment planning for saving cancer patients [59]. However, the automatic segmentation of brain
tumors faces many challenges due to the lesions’ different sizes, locations, and positions [60]. In
this study, the problem of pixel loss in Atrous convolution caused by increased dilation rate was
resolved using a 3D Kronecker convolution. The features lost in Atrous convolution were captured
by Kronecker convolution. The 3D Kronecker convolution increased the receptive field while keeping
the number of parameters constant and minimizing the pixel loss (Fig. 1). These pixels contained
crucial information capturing, which was essential for better segmentation. The difference in intensity
value and contrast in MRI volume was reduced by normalization [61]. The proposed model used the
Kronecker-convolution feature pyramid to learn the characteristics of the lesion and preserve local
features, thus improving the model’s capacity to distinguish TC from other lesions. The features learned
by DCNN had multiple scales and nonlinear abstraction as a natural feature. This feature allowed the
model to combine distinct hierarchies of abstract information, increasing the focus of the target areas
[62]. The proposed model was trained with axial, coronal, and sagittal views. The multi-scale features
of brain tumors were captured using 3D KCFP with various inter and intra-dilation factors. Lesion
and context information was incorporated using this module to improve the segmentation.



CMC, 2023, vol.76, no.3 2873

The hierarchical features of multi-scale intrinsic generated by the 3DFSC network were used for
effective and reliable segmentation. The 3DFSC learned the dense and non-destructive features of
detailed lesions. Tumors of various sizes were handled using a feature pyramid. The vanishing gradient
was resolved, and local features were preserved using skip connections from the 3DFSC network.
This way, crucial and complex information was collected without losing essential data features. The
proposed model was trained by providing all three possible brain views, i.e., axial, coronal, and sagittal.
Besides, the feature maps at three different pyramid levels were concatenated using up-sampling layers.
With the help of up-sampling, the dimension of each branch was kept consistent with each branch,
further improving our model performance. The 3D CCA post-processing technique reduced false
positives by combining the connected component analysis with a global threshold to remove outliers.
Upon post-processing, tumor boundaries became smoother, effectively distinguishing the lesions from
other tissues. Skip connections ensured the backpropagation of gradient flow to any layers without
losing crucial information. Meanwhile, when evaluated using BraTs datasets, the proposed KCFP
model of this study took 5 s on average to do segmentation for one patient. This average time was
deemed reasonable. For future work, different inter-dilation and intra-dilation rates would be used to
evaluate further and enhance our model performance.

5 Conclusion

In this study, a 3D KCFP was used for brain tumor segmentation to overcome the problem of pixel
loss and weak processing of multi-scale lesions. The pixel loss was due to an increment in the dilation
rate of Atrous convolution. We designed an integrated 3DFSC network with a multi-scale feature
pyramid to learn local and global features interracially, overcoming the problem of weak processing.
The 3DFSC learned the WT feature and its substructure effectively. By contrast, the feature pyramid
dealt with multi-scale lesions. In this way, the proposed model distinguished the boundaries of various
tumor tissues. Finally, false positives were reduced using the 3D CCA post-processing technique
with a global threshold, attaining more structural segmentations. Our proposed model outperformed
other benchmark schemes. Overall, our proposed KCFP model might benefit clinical medical image
segmentation. However, the class imbalance problem is not completely mitigated in our proposed
model. In the future, we will drive a cost function to solve the class imbalance problem completely
and focus on different dilation rates to evaluate model performance.
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