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Abstract: Virtual machine (VM) consolidation is an effective way to improve
resource utilization and reduce energy consumption in cloud data centers.
Most existing studies have considered VM consolidation as a bin-packing
problem, but the current schemes commonly ignore the long-term relationship
between VMs and hosts. In addition, there is a lack of long-term consid-
eration for resource optimization in the VM consolidation, which results in
unnecessary VM migration and increased energy consumption. To address
these limitations, a VM consolidation method based on multi-step prediction
and affinity-aware technique for energy-efficient cloud data centers (MPaAF-
VMC) is proposed. The proposed method uses an improved linear regression
prediction algorithm to predict the next-moment resource utilization of hosts
and VMs, and obtains the stage demand of resources in the future period
through multi-step prediction, which is realized by iterative prediction. Then,
based on the multi-step prediction, an affinity model between the VM and
host is designed using the first-order correlation coefficient and Euclidean
distance. During the VM consolidation, the affinity value is used to select the
migration VM and placement host. The proposed method is compared with
the existing consolidation algorithms on the PlanetLab and Google cluster
real workload data using the CloudSim simulation platform. Experimental
results show that the proposed method can achieve significant improvement
in reducing energy consumption, VM migration costs, and service level agree-
ment (SLA) violations.

Keywords: Cloud computing; VM consolidation; multi-step prediction;
affinity relationship; energy efficiency

1 Introduction

With the rapid development of global informatization, the energy consumption and CO2 emissions
of cloud data centers have increased rapidly [1–3]. Recent studies have shown that cloud data centers
account for approximately 7% of the total world’s electricity consumption, and this number is expected
to increase to 13% by 2030 [4]. However, the resource utilization of physical hosts in cloud data centers
is generally low. Research shows that the average CPU utilization is less than 20%, while an idle
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host consumes 70% of its peak energy consumption [5]. Inadequate utilization of resources leads to a
massive waste of resources and unnecessary energy consumption, which increases the operating costs
of cloud service providers and reduces the energy efficiency of the whole society.

In cloud computing, virtualization technology [6] has been used to encapsulate various resources
of a cloud data center into virtual machines (VMs) for tenants to use. It should be noted that one
physical host can host multiple VMs, so maximizing the number of VMs hosted by each host can
maximize the utilization of cloud data center resources and reduce energy consumption. However,
when a host hosts too many VMs, it will be overloaded, which will decrease the quality of service
(QoS). VM consolidation has been proven to be one of the most effective techniques for optimizing
resource utilization and guaranteeing QoS, and it needs to solve three problems [7–9]: 1) host load
detection: detect host overloaded or underloaded; 2) migration VM selection: for overloaded hosts,
select appropriate VMs to migrate; and 3) VM placement: based on the consideration of QoS and
energy consumption, select appropriate hosts to place migration VMs. Through the VM consolidation,
resources in the cloud data center can be dynamically adjusted to optimize their allocation.

However, the usage of resources in the cloud data center changes dynamically. For VM consolida-
tion, the dynamically changing characteristics of cloud resources pose a challenge for assessing host
load. Related studies use only the current utilization of a single resource (i.e., CPU) when determining
host load status [10,11]. In addition, many schemes consider multiple resources (i.e., CPU, memory,
disk, and network), but ignore the dynamically changing characteristics of host load [12,13]. The
above two solutions fail to accurately describe the host load state, which may lead to unnecessary
VM migration, resulting in system performance degradation and additional resource overhead [14].
Second, how to select migration VMs from overloaded hosts and select the optimal placement host for
migration VMs is another key problem to be solved. Most of the existing VM consolidation schemes
[15–17] do not consider the long-term relationship between VMs and hosts when selecting migration
VMs and placement hosts. For a dynamically changing cloud data center, this leads to excessive
consolidation and reduces the effective usage of resources, resulting in increased energy consumption
and resource waste.

To address the aforementioned challenges encountered in VM consolidation, a VM consolidation
algorithm based on multi-step prediction and affinity-aware technique is proposed in this paper.
Using the historical data of the cloud data center, an improved linear regression (LR) prediction
algorithm is employed to predict the next-moment resource utilization of VMs and hosts. Then, the
long-term resource demand in the future period is obtained through multi-step iteration prediction.
The current and multi-step prediction values of resources determine the host load state, avoiding
aggressive consolidation. In addition, an affinity relationship model between VMs and hosts based
on multi-dimensional resources and multi-step prediction values is proposed. Based on the proposed
affinity model, affinity-aware VM selection and affinity-aware VM placement methods are designed
to improve the utilization of resources, reduce the number of active hosts in a cloud data center, and
achieve the purpose of reducing energy consumption.

For the rest of this paper, Section 2 describes the related work, Section 3 introduces the affinity
model and multi-step prediction, Section 4 introduces the VM consolidation based on the multi-
step prediction and affinity model, Section 5 specifically describes the experimental evaluation, and
Section 6 introduces the conclusions.
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2 Related Work

Energy efficiency and efficient usage of resources have been attracting increasing attention in
recent years. VM consolidation has become an effective method to improve resource utilization and
energy efficiency in cloud data centers. Relevant research mainly focuses on three aspects, namely, how
to determine whether a host is overloaded or underloaded, how to select the appropriate migration
VMs from the overloaded host, and how to reselect the appropriate host for migration VMs.

In terms of host load status detection, some recent studies [18–20] used static threshold of
CPU as the only criterion. However, in cloud data centers, the usage of resources is constantly
changing. Therefore, the static threshold of a single resource cannot accurately assess the load status
of a host, resulting in improper resource utilization. Zhou et al. [21] proposed a dynamic threshold
method based on the K-Means clustering algorithm, which divided hosts into four types according
to the dynamic threshold, improving the detection performance of dynamically changing resources.
Beloglazov et al. [11] proposed an adaptive host load threshold algorithm to determine the host load
state based on the statistical analysis of historical CPU data, which further improved the performance
of adaptive resource dynamic changes. However, these methods only consider the current CPU
utilization when performing the host load detection. Therefore, the reliability of overloaded and
underload host detection is reduced, resulting in unnecessary migration and energy waste. In addition,
the above studies did not consider the effects of other resources on overloaded or underloaded host
determination. However, excessive utilization of any resources on a host will affect the performance
of the host and reduce its QoS.

Many studies have applied predictive techniques to VM consolidation to perceive dynamic
changes in resources. Haghshenas et al. [22] predicted the CPU utilization based on LR and
selected underloaded hosts and placement hosts according to the predicted CPU value. Similarly,
Farahnakian et al. [23] proposed a combined prediction algorithm based on the LR and K-nearest
neighbor algorithm to predict the host CPU utilization, which was used for host overload detection.
Moghaddam et al. [24] used machine learning-based methods and neural networks to predict the
CPU utilization of a host and designed a dynamic threshold according to the CPU prediction value
to determine whether a host was overloaded. By predicting future resource utilization, the VM
consolidation can effectively reduce the number of service level agreement violations (SLAv). However,
these methods only consider the one-step prediction of current single resource utilization and lack the
long-term usage consideration of multi-dimensional resources in the future period. Therefore, it is
difficult to obtain long-term optimal management and increase migration times.

In terms of migration VM selection, the random selection (RS) method, minimum migration time
(MMT) method, maximum correlation (MC) method, and maximum utilization (MU) method have
been widely used [11,25]. In addition, Li et al. [26] used memory page similarity characteristics to
select migration VM. They selected VMs with high memory page similarity on different hosts as
the VM to be migrated to reduce migration time and data. Masoumzadeh et al. [27] proposed an
adaptive VM selection method by integrating multiple VM selection technologies, which dynamically
selects the migration VM selection method based on the current host load and the fuzzy Q-learning
method. Laili et al. [28] proposed a new iterative budget algorithm for migration VM selection, which
established a reverse selection mechanism for randomly selected hosts to find suitable migration VMs.
However, the aforementioned studies did not consider the relationship between the future resource
usage of VMs and hosts when selecting migration VMs, which not only increases the migration
overhead but also brings potential SLAv.
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In terms of VM placement, many studies have considered VM placement as a well-known
bin-packing problem [29], which is also known as an NP-hard problem. The Best Fit Decreasing
(BFD) algorithm, First Fit Decreasing (FFD) algorithm, First Fit (FF) algorithm, and Best Fit
(BF) algorithm are widely used heuristic algorithms to solve the VM placement problem [30,31],
whose purpose is to reduce energy consumption by reducing the number of running hosts. However,
there is much that can be improved on the above widely used heuristics in terms of full utilization
of resources, and some researchers have improved them. Beloglazov et al. [11] improved BFD
and proposed a power-aware BFD (PABFD) algorithm. PABFD minimizes the increase in power
consumption through energy consumption awareness when selecting the placement host for migration
VMs. Murtazaev et al. [32] combined the FF and BF algorithms and proposed a Sercon algorithm to
minimize the number of hosts and migration costs. Farahnakian et al. [33] used the host load prediction
strategy based on the regression model and combined it with the BFD method to determine the
placement host. Bobroff et al. [34] proposed a measure-forecast-remap VM placement algorithm by
measuring historical workloads and predicting future resource demands to reduce the number of active
hosts. However, the aforementioned algorithms do not consider the relationship between the resources
required by a migration VM and the remaining resources of a host in the future period. Namely,
they optimize only the current usage of resources and only guarantee the optimal current resource
allocation after the VM are placed. Since the long-term relationship between multi-dimensional
resources in the future period is ignored, a host is prone to overload again in the future, resulting
in increased migration costs. Therefore, revealing the relationship between the VM’s resources and the
host’s remaining resources in the future period can contribute to the effective utilization of resources
and reduce the probability of host overloading in the future period.

In addition, an increasing number of studies have modeled VM consolidation as a single- or
multi-objective optimization problem, and various meta-heuristic algorithms have been proposed.
Li et al. [35] obtained the optimal mapping relationship between VMs and hosts by simulating the
foraging behavior of artificial bees. Besides, Li et al. [36] proposed a differential evolution meta-
heuristic algorithm and applied it to VM consolidation. However, the above methods only consider the
optimization of energy consumption and ignore the migration cost. Al-Moalmi et al. [37] proposed
a grey wolf meta-heuristic algorithm considering the effective utilization of CPU and RAM, which
effectively optimized energy consumption and QoS. However, the meta-heuristic algorithms are time-
consuming in the evolutionary iteration process. For large-scale data centers, thousands of solution
spaces need to be evaluated and compared, resulting in high algorithm complexity.

Existing VM consolidation studies have been mainly focused on reducing cloud data center energy
consumption, SLAv, and migration overhead. The core of VM consolidation is to schedule and
utilize various resources reasonably, but most studies have ignored the long-term relationship of the
resources between VMs and hosts, and lack long-term consideration of resource optimization. To solve
this limitation, this paper proposes an efficient and reliable strategy for VM consolidation with full
consideration of migration overhead, energy consumption, and QoS. Compared with previous studies,
for host load detection, the long-term load changes of the host are considered based on the proposed
multi-step prediction, which effectively reduces the overload probability of the host. In addition, based
on the proposed multi-step prediction and affinity model, on the one hand, consider the long-term
relationship between the overloaded host and the VM when selecting migration VMs, which can
quickly and accurately eliminate the overload state of the host with the minimum migration cost, and
on the other hand, consider the long-term complementary relationship between the resources of the
placement host and the VM when selecting placement hosts, which can make full use of resources.
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3 Affinity Model Based on Multi-Step Prediction
3.1 System Framework

As shown in Fig. 1, the local monitor continuously monitors the resource utilization of VMs and
hosts. The resource predictor uses the monitoring data to perform prediction. The resource scheduler
obtains the current and future utilization of resources through the global monitor and calls the host
load detection module, migration VM selection module, and VM placement module to complete the
VM consolidation process. The host load detection module is used to determine whether a physical
host is overloaded or underloaded. If the physical host is overloaded, the resource scheduler calculates
the affinity value between the VM and the host using the migration VM selection module and selects
migration VMs. The VM placement module selects the most suitable host in the cluster for the
migration VMs.

Figure 1: The system framework

3.2 Resource Model

In a cloud data center, assume that the number of hosts is n and the collection of hosts is expressed
as H = {

h1, h2, · · · , hj, · · · , hn

}
, where each host has D-dimensional resources. The Cd

hj
is the capacity

configuration of resource d of host hj, where d ∈ {1, 2, · · · , D}. Similarly, in a cloud data center, assume
that the number of VMs is m and the collection of VMs is expressed as V = {v1, v2, · · · , vi, · · · , vm},
where each VM has D-dimensional resources. The Cd

vi
is the capacity configuration of resources d of

VM vi, where d ∈ {1, 2, · · · , D}.
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Further, for host hj, assume Ud
t (hj) is the utilization of resource d at moment t and as follows:

Ud
t

(
hj

) = 1
Cd

hj

∑
vi∈VM(hj)

Ud
t (vi) × Cd

vi
(1)

where Ud
t (vi) indicates the utilization of resource d at moment t for VM vi, and VM(hj) represents the

VM collection of host hj.

3.3 Resource Prediction Based on Improved LR

Assume that the last n utilization of resource d of host hj are Ud
(t+1)−n

(
hj

)
, . . . , Ud

t

(
hj

)
. This paper

uses the LR model to predict the next-moment resource utilization Ud
t+1(hj). Compared with other

existing models, LR has great advantages in time complexity [38]. Resource utilization prediction based
on the LR is defined as a linear prediction function, which can be expressed as Eq. (2).

Ud
t+1(hj) = β0 + β1Ud

t (hj) (2)

where β0 and β1 represent the regression coefficients estimated based on the latest n historical data
samples. The most commonly used method to estimate coefficients β0 and β1 is the least square method,
which minimizes the distance between the observed and predicted values to estimate the regression
coefficient, as shown in Eqs. (3) and (4).

β1 =
∑n

i (xi − x)(yi − y)∑n

i=1(xi − x)2
(3)

β0 = y − β1x (4)

where x ∈ {x1, x2, . . . , xn} and y ∈ {y1, y2, . . . , yn}, 〈x, y〉 represents the latest n observation samples of
resource d, x is the mean of x, and y is the mean of y.

Previous research has shown that the absolute error of the least square method is not the smallest
to solve the LR problem [39]. To improve the prediction accuracy, this study improves the above LR
based on the new LR (NLR) model [40]. The basic idea of the NLR is to assume the model to pass
through a straight line and a mean point. All sample points are required to be evenly distributed above
and below the line. Subtract the slope of the assumed straight line from the slope connected by the
sample point and intercept, and make their sum equal to 0. In this way, the slope and intercept can be
solved by the simultaneous equation, namely coefficients β0 and β1. According to the new model, the
regression coefficient is calculated by Eqs. (5)–(8). As above, x ∈ {x1, x2, . . . , xn} and y ∈ {y1, y2, . . . , yn},
〈x, y〉 represents the latest n observation samples of resource d, x is the mean of x, and y is the mean
of y.

β1 =
∑n

i=1
(yi−β0)

xi

n
(5)

y = β0 + β1x (6)

There is a common factor β0 in Eqs. (5) and (6), making Eqs. (5) and (6) simultaneous equations.
Then, the coefficients β0 and β1 are calculated as follows:

β1 =
∑n

i=1
yi
xi

− y
∑n

i=1
1
xi

n − x
∑n

i=1
1
xi

(7)

β0 = y − β1x (8)
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3.4 Multi-Step Prediction Based on Improved LR

The proposed multi-step prediction (MP) aims to predict the long-term usage of resource d in
the future period K ∈ N. MP can predict the usage of the kth step of resource d in advance, where
k ∈ {1, 2, . . . , K} represents the MP prediction step length. Namely, the MP predicts the utilization
Ud

t+k(hj) of the kth step based on the current utilization Ud
t (hj) of resource d. Specifically, the improved

LR algorithm is employed to achieve the next k steps prediction values Ud
t+1

(
hj

)
, Ud

t+2

(
hj

)
, . . . , Ud

t+k(hj)

by iteration. That is, based on the value Ud
t (hj) at time t, NLR is used to calculate the predicted value

Ud
t+1

(
hj

)
at time t + 1, which is used as the observation sample at time t + 2 to predict Ud

t+2

(
hj

)
. In

this way, the result of each prediction is used as the observation sample at the next time for iterative
prediction to obtain multiple predicted values, which are calculated as follows.

Ud
t+1

(
hj

) = β1
0+β1

1U
d
t

(
hj

)
, β1

1 =
∑n

i=1
yi
xi

− y
∑n

i=1
1
xi

n − x
∑n

i=1
1
xi

, β1
0 = y − β1

1 x (9)

Ud
t+2

(
hj

) = β2
0+β2

1U
d
t+1

(
hj

)
, β2

1 =
∑n+1

i=2
yi
xi

− y
∑n+1

i=2
1
xi

n − x
∑n+1

i=2
1
xi

, β2
0 = y − β2

1 x (10)

Ud
t+k

(
hj

) = βk
0+βk

1U
d
t+k−1

(
hj

)
, βk

1 =
∑n+k−1

i=k
yi
xi

− y
∑n+k−1

i=k
1
xi

n − x
∑n+k−1

i=k
1
xi

, βk
0 = y − βk

1 x (11)

where t represents the current time, t + k represents the kth time point in the future, and n represents
the number of the latest observed samples at time t. When predicting the utilization Ud

t+k(hj) at time
t + k, the predicted value Ud

t+k−1(hj) at time t + k − 1 is taken as the observation sample, namely,
xn+k = Ud

t+k−2

(
hj

)
and yn+k = Ud

t+k−1(hj). Assume that x is the mean of x ∈ {xk, xk+1, . . . , xk+n}, y is the
mean of y ∈ {yk, yk+1, . . . , yk+n}, and 〈x, y〉 represents the latest n observation samples of resource d.

The MP algorithm is also applicable to the VM resources prediction. Thus, the next k steps
prediction value Ud

t+1(vi), Ud
t+2(vi), . . . , Ud

t+k(vi) of VM vi can be obtained by the MP algorithm.

3.5 Affinity Model Based on Multi-Step Prediction

Since multiple VMs are usually running on a host, VMs with different requirements share and
compete with each other for the host’s resources. Therefore, each VM has a different effect on host
overloading. To determine the key resources that cause host overload and eliminate host overload
rapidly and effectively, this section proposes an affinity model by quantifying the relationship between
the resources of VMs and hosts.

Assume that at time t, the multi-step prediction values of resource d of VM vi and host hj

in the future period obtained by the MP are Pd
vi

= {Ud
t+1 (vi) , Ud

t+2 (vi) , . . . , Ud
t+K(vi)} and Pd

hj
=

{Ud
t+1

(
hj

)
, Ud

t+2

(
hj

)
, . . . , Ud

t+K(hj)}, respectively. So, ϕd
vihj

can be expressed as Eq. (12).

ϕd
vihj

=
cort(Pd

vi
,Pd

hj
)

dis(Pd
vi
,Pd

hj
)

(12)

cort
(

Pd
vi
, Pd

hi

)
=

∑K−1

δk=1(U
d
t+1+δk(vi) − Ud

t+δk(vi)) · (Ud
t+1+δk(hj) − Ud

t+δk(hj))√∑K−1

δk=1(U
d
t+1+δk(vi) − Ud

t+δk(vi))2 ·
√∑K−1

δk=1(U
d
t+1+δk(hj) − Ud

t+δk(hj))2

(13)

dis(Pd
vi
, Pd

hj
) =

∑K

δk

∣∣Ud
t+δk(vi) − Ud

t+δk(hj)
∣∣ (14)
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where cort(Pd
vi
, Pd

hj
) is the first-order correlation coefficient, indicating the similarity of changing trends

of Pd
vi

and Pd
hj

in the future period K, and the larger its value is, the more similar the changing trends
are; dis(Pd

vi
, Pd

hj
) represents the euclidean distance between Pd

vi
and Pd

hj
in the future period K, and the

smaller its value is, the closer the resource usage in the future period is.

It should be noted that the larger the value of ϕd
vihj

is, the closer the changing trends and usage of
resources d of VM vi and host hj in the future period K are. Therefore, the affinity ϕvihj between VM
vi and host hj can be calculated from ϕd

vihj
, that is, the sum of the affinity values of all resources, as

follows:

ϕvihj =
∑D

d=1
ϕd

vihj
(15)

When selecting migration VMs from overloaded hosts, selecting the VM with the largest affinity
value can rapidly and effectively reduce the overload degree of the host. The value of ϕvihj is calculated
based on the predicted value of resources in the future period to prevent the host from being overloaded
in the future period.

4 VM Consolidation Based on Multi-Step Prediction and Affinity-Aware
4.1 Host Load Detection Based on Multi-Step Prediction (MP-HLD)

The MP-HLD pseudo-code is given in algorithm 1. In the MP-HLD algorithm, a data center’s
host set H = {

h1, h2, · · · , hj, · · · , hn

}
is divided into three types: overload set Ho, normal-load set Hn,

and underload set Hu. Assume that the maximum and minimum utilization thresholds of resource d
on a host are denoted by Thrd

max and Thrd
min, respectively, and k ∈ {1, 2, . . . , K} is the prediction step

length. Then, for host hj, if the resource d satisfies the following conditions, the host hj is classified as
Ho:

(1) The utilization is larger than Thrd
max for both the current and future periods; namely, Ud

t (hj) >

Thrd
max and Ud

t+k(hj) > Thrd
max;

(2) The current utilization is normal, but the utilization in the future period is larger than Thrd
max;

namely Ud
t (hj) ≤ Thrd

max and Ud
t+k(hj) > Thrd

max.

Accordingly, a host hj is classified as Hu when it meets the following criteria:

(1) The utilization is less than Thrd
min for both the current and future periods; namely Ud

t (hj) <

Thrd
min and Ud

t+k(hj) < Thrd
min;

(2) The current utilization is normal, but the utilization in the future period is less than Thrd
min;

namely Ud
t (hj) ≥ Thrd

min and Ud
t+k(hj) < Thrd

min.

The MP-HLD method detects the load status of hosts in advance based on the current and future
period resource utilization. For overloaded hosts, it can reduce the SLAv and improve the QoS, and
for underloaded hosts, it can reduce the number of running host and energy consumption.

Algorithm 1. The MP-HLD method
1. Input: H, Thrd

max, Thrd
min, Ud

t (h), Ud
t+k(h)

2. Output: Ho, Hn, Hu

3. for hj in H do
4. for ∀d in D do
5. for ∀k in K do

(Continued)
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Algorithm 1. Continued
6. if Ud

t (hj) > Thrd
max && Ud

t+k(hj) > Thrd
max then

7. Ho ← hj;
8. else if Ud

t (hj) ≤ Thrd
max && Ud

t+k(hj) > Thrd
max then

9. Ho ← hj;
10. else if Ud

t (hj) < Thrd
min && Ud

t+k(hj) < Thrd
min then

11. Hu ← hj;
12. else if Ud

t (hj) ≥ Thrd
min && Ud

t+k(hj) < Thrd
min then

13. Hu ← hj;
14. else
15. Hn ← hj;
16. End if
17. End for
18. End for
19. End for
20. return Ho, Hn, Hu

4.2 Affinity-Aware VM Selection Algorithm (AF-VMS)

For overloaded hosts, any type of resource overload can become a bottleneck of the host’s
performance. Therefore, potential VMs need to be migrated from overloaded hosts to reduce the load.
When selecting migration VMs, if the policy is unreasonable, it will lead to excessive VM migration,
which increases energy consumption and affects the VM performance. The pseudo-code of AF-VMS
is given in algorithm 2. For host hj in the overloaded host set Ho, the affinity value ϕvihj between the
host hj and VM vi running on it is calculated, and the VMs are sorted in descending order based on
their ϕvihj ; then, migration VM is selected in order until host hj returns to the normal load. For the
underloaded host set Hu, all VMs in Hu will be migrated, and then the hosts will be shut down. Finally,
the migration VM list migrateVmList is returned.

Algorithm 2. The AF-VMS algorithm
1. Input: overloaded hosts set Ho, underloaded hosts Hu

2. Output: a VM list for migration migrateVmList
3. migrateVmList ← NULL;
4. for hj in Ho do
5. mapList ← NULL;
6. for vi in VM(hj) do
7. ϕvihj = ComputeAffinity(vi, hj); // using Eq. (15).
8. mapList ← (ϕvihj , vi);
9. End for
10. descending sort for mapList;
11. for vi in mapList do
12. VM(hj).remove(vi);
13. migrateVmList.add(vi);
14. Compute Ud

t (hj) and Ud
t+k(hj); // use the MP to compute Ud

t+k(hj)

15. until Ud
t (hj) < Thrd

max && Ud
t+k(hj) < Thrd

max;
(Continued)



90 CMC, 2023, vol.76, no.1

Algorithm 2. Continued
16. End for
17. End for
18. for hj in Hu do
19. for vi in VM(hj) do
20. migrateVmList.add(vi);
21. End for
22. End for
23. return migrateVmList

4.3 Affinity-Aware VM Placement Algorithm (AF-VMP)

Next, the AF-VMP is introduced in detail and the pseudo-code of AF-VMP is given in
algorithm 3. The main objective of the AF-VMP algorithm is to select a host with the maximum
affinity from the Hn as the placement host for migration VMs. The calculation method of the affinity
value in this algorithm is different from that in the AF-VMS algorithm. In order to maximize the
usage of resources and ensure the minimum number of running hosts in a cloud data center, in the
AF-VMP algorithm, the affinity value between the VM and host is calculated based on the remaining
resources of a host, as follows:
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where P
d

hj
= 1 − Pd

hj
and U

d

t+δk(hj) = 1 − Ud
t+δk(hj) indicate the remaining value of resource d of host hj.

In addition to the consideration of the affinity value when selecting a placement host, after VM
vi is migrated to host hj, the host’s resource usage cannot exceed its configured capacity Cd

hj
, and the

host cannot be overloaded after placing the migration VM. Therefore, the following conditions must
be met.

(1) After a VM is migrated to a host, the resource requirements of all VMs running on the host
cannot exceed the configured capacity of the host, namely:

Cd
hj

>
∑

v∈VM(hj)
Cd

v + Cd
vi
, ∀d ∈ {1, 2, · · · , D} (19)

(2) After a VM is migrated to a host, the resource utilization cannot exceed the maximum threshold
in the future period, namely:

Ud
t+k(hj) + Ud

t+k(v) × Cd
v

Cd
h

< Thrd
max, ∀d ∈ {1, 2, · · · , D} and ∀k ∈ {1, 2, . . . , K} (20)
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(3) The affinity value is maximal between migration VM vi and placement host hj. The affinity
value is calculated as follows:

ϕvihj =
∑D

d=1
ϕ

d
vihj

(21)

Algorithm 3. The AF-VMP algorithm
1. Input: VMs to be migrated migrateVmList,

resource configuration of hj Cd
hj

, d ∈ {1, 2, · · · , D},
resource demand of VM vi Cd

vi
, d ∈ {1, 2, · · · , D},

prediction value of the migrated VM and placed host Ud
t+k (vi) , Ud

t+k (hi) , k ∈ {1, 2, . . . , K},
normal-load host set Hn.

2. Output: X -mapping matrix between VMs to be migrated and target hosts
3. for vi in migrateVmList do
4. for hj in Hn do
5. flag = true; ϕvihj_min = ∞;
6. // testing resource capacity
7. for ∀d in D do
8. if Cd

hj
≤ ∑

v∈VM(hj) Cd
v + Cd

vi
then

9. flag = false;
10. End if
11. End for
12. // testing resource overload
13. for ∀d in D do
14. for ∀k in K do

15. if Ud
t+k(hj) + Ud

t+k(vi) × Cd
vi

Cd
hj

≥ Thrd
max then

16. flag = false;
17. End if
18. End for
19. End for
20. // select the target host based on the affinity value
21. if (flag) then
22. ϕvihj = ComputeAffinity(vi, hj); // using Eq. (21)
23. if ϕvihj < ϕvihj_min then
24. ϕvihj_min = ϕvihj ;
25. xij = (vi, hj);
26. End if
27. End if
28. End for
29. X ← xij

30. End for
31. return X
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4.4 MPaAF-VMC Algorithm

The detailed process of MPaAF-VMC is shown in algorithm 4. The prediction values Ud
t+k(hj)

and Ud
t+k(vi) of the host and VM are obtained by the MP method (line 3). According to the thresholds

Thrd
max and Thrd

min, the hosts are divided into three types (i.e., overloaded hosts Ho, normal-load hosts Hn

and underloaded hosts Hu) using the MP-HLD method (line 4). Then, based on the proposed affinity
model, the algorithm selects migration VMs (line 5) and placement hosts (lines 6–16). When selecting
a placement host, the normal-load host should be selected first (lines 6–8), if no suitable host is found,
the underloaded host is selected (lines 9–13), and if also no suitable host can be found, a new host is
activated (lines 14–16), which can further reduce the number of running hosts.

Algorithm 4. The MPaAF-VMC algorithm
1. Input: Host set H, VM set V
2. Output: X -mapping matrix between VMs to be migrated and target hosts
3. (Ud

t+k(vi), Ud
t+k(hj)) = MP(H), k ∈ {1, 2, . . . , K}

4. (Ho, Hn, Hu) = MP-HLD (H, Ud
t+k(vi), Ud

t+k(hj))
5. migrateVmList = AF-VMS(Ho, Hu, Ud

t+k(vi), Ud
t+k(hj)), k ∈ {1, 2, . . . , K}

6. for hj in Hn do
7. X = AF-VMP(migrateVmList,Ud

t+k(vi), Ud
t+k(hj))

8. End for
9. if X does not change then
10. for hj in Hu do
11. X = AF-VMP(migrateVmList,Ud

t+k(vi), Ud
t+k(hj))

12. End for
13. End if
14. if X does not change then
15. X = activate a new host for migration VM
16. End if
17. return X

5 Experimental Evaluation
5.1 Experimental Setup

The performance evaluation of the VM consolidation algorithm should be performed on a large-
scale cloud data center infrastructure, but it is difficult to perform and repeat experiments in an
actual data center to evaluate the proposed algorithm. Therefore, CloudSim [25] simulator was used to
evaluate the proposed algorithm. CloudSim is a widely used cloud computing environment simulation
software, which can build a virtualized environment and simulate various resources of the cloud data
center.

The cloud data center simulated in the experiment included two types of physical hosts HP
ProLiant G4 and G5. Detailed information on the host configuration is given in Tables 1, and 2 shows
their power consumption characteristics. Table 3 shows the four types of Amazon EC2 VMs used in
the experiment [11].
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Table 1: The experimental host configuration

Host type CPU type Frequency (GHz) Core RAM (GB)

HP ProLiant G4 Inter Xeon 3040 1.86 2 4
HP ProLiant G5 Inter Xeon 3075 2.66 2 4

Table 2: The experimental host power consumption at different load levels (W)

Host 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

HP G4 86 89.4 92.6 96 99.5 102 106 108 112 114 117
HP G5 93.7 97 101 105 110 116 121 125 129 133 135

Table 3: The experimental VM configuration information

Type CPU frequency (MIPS) RAM (GB)

High-CPU medium instance 2,500 0.85
Extra large instance 2,000 3.75
Small instance 1,000 1.7
Micro instance 500 0.613

5.2 Performance Metrics

This paper evaluates the performance of the proposed algorithm using several main evaluation
metrics of VM consolidation, namely energy consumption, migration cost, and SLAv.

Energy consumption: In this study, it is considered that the energy consumption of a cloud data
center is generated by running hosts. Thus, for the same number of VMs, the fewer hosts there are,
the lower the energy consumption is. Research has shown that the energy consumption of a host
depends on the CPU, memory, network, and storage devices, and it is directly proportional to the
CPU utilization [41]. Therefore, CPU utilization is usually used to express the relationship between
host energy consumption and resource utilization. In this experiment, the host energy consumption
was measured based on the real power consumption data provided by the SPECpower Benchmark
results. The energy consumption of HP G4 and G5 servers under different load levels is shown in
Table 2.

Migration cost: The performance of the VM will be degraded during the migration, which may
lead to the SLAv. Related research [11] has shown that the average performance reduction during the
VM migration can be evaluated as 10% of CPU utilization, which is used as an evaluation metric of
migration costs in this study. In addition, the number of VM migrations is also used as an evaluation
metric of migration costs.

SLA violations: SLA is a conformance agreement between the subscriber and the cloud service
provider on services, which is an important metric to comprehensively measure the QoS. SLAv [11]
can be measured in two independent aspects: SLA violations due to host overload (SLAVO) and
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SLA violations due to VM migration (SLAVM). Therefore, the comprehensive SLAv is calculated
as follows:

SLAv = SLAVO × SLAVM (22)

where SLAVO is the duration of the host overload, which is the percentage of time that the host’s
resource utilization is close to 100%. SLAVM represents the performance reduction caused by VM
migration. Eqs. (23) and (24) are the calculation method of SLAVO and SLAVM, respectively.

SLAVO = 1
N

∑N

j=1

Thj

Taj

(23)

SLAVM = 1
M

∑M

i=1

Cvi

Cai

(24)

In Eq. (23), Taj indicates the total running time of host hj, Thj represents the duration during which
the resource usage of host hj approaches 100%, and N represents the number of hosts. In Eq. (24), Cai

represents the total CPU requirement of VM vi, Cvi represents the unsatisfied resource request capacity
caused by VM migration, and M represents the number of VMs. According to research [11], SLAVM
can be calculated as 10% of CPU utilization.

5.3 Workload Data

This paper evaluates the effectiveness of the proposed methods based on two real-world workload
datasets.

PlanetLab Data [42]: PlanetLab collected data from more than 1,000 VMs at more than 500
locations worldwide and tracked the CPU usage every 5 min. During March and April 2011, from
the workload traces, we randomly selected 10 days of data, whose statistical characteristics are given
in Table 4, showing that the average CPU utilization was much below 50%.

Table 4: PlanetLab data statistics

Date Number of VMs Mean (%) St. dev. (%) Median (%)

03/03/2011 1,052 12.31 17.09 15
06/03/2011 898 11.44 16.83 13
09/03/2011 1,061 10.70 15.57 13
22/03/2011 1,516 9.26 12.78 12
25/03/2011 1,078 10.56 14.14 14
03/04/2011 1,463 12.39 16.55 17
09/04/2011 1,358 11.12 15.09 15
11/04/2011 1,233 11.56 15.07 16
12/04/2011 1,054 11.54 15.15 16
20/04/2011 1,033 10.43 15.21 12

Google Cluster Data (GCD) [43]: GCD tracked the usage of multiple resources for approximately
a month in May 2011. Table 5 shows the statistical characteristics of critical resources for 1,600
randomly selected VMs.
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Table 5: The GCD statistics

Resource Number of VMs Mean (%) St. dev. (%) Median (%)

CPU 1,600 21.23 12.78 18
Memory 1,600 18.57 15.83 13

5.4 Performance Evaluation
5.4.1 Multi-Step Prediction Performance

The GCD was used to evaluate the performance of the proposed MP scheme. The host resource
utilization data were collected periodically by capturing the CPU and memory consumed by all tasks
when the GCD workload was running. The collected data samples were divided into training and
validation datasets. For observation data of a length n, the ratio of training to validation data was 3:2.
The mean absolute percentage error (MAPE) and the root mean square error (RMSE) were used to
evaluate the accuracy of the prediction model.

The prediction performance of MP for the six-step prediction (corresponding to the predicted
value at 30 min) is presented in Fig. 2. Experimental results showed that the predicted value of the MP
was close to the real value.

Figure 2: Comparison of the six-step prediction of CPU and memory. (a) CPU. (b) Memory

The results of the multi-step prediction are shown in Fig. 3, which indicates that the MAPE and
RMSE values were the smallest for one-step prediction. Then, as the step length increases, the MAPE
and RMSE values gradually increased because the error of multi-step prediction accumulated as the
step length increases, resulting in a decline in the prediction accuracy. However, the maximum increase
in the MAPE value for the CPU and memory was only 0.041 and 0.019, respectively. Therefore,
the error values of one- and twelve-step predictions were not very different. This result proved the
correctness of the MP algorithm. In other experiments, this paper set the prediction step length to six
to ensure the accuracy of the prediction.

5.4.2 Performance of MP-HLD

The experiment was conducted based on cloud data centers with 100 to 1500 hosts and used the
PlanetLab and GCD workloads data to perform VM consolidation every 5 min. We recorded 24 h of
data as experimental results. The static detection method and dynamic detection method were used as
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the benchmark for comparison. For using the static threshold to detect host load (THR-HLD), the
host overload threshold was set to 80%, while for using the dynamic threshold to detect host load (LR-
HLD), the method of local regression (LR) was used to predict the host resource usage and determine
the host load state. The experimental analysis focused on the impact of MP-HLD, THR-HLD, and
LR-HLD on the number of overloaded, underloaded, and active hosts under different workloads and
cloud data center sizes. The test results are shown in Figs. 4–6.

Figure 3: Comparison of the multi-step prediction. (a) CPU prediction error. (b) memory prediction
error

Figure 4: Comparison of the number of overloaded hosts. (a) PlanetLab. (b) GCD

Figure 5: Comparison of the number of underloaded hosts. (a) PlanetLab. (b) GCD
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Figure 6: Comparison of the number of active hosts. (a) PlanetLab. (b) GCD

It can be seen from Figs. 4 and 5 that MP-HLD has the least number of hosts in overload and
underload host detection. For a data center with 1,500 nodes, compared with static and dynamic
threshold schemes, the number of overloaded hosts detected by MP-HLD reduced by 71.4% and
70.2%, respectively, and the number of underloaded hosts detected by MP-HLD reduced by 85.8%
and 82.6%, respectively, in PlanetLab workload tests. The static and dynamic threshold algorithms
determine the load status of a host only according to the current or short-term resource utilization.
Even if the host load fluctuates occasionally or changes in a short time, the host will be judged to be
overloaded or underloaded, which leads to misjudgment of the host load status, so more overloaded or
underloaded hosts are detected. MP-HLD uses multi-step prediction to predict the host resource usage
in the future period. When detecting the host load state, it considers the current and future period of
resource usage, which effectively reduces the misjudgment caused by load changes through long-term
forecasting of resource usage.

Fig. 6 shows that MP-HLD requires the least number of active hosts. Based on the above analysis,
it can be seen that THR-HLD and LR-HLD methods do not fully consider the long-term dynamic
changes of cloud data center resources in the future period, so they detect more underloaded or
overloaded hosts. During every consolidation, more overloaded and underloaded hosts lead to more
VM migrations, and more migration VMs need to activate more hosts to place these VMs.

5.4.3 VM Selection Performance

This section evaluates the performance of the AF-VMS. In addition to using the AF-VMS
method, several widely used VM selection algorithms proposed in [25] were used for comparison,
namely, the MU, MMT, and MC algorithms. The experiment performed VM consolidation every
5 min using PlanetLab and GCD workloads, and the data over 24 h were used as the experimental
results. The comparisons of energy consumption and SLAv of different VM selection algorithms under
different VM numbers are presented in Figs. 7 and 8. As shown in Figs. 7 and 8, the AF-VMS method
had the lowest energy consumption and SLAv among all methods regardless of the number of VMs.

Next, the effects of the number of VM migrations and the average number of overloaded hosts per
consolidation were analyzed. As shown in Figs. 9 and 10, AF-VMS achieved better performance than
the other VM selection strategies. Fig. 9 shows that AF-VMS has the minimum number of migration
VMs, achieving reductions of 39.5% and 40.6% on PlanetLab and GCD, respectively, for the cluster
with 800 VMs compared to the suboptimal MC scheme. In addition, as presented in Fig. 10, the
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average number of overloaded hosts per consolidation was reduced by 29.2% and 23.3% on PlanetLab
and GCD, respectively, for the cluster with 800 VMs compared to the suboptimal MC scheme.

Figure 7: Comparison of energy consumption. (a) PlanetLab. (b) GCD

Figure 8: Comparison of SLAv. (a) PlanetLab data. (b) GCD

Figure 9: Comparison of the number of VM migrations. (a) PlanetLab data. (b) GCD
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Figure 10: Comparison of the average number of overloaded hosts. (a) PlanetLab. (b) GCD

The above performance improvement was mainly attributable to the affinity model based on the
multi-step prediction. The multi-step prediction could correctly predict the resource utilization of
the host and VM in the future period. Based on the predicted value, the affinity model calculated
the relationship between the VM and the overloaded host, which could accurately select a VM with
the greatest impact on the overloaded host. This is because the resource change trend of the selected
migration VM and the overloaded host was the closest in the future period, and the resource usage
of the selected migration VM and the overloaded host was also the closest in the future period.
Consequently, the overloaded host could accurately and rapidly recover to normal load with the
minimum number of VM migrations, and it could avoid being overloaded in the future period. This
effectively reduces the number of VM migrations and the probability of host overload.

5.4.4 VM Placement Performance

Next, the performance of AF-VMP was evaluated. The host overload detection algorithms THR-
HLD, LR-HLD, MP-HLD, the VM selection algorithms MU, MMT, MC, and the widely used
heuristic VM placement algorithms FF and PABFD constituted VM consolidation schemes as the
comparison benchmarks.

The comparison results of energy consumption, SLAv, and VM migration under different VM
selection algorithms and VM placement algorithms are shown in Figs. 11–13. Compared with other
schemes, the scheme proposed in this paper significantly reduced power consumption and SLAv with
minimal migration cost.

As shown in Fig. 11, based on the proposed MP, AF-VMS, and AF-VMP VM consolidation
scheme, for the data center with 800 hosts and 1000 VMs, the energy consumption per day using
the PlanetLab and GCD was 117 kWh and 163 kWh, respectively, and compared with the other
algorithms, the maximum reductions were 44% and 42%, respectively. This was because when a
VM was relocated, the proposed affinity model considered the complementarity of resources, which
maximizes the usage of the host resources. Therefore, the number of running hosts was effectively
reduced, thus reducing energy consumption.
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Figure 11: Comparison of energy consumption. (a) PlanetLab. (b) GCD

Figure 12: Comparison of SLAv. (a) PlanetLab. (b) GCD

Figure 13: Comparison of the number of VM migrations. (a) PlanetLab. (b) GCD

Fig. 12 shows that the proposed algorithm had the minimum SLAv, which proved that it achieved
a good performance in terms of QoS assurance. The affinity model considered the VM impact on
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the overloaded host when selecting migration VMs, which could restore overloaded hosts to normal-
load hosts with the fastest speed and the smallest migration cost. In addition, AF-VMS and AF-VMP
used the resource utilization prediction in the future period as a measurement factor, which effectively
reduced the probability of a host being overloaded again in the future period, thus effectively reducing
the SLAv. However, the FF algorithm considered only whether the host had sufficient resources when
selecting placement hosts, and ignored the effects of SLAv and energy consumption. Therefore, the
SLAv generated by the FF algorithm was the highest among all algorithms. The PABFD algorithm
mainly focused on the impact on energy consumption and did not consider SLAv.

Similarly, the proposed algorithm had the best performance in terms of migration cost compared
with other schemes. As shown in Fig. 13, the FF algorithm migrated the most VMs among all
algorithms. This is because the FF algorithm considered only whether the host had sufficient resources
at the current moment when migrating VMs, and ignored both the fact of whether the host would be
overloaded in the future period and the future dynamic changing trend of host resources. However,
based on the affinity model, the proposed algorithm fully considered the impact of these two factors
and selected the migration VM that had the greatest impact on the overloaded host which reduced
the number of VM migrations. In addition, based on the affinity model, when selecting a host for
VM placement, the proposed algorithm not only considered the complementary characteristics of the
resources between VM and host but also ensured that the host’s resources were within a normal load
range at the current and future periods, thus effectively avoiding the occurrence of host overload and
reducing the VM migration number.

5.4.5 MPaAF-VMC Performance

Considering the diversity of cloud computing environments, different cluster scales were used
to further test the comprehensive performance of the proposed comprehensive algorithm MPaAF-
VMC. Table 6 shows the cluster scales. MPaAF-VMC was compared with the LR + MC + PABFD
and LR + MC + FF algorithms. In addition, the TVRSM algorithm [44] was used as a comparison
benchmark. The TVRSM selected migration VMs from overloaded hosts based on the multiple
correlation coefficient (MCC) and selected placement hosts based on the minimum power increasing
strategy (MPIS) that selected the host with the smallest power increase.

Table 6: Cluster scale configuration

Scale Number of servers Number of VMs

Scale-1 100 200
Scale-2 500 800
Scale-3 900 1,200

The performance of different schemes on PlanetLab for various cluster scales is presented in
Table 7. The results show that the proposed algorithm has the best performance regarding all metrics
among all algorithms. As the cluster scale increased, the energy consumption of each solution
increased, but the proposed algorithm had the least energy consumption, VM migrations, and
overloaded host number among all methods. The performance improvement was due to the long-
term optimization considerations of resources based on the affinity model, which guaranteed long-
term optimization and full utilization of resources. In contrast, the other algorithms considered only
the current resource utilization, ignoring dynamic changes and the long-term relevance of cloud
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resources when selecting migration VMs and placement hosts, so they could not guarantee the long-
term optimal utilization of resources, which increased energy consumption. Although the TVRSM
algorithm selected migration VM based on the MCC strategy that considered the resource correlation
between the host and VM, it ignored the long-term correlation of resource usage, which led to more
VM migrations and overloaded or underload hosts detection.

Table 7: Performance of various schemes under different cluster scale scenarios

Scale Algorithm Energy
consumption
(kWh)

SLAv (%) Migration
number

Avg. overloaded
host number

Scale-1 LR + MC + PABFD
LR + MC + FF
TVRSM
MPaAF-VMC

74
61
53
45

1.8
4.4
1.2
0.36

3,186
4,687
2,518
1,282

7
11
9
2

Scale-2 LR + MC + PABFD
LR + MC+FF
TVRSM
MPaAF-VMC

154
146
123
96

2.6
5.2
1.9
0.49

13,762
19,021
9,874
5,965

24
31
19
10

Scale-3 LR + MC + PABFD
LR + MC + FF
TVRSM
MPaAF-VMC

216
189
167
135

3.5
6.3
2.4
0.62

19,747
28,148
14,493
9,126

35
49
28
17

6 Conclusions

To reduce the energy consumption and SLAv of a cloud data center, this paper proposes an
MPaAF-VMC algorithm. The MPaAF-VMC uses a multi-step prediction scheme based on the
improved LR prediction model to forecast resource demand in the future period. In addition, an
affinity model between the host and VM is developed based on the multi-step prediction result. During
the VM consolidation, based on the affinity model, for selecting migration VMs, the VM with the
maximum affinity value is selected from overloaded hosts, which not only effectively eliminates the
overload state of a host but also decreases the number of VM migrations and SLAv, and for selecting
placement hosts, the host with the maximum affinity value is selected for migration VMs, which
ensures that VMs are deployed on the minimum number of hosts to reduce energy consumption.
Finally, many simulation experiments are conducted using PlanetLab and GCD workload data, and
the results show that the performance of the MPaAF-VMC algorithm is significantly better than other
algorithms. However, as the prediction step length increases, the prediction error will increase, which
can be a limitation of this work. This is due to the accumulation of errors with the increase in prediction
step length.

With the development of big data and artificial intelligence, higher requirements are put forward
for cloud computing systems. In addition to energy consumption challenges, data processing faces
new challenges. In future work, during the VM consolidation, the affinity relationship between VMs
and between hosts could be analyzed to achieve better energy consumption optimization and data
processing performance. In addition, the accuracy of multi-step prediction and the prediction step
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length could be further explored to perceive potential risks as early as possible and plan resources to
meet the challenges.
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