
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited.

echT PressScience

DOI: 10.32604/cmc.2023.035911
Article

Dark Forest Algorithm: A Novel Metaheuristic Algorithm for Global
Optimization Problems

Dongyang Li1, Shiyu Du2,*, Yiming Zhang2 and Meiting Zhao3

1Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, 315000, China
2Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Materials Technology and Engineering,

Chinese Academy of Sciences, Ningbo, 315000, China
3School of Material and Chemical Engineering, Ningbo University, Ningbo, 315000, China

*Corresponding Author: Shiyu Du. Email: dushiyu@nimte.ac.cn
Received: 09 September 2022; Accepted: 30 December 2022

Abstract: Metaheuristic algorithms, as effective methods for solving opti-
mization problems, have recently attracted considerable attention in science
and engineering fields. They are popular and have broad applications owing
to their high efficiency and low complexity. These algorithms are generally
based on the behaviors observed in nature, physical sciences, or humans. This
study proposes a novel metaheuristic algorithm called dark forest algorithm
(DFA), which can yield improved optimization results for global optimiza-
tion problems. In DFA, the population is divided into four groups: highest
civilization, advanced civilization, normal civilization, and low civilization.
Each civilization has a unique way of iteration. To verify DFA’s capability,
the performance of DFA on 35 well-known benchmark functions is compared
with that of six other metaheuristic algorithms, including artificial bee colony
algorithm, firefly algorithm, grey wolf optimizer, harmony search algorithm,
grasshopper optimization algorithm, and whale optimization algorithm. The
results show that DFA provides solutions with improved efficiency for prob-
lems with low dimensions and outperforms most other algorithms when
solving high dimensional problems. DFA is applied to five engineering projects
to demonstrate its applicability. The results show that the performance of
DFA is competitive to that of current well-known metaheuristic algorithms.
Finally, potential upgrading routes for DFA are proposed as possible future
developments.

Keywords: Metaheuristic; algorithm; global optimization

1 Introduction

With the continuing development of modern industry, optimization strategies are becoming
increasingly essential; therefore, novel optimization algorithms need to be developed. To date, numer-
ous optimization algorithms have been proposed, with nature-inspired algorithms being some of the
most successful algorithms. Compared to traditional optimization methods, such as the gradient

https://www.techscience.com/journal/cmc
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2023.035911
https://www.techscience.com/doi/10.32604/cmc.2023.035911
mailto:dushiyu@nimte.ac.cn

2776 CMC, 2023, vol.75, no.2

descent and direct search methods [1,2], metaheuristic algorithms have the following advantages: 1)
Simplicity: The process and the procedural implementation of metaheuristic algorithms are often
relatively straightforward. 2) Flexibility: Metaheuristic algorithms can be applied to many different
fields. 3) Avoiding local optima: Metaheuristic algorithms aim to search beyond the local optima
for the global optima of the target solutions or to directly find global optima. 4) Free of derivatives:
Derivatives are generally expensive or difficult to evaluate within complex systems, and metaheuristic
algorithms usually do not employ gradients for optimization. 5) Fast Processing: Most metaheuristic
algorithms perform quick searches in the sample space to obtain a suitable solution.

Metaheuristic algorithms are often inspired by observations from natural phenomena. For
example, the ant colony optimization (ACO) algorithm is inspired by the foraging behavior of ants
[3]; the particle swarm optimization (PSO) algorithm mimics the predatory behavior of birds [4];
the genetic algorithm (GA) models the crossover variation of DNA [5]; the simulated annealing
algorithm simulates the annealing technology in materials physics [6]. Algorithm designs aim not to
mimic the behavior of an individual or population but rather to derive an algorithm to solve specific
problems. Thus, versatile and intelligent variants could be introduced into metaheuristic algorithms
to solve various optimization problems. In fact, metaheuristic algorithms are widely used in industrial
applications, including solar energy forecasting, demand and supply analysis optimization in food
manufacturing industry [7–9].

Most metaheuristic algorithms are characterized by their randomness, communication, explo-
ration, and exploitation. Randomness provides algorithms with the possibility of achieving superior
optimization solutions. Communication renders information exchange between individual solutions
and thereby enables their learning from each other to yield superior optimization solutions. Explo-
ration provides algorithms with a trail of new ideas or strategies, while exploitation allows algorithms
to adopt the techniques that have proven successful in the past [10].

In this study, a new algorithm called dark forest algorithm (DFA) is proposed based on the rule of
superiority and inferiority among natural civilizations and the universe’s dark forest law [11]. Then, the
performance of DFA is compared with that of other well-known metaheuristic algorithms according
to 35 benchmark functions and five engineering projects. The 35 benchmark functions comprise single-
peaked, multi-peaked, high-dimensional, and fixed-dimensional functions. The results show that DFA
can obtain qualified optimization results and it outperforms the compared algorithms in terms of
overall performance.

The rest of this paper is organized as follows. Section 2 introduces the literature related to the
development and applications of metaheuristic algorithms. Section 3 describes the mathematical
model of the proposed DFA and the workflow and pseudo-code of the algorithm. Section 4 compares
the performance of DFA with six other metaheuristic algorithms on 35 benchmark functions. Section
5 illustrates three engineering design problems using DFA with discussions on their outcomes. Finally,
Section 6 presents the conclusions and suggestions for future research.

2 Related Works

Many intricate and fascinating phenomena can be observed in nature that provide inspiration for
solving practical problems. The known metaheuristic algorithms can be classified into five categories
according to the sources of their inspiration: evolutionary algorithms, swarm intelligence algorithms,
physics-based algorithms, human-based algorithms, and other algorithms (Fig. 1).

CMC, 2023, vol.75, no.2 2777

Figure 1: Classification of metaheuristic algorithms

Evolutionary algorithms are based on natural evolution and are the first metaheuristic algorithms
proposed. They are the most commonly used. They are based on phenomena and developed theories
within biological evolution. Typical algorithms in this category include GA, evolutionary program-
ming [12], differential evolution algorithms [13], evolution strategy [14], flower pollination algorithm
[15], and harmony search algorithm (HS) [16]. Among them, GA is the earliest, best known, and one
of the most widely used evolutionary algorithms. To date, GA has solved many problems, such as
carpool service problems in cloud computing [17], image enhancement and segmentation [18], and
routing problems with lost sales [19].

Swarm intelligence algorithms are constructed by simulating group activities inspired by swarms
in nature, such as coenosis or social animals. The so-called group intelligence includes the behaviors
of simple individuals and the whole group, exhibiting a specific intelligent feature without centralized
control. Typical examples include ACO algorithm, PSO algorithm, artificial bee colony algorithm
(ABC) [20], artificial fish swarming algorithm [21], grey wolf optimizer (GWO) [22], firefly algorithm
(FA) [23], cuckoo search algorithm [24], chimp optimization algorithm [25], grasshopper optimization
algorithm (GOA) [26], slime mold algorithm [27], and whale optimization algorithm (WOA) [28].

Physics-based algorithms are inspired by the physics of matter, and they usually have a solid
theoretical basis. Some popular algorithms in this category are SA, central force optimization [29],
gravitational search algorithm [30], water cycle algorithm [31], atom search optimization [32], electro-
magnetic field optimization [33], Henry gas solubility optimization [34], and wind driven optimization
[35].

Human-based algorithms are designed based on human activities in the society. For example,
teaching-learning-based optimization (TLBO) is inspired by the interaction between a learner’s
learning and a teacher’s teaching [36]. TLBO simulates the traditional classroom teaching process.
The entire optimization process includes the teacher and learner sections. At the teacher level, each
student learns from the best individuals. During the learning section, each student randomly learns
from the other students. Examples of popular human-based algorithms are brain storm optimization
[37], imperialist competitive algorithm [38], cultural algorithm [39], coronavirus herd immunity
optimization [40], and team competition and cooperation optimization algorithm [41].

2778 CMC, 2023, vol.75, no.2

Some algorithms do not fall into any of the above categories but are inspired by other natural
phenomena, such as water drops algorithm [42], artificial ecosystem-based optimization [43], and
invasive weed colony optimization [44].

Although many metaheuristic algorithms already exist, new algorithms still need to be designed.
According to the No Free Lunch (NFL) theorem [45], no single metaheuristic algorithm can accurately
solve all optimization problems. In practice, some algorithms perform better than others in specific
situations, and many researchers are trying to find ways to improve existing metaheuristic algorithms
or develop new ones. This study proposes a novel algorithm, i.e., DFA. Rigorous experiments are
conducted to demonstrate DFA as a feasible metaheuristic algorithm that can be readily used in
engineering problems.

3 Dark Forest Algorithm
3.1 Inspiration

Civilizations in the universe survive under the dark forest law. According to the dark forest law,
a civilization once discovered will inevitably be attacked by other civilizations in the universe. The
universe’s evolution is endless and is always accompanied by the extinction of existing civilizations
and the birth of new ones. Civilizations plunder each other and cooperate, constantly moving toward
a better direction. Civilizations can be classified according to their level of development: highest,
advanced, normal, and low civilizations.

Each civilization has its own exploration strategy. The highest civilizations cannot learn from
others because no known civilizations are superior to them, and they usually move around during
exploration. The highest civilizations sometimes plunder other civilizations for their development. If
the highest civilization does not evolve, they remain unchanged. Advanced civilizations learn from the
highest civilizations and plunder the normal civilizations. Normal civilizations learn from the highest
and advanced civilizations, and they choose which civilizations to learn from based on the strengths
and weaknesses of the other civilizations and their distance. Finally, the low civilizations are subject
to elimination, at which point newly created civilizations enter the iterations.

3.2 Algorithm

This section describes the mathematical model, algorithmic workflow, and pseudo-code of
DFA. The general workflow of the algorithm is as follows: 1) randomly initializing the population
coordinates in the solution space; 2) classifying civilizations according to the adaptability of each
civilization coordinate; 3) iteratively updating all locations according to the corresponding civilization
level; and 4) separately performing a refined search for the highest civilization in the last few iterations.
Fig. 2 illustrates the flowchart.

CMC, 2023, vol.75, no.2 2779

Figure 2: Flowchart of the proposed DFA

3.2.1 Population Initialization

DFA is a population-based algorithm. Similar to other population-based metaheuristic algo-
rithms, it generates several uniformly distributed initial solutions in the search space at the beginning
as follows:

xj
i = xj

i,min + α · (xj
i,max − xj

i,min

)
(1)

Xi = [
x1

i , x2
i , . . . , xd

i

]
(2)

where xj
i is the initial value of the jth component of the ith solution, xj

i,min is the minimum value allowed
for the jth component of the candidate solution, xj

i,max is the maximum value allowed for the j th
component of the candidate solution, and α is a uniformly distributed random number in the range
of [0, 1]. These components form the corresponding initial solution Xi, and d is the dimension of
the solution. Xi corresponds to the degree of adaptation; f (Xi) is evaluated according to the fitness
function as follows:

f (Xi) = f
([

x1
i , x2

i , . . . , xd
i

])
(3)

All solutions are constructed into a matrix X :

2780 CMC, 2023, vol.75, no.2

X =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

X1

X2

...
Xi

...
Xn

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1
1 x2

1 . . . xj
1 . . . xd

1

x1
2 x2

2 . . . xj
2 . . . xd

2
...

...
...

...
...

...
x1

i x2
i . . . xj

i . . . xd
i

...
...

...
...

...
...

x1
n x2

n . . . xj
n . . . xd

n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

{
i = 1, 2, . . . , n
j = 1, 2, . . . , d

(4)

where n is the number of populations, i is an integer in the range of [1, n], and j is an integer in the
range of [1, d].

3.2.2 Civilization Location Update

After the initial population is generated, the population is sorted according to the fitness values
of each civilization. The top-ranked civilization is the highest civilization; the civilizations with
the top 3/10 of the population, except for the highest civilization, are the advanced civilizations.
The civilizations with ranking between 3/10 and 8/10 are defined as the normal civilizations, and
the remaining civilizations are defined as low civilizations. Different civilization types update their
coordinates in different ways.

Locations of the highest civilizations are updated as follows. The highest civilization has globally
optimal fitness, and its primary purpose of movement is to find coordinates with enhanced fitness.
During the iteration process, the highest civilization only changes its coordinates when it finds
improved fitness. The highest civilization moves randomly in 50% of the cases and takes reference
from the advanced civilization for the other 50% of the cases. The update formulas are as follows:

Xi,t+1 =
{

Xnew, f (Xnew) < f
(
Xi,t+1

)
Xi,t, otherwise

(5)

Xnew =
{

Xtry, p < 0.5
Xi,t + r · step · U , otherwise

(6)

X j
try =

{
X j

i,t, p < 0.5
X j

s,t, otherwise
(7)

step =
(

1 − t
Max_Iter

) 2t
Max_Iter

(8)

where t is the current index of iteration, and p and r are random numbers in the range of [0, 1]. U
is a randomly generated vector with the same dimension as Xi and elements in the range of [−1, 1],
and step is the step size that decreases with increasing number of iterations, allowing civilizations to
have exploration capability at the beginning and a more vital exploitation ability at the end. Xs,t is a
randomly selected advanced civilization, and Max_Iter is the maximum number of iterations.

Locations of the advanced civilizations are updated as follows. Advanced civilizations obtain
reference from normal civilizations for 20% of the cases. Since the highest civilization has better fitness
than the advanced civilization, advanced civilizations that move to the highest civilizations are more
likely to obtain superior results. Hence, the probability for advanced civilizations to move to the highest
civilization is set as 80%. Advanced civilizations use spiral location updates in most cases, similar to

CMC, 2023, vol.75, no.2 2781

the spiral update in WOA, but with variations. Mathematically, the update formulas are as follows:

Xi,t+1 =
{

Xtry, p < 0.2
Xi,t + D · ebl · cos (2π l) , otherwise

(9)

X j
try =

{
X j

i,tj
, p < 0.5

X j
c,t, otherwise

(10)

D = ∣∣X ∗ − Xi,t

∣∣ (11)

where b is a logarithmic spiral shape constant, l is a random number in the range of [−1, 1], Xc,t is a
randomly selected normal civilization, and X ∗ is the coordinate of a highest civilization.

Locations of normal civilizations are updated as follows. Normal civilizations also employ spiral
position update. The reference is a civilization coordinate obtained via linear ranking and roulette
selection, which may be either the highest civilization or an advanced civilization. In the selection
process, the probability of each civilization is jointly determined by its fitness and its distance from
the current normal civilization, with the weight ratio of fitness to distance length of 4:1. The update
formulas are

Xi,t+1 = Xi,t + D · ebl · cos (2π l) (12)

D = ∣∣Xm,t − Xi,t

∣∣ (13)

where Xm,t is a civilization coordinate obtained by linear ranking and roulette selection.

Locations of low civilizations are updated as follows. Due to the poor adaptation of the low
civilizations themselves, the coordinates of the low civilizations are reset for 50% of the cases. This
is reasonable as the primary responsibility of a low civilization is to maintain the population diversity
to ensure that it does not fall into a local optimum. A new coordinate is updated by mapping the
coordinate centroid of mass of all the highest and advanced civilizations for 50% of the cases. The
update formulas are

Xi,t+1 =
{

Xinit, p < 0.5
Xw + δ · (Xw − Xi,t

) · step, otherwise
(14)

Xw = 1
N

∑N

1
Xi (15)

where Xinit is a coordinate re-generated at random using Eq. (1), Xw is the generated centroid of mass
of the highest and advanced civilizations, δ is the mapping factor with values in the range of [0, 1], and
N is the sum of the number of highest and advanced civilizations.

After all civilization locations are updated, one refined search in the last ten iterations is performed
for the highest civilizations. The refined search is performed to update each component Xi,t+1 of the
coordinates of the highest civilization. At the beginning of an initial update vector β, the fitness of Xi,t+1

plus βi is calculated corresponding to Xnew. If no better fitness is obtained, this update is abandoned
and the minus value of βi is taken. If a better fitness is obtained, then βi is kept unchanged. If no better
result is obtained in two consecutive updates of βi, then βi is inverted and reduced by half. The refined
search process only updates the highest civilizations for better optimization results. The above stated
process can be represented as

2782 CMC, 2023, vol.75, no.2

Xi,t+1 =
{

Xnew, f (Xnew) < f
(
Xi,t+1

)
Xi,t, otherwise

(16)

X j
new = X j

i,t + (−1)
k · β

� k
2 �

i (17)

k =
{

k, f (xnew) < f
(
xi,t+1

)
(k + 1) mod2, otherwise

(18)

where β is the search radius typically in the range of [0, 1] and the value of k is initially 1.

3.3 Termination

The algorithm ends after a specified number of iterations is reached, with the coordinates recorded
by the highest civilization at the end being the optimal solution and the corresponding fitness being
the optimal fitness. The pseudo-code of DFA algorithm is presented in Table 1.

Table 1: DFA pseudo-code

Algorithm

Input: population Xi (i = 1, 2, . . . , n)

Output: the best solution Y best

1: procedure DFA
2: Initialize parameters b, δ, and β

3: Compute the fitness of each solution
4: while iter < Max number of iterations − 10 do
5: Ranking of solutions according to fitness
6: Update Y best if there is a better solution than previous best solution
7: for highest civilization do
8: Update the position by Eqs. (5)–(8)
9: end for
10: for each advanced civilization do
11: Update the position by Eqs. (9)–(11)
13: for each normal civilization do
14: Update the position by Eqs. (12), (13)
15: end for
16: for each low civilization do
17: Update the position by Eq. (1) and Eqs. (14), (15)
18: end for
19: Check if any search solution goes beyond the given search space and then adjust it
20: Compute the fitness of each solution
21: iter = iter + 1
22: end while

(Continued)

CMC, 2023, vol.75, no.2 2783

Table 1: Continued
Algorithm

23: Refine search of best solution by Eqs. (16)–(18)
24: return Y best

25: end procedure

4 Results and Discussion

In this section, the results of DFA on 35 benchmark functions are shown. Table 2 presents these
35 benchmark functions, and Fig. 3 displays the 3D representations of some benchmark functions.
Among them, F1–F6 are low-dimensional single-peaked functions; F7–F13 are low-dimensional
multi-peaked functions; F14–F20 are high-dimensional single-peaked functions; F21–F29 are high-
dimensional multi-peaked functions; and F30–F35 are fixed-dimensional functions. The performance
of DFA on these functions is compared with that of six well-known algorithms: ABC, FA, GWO, HS,
GOA, and WOA.

For the abovementioned metaheuristic algorithms, the same initialization process as DFA is
employed. To reduce the effect of randomness on the test results, all algorithms on the benchmark
function are executed in 30 independent runs with 500 iterations per run. The average values and
standard deviations are obtained after the evaluation of the algorithms’ performance.

4.1 Evaluation of Exploitation Capability

Benchmark functions F1–F6 are single-peaked functions since they have only one global opti-
mum. They are mainly used to assess the exploitation capability of metaheuristic algorithms. Table 3
shows the optimization results of DFA and other algorithms. The table shows that DFA yields better
optimization results than the other algorithms, indicating that DFA has the best exploitation capability.

Benchmark functions F7–F13 are multi-peaked functions that have many local optima. The mul-
timodal function can well detect the exploration ability of metaheuristic algorithms. Poor performing
metaheuristic algorithms can be easily trapped in the local optimal values in the function and thus will
not yield global optimization results. Table 4 shows that DFA yields optimal results for six benchmark
functions, proving that it has a good exploration capability.

2784 CMC, 2023, vol.75, no.2

T
ab

le
2:

T
he

be
nc

hm
ar

k
fu

nc
ti

on
s

in
th

e
st

ud
y

F
un

ct
io

n
na

m
e

E
qu

at
io

n
D

R
an

ge
f m

in

G
ol

ds
te

in
-P

ri
ce

F
1

=

⎡ ⎢ ⎢ ⎣1+
(x

1
+

x 2
+

1)
2

⎛ ⎜ ⎜ ⎝19
−

14
x 1

+
3x

2 1−
14

x 2
+

6x
1x

2
+

3x
2 2⎞ ⎟ ⎟ ⎠⎤ ⎥ ⎥ ⎦∗

⎡ ⎣ 30
+

(2
x 1

−
3x

2)
2

⎛ ⎝18
−

32
x 1

+
12

x2 1
+4

8x
2

−
36

x 1
x 2

+2
7x

2 2

⎞ ⎠⎤ ⎦
2

[−
2,

2]
3

B
ra

ni
n

F
2

=
(x 2

−
5.

1x
2 1

4π
2

+
5x

1

π
−

6) 2 +
10
(1

−
1 8π

) co
s (

x 1
)
+

10
2

x 1
[−

5,
10

]
x 2

[0
,1

5]
0.

39
78

87
35

7

B
oh

ac
he

vs
ky

1
F

3
=

x2 1
+

2x
2 2
−

0.
3

co
s (

3π
x 1

)
−

0.
4

co
s (

4π
x 2

)
+

0.
7

2
[−

50
,5

0]
0

E
as

om
F

4
=

−
co

s (
x 1

)
co

s (
x 2

)
ex

p
[−

(x
1

−
π

)2
−

(x
2

−
π

)2]
2

[−
10

,1
0]

−1

B
ea

le
F

5
=

(1
.5

−
x 1

+
x 1

x 2
)2

+
(2.

25
−

x 1
+

x 1
x2 2) 2

+
(2.

62
5

−
x 1

+
x 1

x3 2) 2
2

[−
4.

5,
4.

5]
0

B
ar

te
ls

C
on

n
F

6
=
∣ ∣ x2 1

+
x2 2

+
x 1

x 2
∣ ∣ +

| si
n

(x
1)

| +
| co

s (
x 2

)|
2

[−
50

0,
50

0]
1

Sh
ek

el
’s

F
ox

ho
le

s

F
7

=
(1 50

0
+

25 ∑ j=
1

1

j+
∑ 2 i=

1
(x i

−
a i

j) 6) −1

a i
j
=

⎡ ⎢ ⎢ ⎣−3
2

−3
2,−1

6
−3

2,
0 −3

2,
16 −3

2,−3
2

−1
6,−1

6
−1

6,

0 −1
6,

16 −1
6,

32 −1
6,−3

2
0

,−1
6

0
,..

.

..
.,32 32

⎤ ⎥ ⎥ ⎦
2

[−
65

.5
36

,6
5.

53
6]

0.
99

80
03

83
78

Si
x-

H
um

p
C

am
el

-B
ac

k
F

8
=

4x
2 1

−
2.

1x
4 1

+
1 3

x6 1
+

x 1
x 2

−
4x

2 2
+

4x
4 2

2
[−

5,
5]

−1
.0

31
62

84
53

M
ic

ha
le

w
ic

z
F

9
=

−
D ∑ i=

1
si

n
(x

i)
si

n2m

(ix
2 i

π

) ,m
=

10
2

[0
,π

]
−0

.8
01

30
34

10

(C
on

ti
nu

ed
)

CMC, 2023, vol.75, no.2 2785

T
ab

le
2:

C
on

ti
nu

ed
F

un
ct

io
n

na
m

e
E

qu
at

io
n

D
R

an
ge

f m
in

Sc
ha

ff
er

F
10

=
0.

5
+

si
n2
(√ x2 1

+
x2 2) −

0.
5

[1
+

0.
00

1
(x2 1

+
x2 2)] 2

2
[−

10
0,

10
0]

0

D
ro

p
W

av
e

F
11

=
−1

+
co

s(12
√ x2 1

+
x2 2)

0.
5
(x2 1

+
x2 2) +

2
2

[−
5.

12
,5

.1
2]

−1

Sh
ub

er
t

F
12

=
[5 ∑ i=

1
ic

os
(i

+
1)

x 1
+

i] ∗[5 ∑ i=
1

ic
os

(i
+

1)
x 2

+
i]

2
[−

10
,1

0]
−1

86
.7

30
9

B
ir

d
F

13
=

(x
1
−

x 2
)2

+
si

n
(x

1)
ex

p
([1

−
co

s (
x 2

)]
2)

+
co

s (
x 2

)
ex

p
([1

−
si

n
(x

1)
]2)

2
[−

2
π

,2
π

]
−1

06
.7

64
53

67

Sp
he

re
F

14
=

D ∑ i=
1

x2 i
30

[−
10

0,
10

0]
0

Sc
hw

ef
el

P
2.

22
F

15
=

D ∑ i=
1

| x i
| +

D ∏ i=
1

| x i
|

30
[−

10
,1

0]
0

R
os

en
br

oc
k

F
16

=
D

−1 ∑ i=
1

[10
0
(x i

+1
−

x2 i) 2 +
(x

i
−

1)
2]

30
[−

30
,3

0]
0

Q
ua

rt
ic

(D
e-

Jo
ng

)
F

17
=

D ∑ i=
1

(ix
4 i) +

ra
nd

om
[0

,1
)

30
[−

1.
28

,1
.2

8]
0

Sc
hw

ef
el

P
1.

2
F

18
=

D ∑ i=
1

(i ∑ j=
1

x j

) 2
30

[−
10

0,
10

0]
0

Z
ak

ha
ro

v
F

19
=

D ∑ i=
1

x2 i
+
(D ∑ i=

1
0.

5i
x i

) 2 +
(D ∑ i=

1
0.

5i
x i

) 4
30

[−
5,

10
]

0

E
lli

pt
ic

(E
lli

ps
oi

d)
F

20
=

D ∑ i=
1

(10
6)i−

1
D

−1
x2 i

30
[−

10
0,

10
0]

0

R
as

tr
ig

in
F

21
=

D ∑ i=
1

[x2 i
−

10
co

s (
2π

x i
)
+

10
]

30
[−

5.
12

,5
.1

2]
0

(C
on

ti
nu

ed
)

2786 CMC, 2023, vol.75, no.2

T
ab

le
2:

C
on

ti
nu

ed
F

un
ct

io
n

na
m

e
E

qu
at

io
n

D
R

an
ge

f m
in

G
ri

ew
an

k
F

22
=

1
40

00

D ∑ i=
1

x2 i
−

D ∏ i=
1

[co
s(x i √ i)] +

1
30

[−
60

0,
60

0]
0

A
lp

in
e

F
23

=
D ∑ i=

1
| x i

si
n

(x
i)

+
0.

1x
i|

30
[−

10
,1

0]
0

L
ev

y
an

d
M

on
ta

lv
o

1

F
24

=
π D

⎡ ⎢ ⎢ ⎢ ⎣10
si

n2
(π

y 1
)
+

D
−1 ∑ i=

1
(y

i
−

1)
2

∗[1
+

10
si

n2
(π

y i
+1
)]

+
(y

D
−

1)
2

⎤ ⎥ ⎥ ⎥ ⎦,

y i
=

1
+

1 4
(x

i
+

1)

30
[−

10
,1

0]
0

L
ev

y
an

d
M

on
ta

lv
o

2
F

25
=

0.
1

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩
si

n2
(3

π
x 1

)
+

D ∑ i=
1

(x
i
−

1)
2

∗[1
+

si
n2

(3
π

x i
+

1)
]

+
(x

D
−

1)
2
[1

+
si

n2
(2

π
x D

)]⎫ ⎪ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎪ ⎭
30

[−
5,

5]
0

X
in

-S
he

Y
an

g
6

F
26

=
[D ∑ i=

1
si

n2
(x

i)
−

ex
p

(−
D ∑ i=

1
x2 i)]

∗e
xp

(−
D ∑ i=

1
si

n2
√ | x i

|)
30

[−
10

,1
0]

−1

Sa
lo

m
on

F
27

=
1

−
co

s(2π

√ D ∑ i=
1

x2 i) +
0.

1√ D ∑ i=
1

x2 i
30

[−
10

0,
10

0]
0

Si
nu

so
id

al
F

28
=

−

⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩2.
5

D ∏ i=
1

si
n
(x i

−
π 6

)

+
D ∏ i=

1
si

n
[5
(x i

−
π 6

)]⎫ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎭
30

[0
,π

]
−3

.5

Sc
hw

ef
el

P
2.

26
F

29
=

−
D ∑ i=

1
x i

si
n
(√ | x i

|)
30

[−
50

0,
50

0]
−4

18
.9

82
88

D

(C
on

ti
nu

ed
)

CMC, 2023, vol.75, no.2 2787

T
ab

le
2:

C
on

ti
nu

ed
F

un
ct

io
n

na
m

e
E

qu
at

io
n

D
R

an
ge

f m
in

K
ow

al
ik

F
30

=
11 ∑ i=

1

[a i
−

x 1
(b2 i

+
b i

x 2
)

b2 i
+

b i
x 3

+
x 4

] 2

b
=
[4,

2,
1,

1 2
,1 4

,1 6
,1 8

,
1 10

,
1 12

,
1 14

,
1 16

]

a
=

[0
.1

95
7,

0.
19

47
,0

.1
73

5,
0.

16
00

,
0.

08
44

,0
.0

62
7,

0.
04

56
,0

.0
34

2,
0.

03
23

,0
.0

23
5,

0.
02

46
]

4
[−

5,
5]

0.
00

03
07

48
61

H
ar

tm
an

n
3

F
31

=
−

m ∑ i=
1

c i
ex

p

(−
n ∑ j=

1
a i

j
(x j

−
p i

j) 2) ,

m
=

4,
n

=
3,

a
=

⎡ ⎢ ⎢ ⎣3.
0

10
30

0.
1

10
35

3.
0

10
30

0.
1

10
35

⎤ ⎥ ⎥ ⎦,

c
=
[1.

0
1.

2
3.

0
3.

2] ,p
=

⎡ ⎢ ⎢ ⎣0.
36

89
0,

0.
11

70
,0

.2
67

3
0.

46
99

0,
0.

43
87

,0
.7

47
0

0.
10

91
0,

0.
87

32
,0

.5
54

7
0.

03
81

5,
0.

57
43

,0
.8

82
8⎤ ⎥ ⎥ ⎦

3
[0

,1
]

−3
.8

62
78

21
48

Sh
ek

el
7

F
32

=
−

m ∑ i=
1

1

c i
+
∑ D j

(x j
−

a i
j) 2,m

=
7,

a
=

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣4.
0,

4.
0,

4.
0,

4.
0

1.
0,

1.
0,

1.
0,

1.
0

8.
0,

8.
0,

8.
0,

8.
0

6.
0,

6.
0,

6.
0,

6.
0

3.
0,

7.
0,

3.
0,

7.
0

2.
0,

9.
0,

2.
0,

9.
0

5.
0,

5.
0,

3.
0,

3.
0⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦c

=
[0.

1,
0.

2,
0.

2,
0.

4,
0.

6]
4

[0
,1

0]
−1

0.
15

27

P
av

ia
ni

F
33

=
D ∑ i=

1

[ln
2
(x

i
−

2)
+

ln
2
(1

0
−

x i
)] −

(D ∏ i=
1

x i

) 0.2
10

[2
.0

01
,9

.9
99

]
−4

5.
77

84
68

4

(C
on

ti
nu

ed
)

2788 CMC, 2023, vol.75, no.2

T
ab

le
2:

C
on

ti
nu

ed
F

un
ct

io
n

na
m

e
E

qu
at

io
n

D
R

an
ge

f m
in

Po
w

el
l’s

Q
ua

rt
ic

F
34

=
(x

1
+

10
x 2

)2
+

5
(x

3
+

x 4
)2

+
(x

2
+

2x
3)

4
+

10
(x

1
+

10
x 4

)4
4

[−
10

,1
0]

0

C
ol

vi
lle

F
35

=
[1

00
(x

1
−

x 2
)]

2
+

(1
−

x 1
)2

+
&

90
(x 4

−
x2 3) 2

+
(1

−
x 3

)2
+

10
.1
[(x

2
−

1)
2
+

(x
4

−
1)

2

] +
19

.8
(x

2
−

1)
(x

4
−

1)
4

[−
10

,1
0]

0

CMC, 2023, vol.75, no.2 2789

Figure 3: 3D representations of some benchmark functions

Table 3: Optimization results of low-dimensional single-peaked functions

DFA ABC FA GWO HS GOA WOA

F1 Mean 3.00 3.016132 3.000004 3.000028 8.400001 3.00 3.00
Std. 1.30E−15 0.026696 7.94E−06 5.48E−05 11.16211 1.26E−12 5.11E−15

F2 Mean 0.397887 0.398291 0.397888 0.397889 0.397887 0.397887 0.397887
Std. 4.30E−16 5.59E−4 1.85E−06 5.42E−06 7.89E−10 2.77E−14 1.16E−15

F3 Mean 0.00 0.231584 2.37E−05 0.00 5.01E−05 2.36E−11 0.00
Std. 0.00 0.2265062 5.45E−05 0.00 7.89E−05 2.73E−11 0.00

F4 Mean −1.00 −0.99941 −1.00 −1.00 0.9667 −1.00 −1.00
Std. 0.00 1.20E−03 9.68E−07 1.29E−05 2.42E−01 2.63E−13 3.93E−17

(Continued)

2790 CMC, 2023, vol.75, no.2

Table 3: Continued
DFA ABC FA GWO HS GOA WOA

F5 Mean 0.00 0.00041 1.37E−07 0.101609 0.065531 0.127012 0.00
Std. 0.00 7.54E−04 3.05E−07 2.77E−01 2.38E−01 2.97E−01 0.00

F6 Mean 1.00 3.478734 4370.4147 1.00 1.116218 1.00 1.00
Std. 0.00 3.964094 6136.6486 0.00 1.13E−01 1.78E−06 7.85E−17

Table 4: Optimization results of low-dimensional multi-peaked functions

DFA ABC FA GWO HS GOA WOA

F7 Mean 0.998004 0.999009 0.998004 2.967961 0.998004 1.031138 1.527099
Std. 2.78E−17 2.57E−03 7.14E−07 2.918416 3.90E−11 2.41E−01 9.55E−01

F8 Mean −1.031628 −1.030659 −1.031628 −1.031628 −1.031628 −1.031628 −1.031628
Std. 5.81E−16 1.56E−03 894E−07 1.87E−08 1.44E−09 2.36E−13 4.68E−16

F9 Mean −1.801303 −1.800267 −1.801303 −1.801301 −1.801303 −1.755019 −1.715869
Std. 8.90E−16 1.47E−03 2.46E−06 6.03E−06 2.00E−10 2.15E−01 2.48E−01

F10 Mean 0.002456 0.003090 0.002456 0.002456 0.014192 0.002456 0.009323
Std. 0.00 4.60E−03 2.27E−08 2.69E−08 1.93E−02 4.66E−14 1.44E−02

F11 Mean −0.997875 −0.971810 −0.999995 −0.980874 −0.905380 −1.00 −0.970248
Std. 1.54E−02 2.80E−02 1.55E−05 2.96E−02 7.10E−02 1.35E−12 3.18E−02

F12 Mean −186.7309 −186.6006 −186.7124 −186.7198 −186.7309 −186.7309 −186.7309
Std. 2.13E−14 2.63E−01 4.44E−02 4.32E−02 1.48E−05 5.71E−10 3.26E−14

F13 Mean −106.7645 −106.7416 −106.7645 −106.7645 −106.7645 −104.1707 −106.1161
Std. 4.63E−14 2.99E−02 2.33E−04 1.73E−04 1.70E−07 7.06E+00 4.71E+00

Compared to F1–F6, benchmark functions F14–FF20 have increased dimensionality from 2 to 30
dimensions, and thus, their difficulty of exploitation is dramatically higher. Table 5 shows that DFA is
highly competitive with other metaheuristic algorithms and yields the best or second best optimization
results for most of the benchmark functions.

Table 5: Optimization results of high-dimensional single-peaked functions

DFA ABC FA GWO HS GOA WOA

F14 Mean 0.092286 473.31073 45712.240 3.06E−84 0.541061 6204.1981 3.01E−98
Std. 5.96E−02 6.12E+02 1.07E+04 1.69E−83 3.82E−01 3.59E+03 1.55E−97

F15 Mean 0.461559 2.681364 1.69E+12 1.54E−54 0.197023 69.192744 5.36E−61
Std. 3.67E−01 1.97E+00 8.32E+12 4.56E−54 1.07E−01 3.66E+01 3.63E−60

F16 Mean 289.0261 613.0397 2.40E+08 28.63934 333.6808 2665196.3 27.61793
Std. 2.51E+02 8.65E+02 4.15E+07 1.55E−01 6.60E+02 2.39E+06 5.96E−01

F17 Mean 0.098006 0.773343 113.1723 0.000606 0.113039 3.053331 0.002122

(Continued)

CMC, 2023, vol.75, no.2 2791

Table 5: Continued
DFA ABC FA GWO HS GOA WOA

Std. 4.52E−02 7.81E−01 1.65E+01 5.14E−04 4.86E−02 1.94E+00 2.49E+03
F18 Mean 2471.722 5467.711 77849.98 8727.620 3786.828 9466.5033 33888.18

Std. 8.14E+02 2.17E+03 2.33E+04 3.27E+03 1.16E+03 5.05E+03 8.87E+03
F19 Mean 48.6756 266.4841 963.9342 133.7175 57.1907 258.12907 489.6096

Std. 2.05E+01 4.34E+01 6.46E+01 6.75E+01 2.12E+01 1.02E+02 1.07E+02
F20 Mean 0.023375 12.942495 984.33553 1.86E−87 0.002295 32.495835 5.38E−99

Std. 2.56E−02 2.08E+01 3.88E+02 9.79E−87 2.08E−03 2.40E+01 3.74E−98

With increasing dimensions, the number of optima in the multimodal function exponentially
increases. The optimization results of F21–F29 in Table 6 shows that DFA yields superior optimization
results for the multimodal functions, even in the case of high dimensions. Even if the optimal result
cannot be obtained, DFA yields a result close to the optimal.

Table 6: Optimization results of high-dimensional multi-peaked functions

DFA ABC FA GWO HS GOA WOA

F21 Mean 0.000411 1.550200 167.22363 0.00 0.005283 200.2107 8.29E−16
Std. 2.82E−04 3.52E+00 2.12E+01 0.00 3.44E−03 6.42E+01 1.93E−15

F22 Mean 0.317133 175.69147 594.55982 0.000338 1.059683 62.931834 0.002985
Std. 1.06E−01 2.28E+01 7.17E+01 2.46E−03 2.43E−02 3.06E+01 6.64E−03

F23 Mean 0.360416 0.920308 62.836655 2.20E−54 0.015389 24.326460 15.101463
Std. 3.53E−01 5.43E−01 5.93E+00 1.03E−53 1.18E−02 6.25E+00 1.32E+01

F24 Mean 0.020931 0.064906 22.508559 0.039639 6.34E−05 4.132649 1.129130
Std. 5.80E−02 1.25E−01 3.83E+00 1.81E−02 7.11E−05 2.14E+00 1.85E+00

F25 Mean 0.011110 0.181606 4.894935 0.232352 0.001197 2.444549 0.369730
Std. 1.05E−02 2.99E−01 9.85E−01 1.32E−01 2.41E−03 1.25E+00 4.82E−01

F26 Mean 5.17E−16 1.76E−13 7.89E−08 −0.066666 6.01E−16 2.43E−11 5.35E−13
Std. 4.65E−16 9.66E−14 9.06E−08 2.92E−01 5.62E−16 3.10E−11 5.25E−13

F27 Mean 2.009873 13.113274 22.730518 0.093215 1.780434 9.256540 0.239882
Std. 3.14E−01 1.82E+00 3.04E+00 2.91E−02 2.99E−01 1.89E+00 1.39E−01

F28 Mean −3.498860 −1.060149 −0.012483 −1.272104 −2.083275 −0.090718 −3.149778
Std. 7.94E−04 6.29E−01 6.58E−02 4.85E−01 1.24E+00 1.58E−01 5.92E−01

F29 Mean −12077.65 −7918.84 −2253.11 −8623.52 −12544.84 −6294.25 −8926.81
Std. 4.45E+02 6.00E+02 5.28E+02 1.01E+03 3.47E+01 4.29E+02 1.01E+03

Fixed-dimensional functions usually comprise several low-dimensional functions, which greatly
test the exploitation and exploration abilities of metaheuristic algorithms. Metaheuristic algorithms
that balance the exploitation and exploration capabilities could obtain optimization results with better

2792 CMC, 2023, vol.75, no.2

chance. Table 7 shows that DFA achieves the best overall optimization results and has balanced
development and exploration capabilities.

Table 7: Optimization results of fixed-dimensional functions

DFA ABC FA GWO HS GOA WOA

F30 Mean 0.000426 0.001370 0.001605 0.000839 0.010827 0.005892 0.000558
Std. 2.95E−04 5.74E−04 5.32E−04 2.06E−03 1.79E−02 8.89E−03 6.12E−04

F31 Mean −3.862782 −3.861855 −3.862654 −3.862318 −3.862651 −3.862782 −3.862782
Std. 2.49E−15 1.00E−03 3.42E−04 2.24E−03 9.51E−04 2.29E−13 1.90E−15

F32 Mean −8.312070 −7.740637 −6.395885 −9.572651 −5.361369 −5.553447 −6.807390
Std. 3.10E+00 2.30E+00 1.58E+00 1.89E+00 3.27E+00 3.38E+00 3.52E+00

F33 Mean −45.77847 −45.05114 −19.19658 −40.97316 −45.77847 −42.02 −45.77846
Std. 2.20E−10 1.22E+00 5.66E+00 3.06E+00 2.45E−08 4.14E+00 5.82E−05

F34 Mean 0.001695 0.002405 0.037276 0.001066 0.003754 1.32E−05 0.001757
Std. 6.01E−03 2.76E−03 6.70E−02 3.26E−03 6.64E−03 2.60E−05 3.55E−03

F35 Mean 5.206178 23.54695 16.389712 10.087391 108.71767 0.780104 23.194003
Std. 2.00E+01 3.84E+01 2.19E+01 3.43E+01 1.76E+02 2.17E+02 1.21E+02

Overall, DFA shows best performance compared to other algorithms in the low-dimensional
single-peaked, low-dimensional multi-peaked, and fixed-dimensional functions; and also achieves
better results than most algorithms in the high-dimensional functions.

4.2 Statistical Analysis

Although the optimization results show that DFA exhibits better overall performance than other
metaheuristic algorithms, the superior performance of DFA needs to be demonstrated in statistical
analysis. This section uses the classic statistical analysis method, i.e., the rank-sum ratio (RSR) [46],
to conduct statistical analysis. The RSR values embody information on all evaluation indicators,
showing the comprehensive level of these indicators. The large RSR value indicates the merit of
the algorithm. The optimization mean of the algorithm on the benchmark functions is used as an
evaluation indicator. The analysis results of RSR are given in Table 8, which shows that DFA exhibits
better overall performance than other metaheuristic algorithms.

Table 8: Rank-sum ratio result

Algorithm RSR
ranking

Probit RSR fitted values Grading
level

DFA 1 6.802743090739191 0.9912724183765839 6
GWO 2 6.067570523878141 0.8917274765228165 5
WOA 3 5.565948821932863 0.8238061402222359 5
ABC 4 5.1800123697927045 0.7715489921466842 4

(Continued)

CMC, 2023, vol.75, no.2 2793

Table 8: Continued
Algorithm RSR

ranking
Probit RSR fitted values Grading

level

HS 5 4.819987630207295 0.722800380754713 4
FA 7 3.9324294761218583 0.6026218963785807 3
GOA 6 4.434051178067137 0.6705432326791614 3

4.3 Convergence Analysis

Fig. 4 shows the convergence curves of DFA along with those of other algorithms on some of
the benchmark functions. The figure shows that DFA usually converges quickly at the beginning and
the convergence speed starts slowing down shortly after the beginning; thus, the overall convergence
rate of DFA is not fast, which is attributed to DFA’s conservative exploitation strategy. However, the
continuous update of DFA during subsequent iterations enables a preferable exploration capability
that prevents DFA from falling into the local optimum. In most cases, DFA converges to the optimum
at 1/3 of the iterations.

Figure 4: Convergence curves of DFA and comparison algorithms on some benchmark functions

2794 CMC, 2023, vol.75, no.2

5 DFA for Engineering Projects

In this section, DFA is applied to five constrained engineering design problems: welded beam
design, pressure vessel design, three-bar truss design, compression spring design, and cantilever beam
design. All the algorithms are tested for each engineering project in 30 independent runs with 500
iterations per run and the best value is taken as the final optimization result.

5.1 Welded Beam Design

Welded beam design is a common engineering optimization problem where the objective is to find
the optimum length of the clamped bar l, height of the bar t, thickness of the bar b, and weld thickness
h of a beam bar to minimize the manufacturing cost of a welded beam (Fig. 5). The cost of a welded
beam is formulated as

min f
(→

x
)

= 1.10471x2
1x2 + 0.04811x3x4 (14 + x2)

→
x = [

x1 x2 x3 x4

] = [
h l t b

]

Figure 5: Diagram of welded beam design

Subject to

g1

(→
x
)

= τ
(→

x
)

− τmax ≤ 0,

g2

(→
x
)

= σ
(→

x
)

− σmax ≤ 0,

g3

(→
x
)

= x1 − x4 ≤ 0,

g4

(→
x
)

= 0.10471x2
1 + 0.04811x3x4 (14 + x2) − 5 ≤ 0,

g5

(→
x
)

= 0.125 − x1 ≤ 0,

g6

(→
x
)

= δ
(→

x
)

− δmax ≤ 0,

g7

(→
x
)

= P − Pc

(→
x
)

≤ 0

Variable range

0.1 ≤ x1 ≤ 2, 0.1 ≤ x2 ≤ 10, 0.1 ≤ x3 ≤ 10, 0.1 ≤ x4 ≤ 2

CMC, 2023, vol.75, no.2 2795

The constraints and their associated constants are expressed as follows:

τ
(→

x
)

=
√

(τ ′)2 + 2τ ′τ ′′ x2

2R
+ (τ ′′)2

τ ′ = P√
2x1x2

, τ ′′ = MR
J

, M = P (L + x2/2)

R =
√

x2
2

4
+ (x1 + x3)

2

4

J = 2
[√

2x1x2

(
x2

2

12
+ (x1 + x3)

2

4

)]

σ
(→

x
)

= 6PL
x4x2

3

,

Pc

(→
x
)

= 4.013E
√

x2
3x6

4
36

L2

(
1 − x3

2L

√
E

4G

)

P = 6000lb, L = 14 in, E = 30 × 106psi

G = 12 × 106psi, τmax = 13, 600psi,

σmax = 30,000psi, δmax = 0.25 in

The results of DFA are compared with those of the other algorithms, and the data in Table 9
show that DFA yields the lowest manufacturing cost, indicating that DFA has the potential to solve
the welded beam design problem.

Table 9: Comparison results for welded beam design

Algorithm Optimum variables Optimum
cost

h l t b

DFA 0.2053263 3.47659665 9.04334824 0.20569611 1.72595568
FA 0.26841149 3.15279017 7.65984043 0.29365304 2.10712421
ABC 0.19403412 3.66950515 9.22029126 0.2075474 1.77937345
GWO 0.19870343 3.64395848 9.00965781 0.20696315 1.74176404
HS 0.25534331 3.12713781 7.63445357 0.28824088 2.03847263
GOA 0.18912920 3.85154748 9.03662298 0.20572969 1.74982934
WOA 0.18719115 7.44065593 8.89750281 0.2122135 2.23569138

2796 CMC, 2023, vol.75, no.2

5.2 Pressure Vessel Design

DFA is employed for the pressure vessel design problem. This design aims to find the appropriate
shell (Ts = x1), thickness of the head (Th = x2), inner radius (R = x3), and length of the shell (L = x4)

to minimize the total material cost, incorporating four constraints: Ts and Th are integer multiples
of 0.625 and R and L are continuous variables. Fig. 6 shows the dimensions of the pressure vessel
structure. The cost of the pressure vessel design is formulated as

min f
(→

x
)

= 0.6224x1x3x4 + 1.7781x2x2
3 + 3.1661x2

1x4 + 19.84x2
1x3

Figure 6: Diagram of pressure vessel design

Subject to

g1 = −x1 + 0.0193x3 ≤ 0,
g2 = −x2 + 0.00954x3 ≤ 0,

g3 = −πx2
3x4 − 4

3
πx3

3 + 1296000 ≤ 0,

g4 = x4 − 240 ≤ 0,

Variable range

0 ≤ x1 ≤ 99, 0 ≤ x2 ≤ 99,

10 ≤ x3 ≤ 200, 10 ≤ x4 ≤ 200,

Table 10 presents the optimization results of DFA and other algorithms and shows that DFA
yields the best optimization results.

Table 10: Comparison results for pressure vessel design

Algorithm Optimum variables Optimum cost

Ts Th R L
DFA 12.68830574 6.27191504 41.0895908 189.55214995 5911.15146639
ABC 12.70506601 6.27994045 41.13437792 188.9686432 5914.386945161
FA 15.06349385 7.4636159 48.13021892 114.0638514 7810.28453922
GWO 13.32095422 6.82361653 43.10752296 164.5239233 6038.11905684
HS 13.19592313 6.52452479 42.72899153 169.00003781 5971.21817933
GOA 12.88471723 6.36890596 41.72542605 181.31441634 5933.29373914
WOA 13.4869777 6.66662006 43.67544592 158.02818082 6005.51170785

CMC, 2023, vol.75, no.2 2797

5.3 Three-Bar Truss Design

The three-bar truss design is the third case study employed. It aims to evaluate the optimum cross-
sectional areas A1 = A3 = x1 and A2 = x2 so that the volume of the static load truss structure is
minimized and constrained considering the stress (σ). Fig. 7 displays the dimensions of the three-bar
truss design. The volume equation of the truss structure is

min f
(→

x
)

=
(

2
√

2x1 + x2

)
× H,

Figure 7: Diagram of pressure vessel design

Subject to

g1 =
√

2x1 + x2√
2x2

1 + 2x1x2

P − σ ≤ 0,

g2 = x2√
2x2

1 + 2x1x2

P − σ ≤ 0,

g3 = 1

x1 + √
2x2

P − σ ≤ 0,

Variable range

0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1,

H = 100 cm, P = 2KN/cm2, σ = 2KN/cm2

The statistical results of DFA and the other algorithms for the three-bar truss design problem are
shown in Table 11, indicating that DFA yields the lowest volume compared to the other optimization
algorithms.

2798 CMC, 2023, vol.75, no.2

Table 11: Comparison results for three-bar truss design

Algorithm Optimum variables Optimum volume

A1 = A3 A2

DFA 0.78875500 0.40802178 263.89578211
ABC 0.78873793 0.40811035 263.89980965
FA 0.78868058 0.40823232 263.89578701
GWO 0.78856879 0.40855575 263.89651005
HS 0.78764908 0.41115752 263.89655385
GOA 0.78881723 0.40784588 263.89579234
WOA 0.7883832 0.40907398 263.89584001

5.4 Compression Spring Design

Compression spring design aims to minimize the mass f(x) under certain constraints, including
four inequality constraints of minimum deflection, shear stress, surge frequency, and deflection. Three
design variables are present: the mean coil diameter (D), wire diameter (d), and number of active
coils (N). Fig. 8 shows the dimensions of the compression spring design. The mass equation of the
compression spring is

minf(x) = (N + 2) Dd2

Subject to

g1 (x) = 1 − D3N
71785d4

≤ 0

g2 (x) = 4D2 − dD

12566
(
Dd3 − d4

) + 1
5108d2

− 1 ≤ 0

g3 (x) = 1 − 140.45d
D2N

≤ 0

g4 (x) = D + d
1.5

− 1 ≤ 0

Variable range

0.05 ≤ d ≤ 2, 0.25 ≤ D ≤ 1.3, 2 ≤ N ≤ 15

The statistical results of DFA and the other algorithms for the three-bar truss design problem are
shown in Table 12. DFA yields the lowest mass, denoting that DFA can well solve the compression
spring design problem.

CMC, 2023, vol.75, no.2 2799

Figure 8: Diagram of compression spring design

Table 12: Comparison results for compression spring design

Algorithm Optimum variables Optimum mass

d D N

DFA 0.05180635 0.35954649 11.12500622 0.012665467
ABC 0.05227057 0.35384607 12.16672679 0.013696147
FA 0.05 0.31667258 14.24697868 0.01286243
GWO 0.05298374 0.38866847 9.65846781 0.01272055
HS 0.05581944 0.46445987 6.95555321 0.0129601920
GOA 0.05362217 0.40503082 8.93195867 0.012731378
WOA 0.05126438 0.34658734 11.90853585 0.012668523

5.5 Cantilever Beam Design

Cantilever beam design is a structural engineering design problem related to the weight optimiza-
tion of the square section cantilever. The cantilever beam is rigidly supported at one end, and a vertical
force acts on the free node of the cantilever. The beam comprises five hollow square blocks of constant
thickness, the height (or width) of which is the decision variable and the thickness is fixed. Fig. 9 depicts
the dimensions of the cantilever beam design. The weight equation of the cantilever beam is

f (X) = 0.0624 (x1 + x2 + x3 + x4 + x5)

Figure 9: Diagram of cantilever beam design

2800 CMC, 2023, vol.75, no.2

Subject to

g (X) = 61
x3

1

+ 37
x3

2

+ 19
x3

3

+ 7
x3

4

+ 1
x3

5

− 1 ≤ 0

Variable range

0.01 ≤ xi ≤ 100, i = 1, 2 · · · , 5

The statistical results of DFA and the other algorithms for the cantilever beam design problem are
shown in Table 13. The table shows that DFA outperforms all other algorithms except GOA. Although
DFA achieves suboptimal optimization results, this result is acceptable according to NFL.

Table 13: Comparison results for cantilever beam design

Algorithm Optimum variables Optimum
weightx1 x2 x3 x4 x5

DFA 5.96871891 5.35265306 4.53393307 3.475844 2.14508805 1.34011719
ABC 6.34433249 5.25405738 4.83394417 3.12836834 2.0932221 1.35120489
FA 5.98319073 5.38116037 4.44248883 3.44473814 2.26317699 1.34302424
GWO 6.18084273 5.11890478 4.66205867 3.36104363 2.19997452 1.34302424
HS 6.11954396 5.39091533 4.42759653 3.46660407 2.08273114 1.34081320
GOA 6.01598408 5.30917278 4.4945209 3.50137541 2.15260648 1.33995636
WOA 9.53170142 4.20385935 3.62127756 12.87413556 3.28738588 2.091545650

6 Conclusion

This study presented a novel metaheuristic algorithm called DFA. The effectiveness of DFA
was validated on 35 well-known benchmark functions and compared with that of six well-known
metaheuristic algorithms. The optimization capabilities of DFA were examined in terms of exploitation
capability, statistical analyses, and convergence analyses. The results indicate that DFA is a competitive
metaheuristic algorithm with outstanding performance in terms of global optimization problems.

DFA was also applied to five engineering design problems for verification in practical applications
(i.e., welded beam, pressure vessel, three-bar truss, compression spring, and cantilever beam design
problems). DFA outperforms the other six metaheuristic algorithms in the chosen evaluation criteria.
In subsequent studies, DFA will be used to improve the efficiency of machine learning potential
development for Fe–Cr–Al ternary alloys.

Funding Statement: This work is performed under collaboration with College of Materials Science and
Chemical Engineering, Harbin Engineering University by the support of National Key Research and
Development Program of China (2019YFB1901003). The authors also acknowledge the financial sup-
port of National Natural Science Foundation of China (Grants No. 52250005, 21875271, 21707147,
11604346, 21671195, and 51872302), the Key R & D Projects of Zhejiang Province No. 2022C01236,
the Zhejiang Province Key Research and Development Program (No. 2019C01060), and the project
of the key technology for virtue reactors from NPIC. Entrepreneurship Program of Foshan National
Hi-tech Industrial Development Zone.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

CMC, 2023, vol.75, no.2 2801

References
[1] S. H. Haji and A. M. Abdulazeez, “Comparison of optimization techniques based on gradient descent

algorithm: A review,” PalArch’s Journal of Archaeology of Egypt/Egyptology, vol. 18, no. 4, pp. 2715–2743,
2021.

[2] A. L. Custódio and J. F. A. Madeira, “GLODS: Global and local optimization using direct search,” Journal
of Global Optimization, vol. 62, no. 1, pp. 1–28, 2015.

[3] M. Dorigo and T. Stützle, “Ant colony optimization: Overview and recent advances,” in Handbook of
Metaheuristics, 1st edition, vol. 272. Cham, CH: Springer, Cham, pp. 311–351, 2019.

[4] D. Wang, D. Tan and L. Liu, “Particle swarm optimization algorithm: An overview,” Soft Computing, vol.
22, no. 2, pp. 387–408, 2018.

[5] J. H. Holland, “Genetic algorithms,” Scientific American, vol. 267, no. 1, pp. 66–73, 1992. https://www.
jstor.org/stable/24939139

[6] S. Kirkpatrick, C. D. Gelatt and M. P. Vecchi, “Optimization by simulated annealing,” Science, vol. 220,
no. 4598, pp. 671–680, 1983.

[7] O. Abedinia, N. Amjady and N. Ghadimi, “Solar energy forecasting based on hybrid neural network and
improved metaheuristic algorithm,” Computational Intelligence, vol. 34, no. 1, pp. 241–260, 2018.

[8] O. Kramer, “Genetic algorithms,” Genetic Algorithm Essentials, vol. 679, pp. 11–19, 2017. https://doi.
org/10.1007/978-3-319-52156-5_2

[9] W. Ezra and W. Zhu, “A survey on metaheuristics for optimization in food manufacturing industry,”
Applied Soft Computing, vol. 46, pp. 328–343, 2016.

[10] S. Dan, “Optimization,” in Evolutionary Optimization Algorithms, 1st edition, vol. 1. Hoboken, New Jersey,
Canada: John Wiley & Sons, pp. 11–35, 2013.

[11] C. Liu, “The dark forest,” in The Three-Body Problem, 1st edition, vol. 1. Chongqing, China: Chongqing
Publishing Group, pp. 441–449, 2008.

[12] X. Yao, Y. Liu and G. Lin, “Evolutionary programming made faster,” IEEE Transactions on Evolutionary
Computation, vol. 3, no. 2, pp. 82–102, 1999.

[13] Bilal, M. Pant, H. Zaheer, L. Garcia-Hernandez and A. Abraham, “Differential evolution: A review of
more than two decades of research,” Engineering Applications of Artificial Intelligence, vol. 90, pp. 103479,
2020. https://doi.org/10.1016/j.engappai.2020.103479

[14] N. Hansen, D. V. Arnold and A. Auger, “Evolution strategies,” in Springer Handbook of Computational
Intelligence, 1st edition. Heidelberg, BER, DE: Springer, Berlin, Heidelberg, pp. 871–898, 2015.

[15] M. Abdel-Basset and L. A. Shawky, “Flower pollination algorithm: A comprehensive review,” Artificial
Intelligence Review, vol. 52, no. 4, pp. 2533–2557, 2019.

[16] T. Zhang and Z. W. Geem, “Review of harmony search with respect to algorithm structure,” Swarm and
Evolutionary Computation, vol. 48, pp. 31–43, 2019.

[17] A. Lambora, K. Gupta and K. Chopra, “Genetic algorithm-a literature review,” in 2019 Int. Conf. on
Machine Learning, Big Data, Cloud and Parallel Computing (COMITCon), Faridabad, India, pp. 380–384,
2019.

[18] M. Paulinas and A. Ušinskas, “A survey of genetic algorithms applications for image enhancement and
segmentation,” Information Technology and Control, vol. 36, no. 3, pp. 278–284, 2007.

[19] Y. Park, J. Yoo and H. Park, “A genetic algorithm for the vendor-managed inventory routing problem with
lost sales,” Expert Systems with Applications, vol. 53, pp. 149–159, 2016.

[20] E. Hancer, “Artificial bee colony: Theory, literature review, and application in image segmentation,” Recent
Advances on Memetic Algorithms and its Applications in Image Processing, vol. 873, pp. 47–67, 2020.

[21] F. Pourpanah, R. Wang, C. P. Lim, X. Wang and D. Yazdani, “A review of artificial fish swarm algorithms:
Recent advances and applications,” Artificial Intelligence Review, pp. 1–37, 2022. https://doi.org/10.1007/
s10462-022-10214-4

[22] S. Mirjalili, L. Aljarah, M. Mafarja, A. A. Heidari and H. Faris, “Grey wolf optimizer: Theory, literature
review, and application in computational fluid dynamics problems,” Nature-Inspired Optimizers, vol. 811,
pp. 87–105, 2020.

https://www.jstor.org/stable/24939139
https://www.jstor.org/stable/24939139
https:// doi.org/10.1007/978-3-319-52156-5_2
https:// doi.org/10.1007/978-3-319-52156-5_2
https://doi.org/10.1016/j.engappai.2020.103479
https://doi.org/10.1007/s10462-022-10214-4
https://doi.org/10.1007/s10462-022-10214-4

2802 CMC, 2023, vol.75, no.2

[23] V. Kumar and D. Kumar, “A systematic review on firefly algorithm: Past, present, and future,” Archives of
Computational Methods in Engineering, vol. 28, no. 4, pp. 3269–3291, 2021.

[24] A. S. Joshi, O. Kulkarni, G. M. Kakandikar and V. M. Nandedkar, “Cuckoo search optimization-a review,”
Materials Today: Proceedings, vol. 4, no. 8, pp. 7262–7269, 2017.

[25] Q. Zhang, S. Du, Y. Zhang, H. Wu, K. Duan et al., “A novel chimp optimization algorithm with refraction
learning and its engineering applications,” Algorithms, vol. 15, no. 6, pp. 189, 2022.

[26] L. Abualigah and A. Diabat, “A comprehensive survey of the grasshopper optimization algorithm: Results,
variants, and applications,” Neural Computing and Applications, vol. 32, no. 19, pp. 15533–15556, 2022.

[27] Y. Zhang, S. Du and Q. Zhang, “Improved slime mold algorithm with dynamic quantum rotation gate and
opposition-based learning for global optimization and engineering design problems,” Algorithms, vol. 15,
no. 9, pp. 317–341, 2022.

[28] F. S. Gharehchopogh and H. Gholizadeh, “A comprehensive survey: Whale optimization algorithm and
its applications,” Swarm and Evolutionary Computation, vol. 48, pp. 1–24, 2019.

[29] Y. Liu, and P. Tian, “A Multi-start central force optimization for global optimization,” Applied Soft
Computing, vol. 27, pp. 92–98, 2015.

[30] E. Rashedi, E. Rashedi and H. Nezamabadi-Pour, “A comprehensive survey on gravitational search
algorithm,” Swarm and Evolutionary Computation, vol. 41, pp. 141–158, 2018.

[31] H. Eskandar, A. Sadollah, A. Bahreininejad and M. Hamdi, “Water cycle algorithm–a novel metaheuristic
optimization method for solving constrained engineering optimization problems,” Computers & Structures,
vol. 110, pp. 151–166, 2012.

[32] W. Zhao, L. Wang and Z. Zhang, “Atom search optimization and its application to solve a hydrogeologic
parameter estimation problem,” Knowledge-Based Systems, vol. 163, pp. 283–304, 2019.

[33] H. Abedinpourshotorban, S. M. Shamsuddin, Z. Beheshti and D. N. A. JawawI, “Electromagnetic
field optimization: A physics-inspired metaheuristic optimization algorithm,” Swarm and Evolutionary
Computation, vol. 26, pp. 8–22, 2016.

[34] F. A. Hashim, E. H. Houssein, M. S. Mabrouk, W. Al-Atabany and S. Mirjalili, “Henry gas solubility
optimization: A novel physics-based algorithm,” Future Generation Computer Systems, vol. 101, pp. 646–
667, 2019.

[35] O. Abdalla, H. Rezk and E. M. Ahmed, “Wind driven optimization algorithm based global MPPT for PV
system under non-uniform solar irradiance,” Solar Energy, vol. 180, pp. 429–444, 2019.

[36] F. Zou, D. Chen and Q. Xu, “A survey of teaching–learning-based optimization,” Neurocomputing, vol.
335, pp. 366–383, 2019.

[37] S. Cheng, Q. Qin, J. Chen and Y. Shi, “Brain storm optimization algorithm: A review,” Artificial Intelligence
Review, vol. 46, no. 4, pp. 445–458, 2016.

[38] A. Fathy and H. Rezk, “Parameter estimation of photovoltaic system using imperialist competitive
algorithm,” Renewable Energy, vol. 111, pp. 307–320, 2017.

[39] A. Maheri, S. Jalili, Y. Hosseinzadeh, R. Khani and M. Miryahyavi, “A comprehensive survey on cultural
algorithms,” Swarm and Evolutionary Computation, vol. 62, pp. 100846, 2021.

[40] M. A. Al-Betar, Z. A. A. Alyasseri, M. A. Awadallah and L. A. Doush, “Coronavirus herd immunity
optimizer (CHIO),” Neural Computing and Applications, vol. 33, no. 10, pp. 5011–5042, 2021.

[41] T. Wu, X. Wu, J. Chen, X. Chen and A. H. Ashrafzadeh, “A novel metaheuristic algorithm: The team
competition and cooperation optimization algorithm,” CMC-Computers Materials & Continua, vol. 73,
no. 2, pp. 2879–2896, 2022.

[42] H. Ma, D. Simon, P. Siarry, Z. Yang and M. Fei, “Biogeography-based optimization: A 10-year review,”
IEEE Transactions on Emerging Topics in Computational Intelligence, vol. 1, no. 5, pp. 391–407, 2017.

[43] W. Zhao, L. Wang and Z. Zhang, “Artificial ecosystem-based optimization: A novel nature-inspired meta-
heuristic algorithm,” Neural Computing and Applications, vol. 32, no. 13, pp. 9383–9425, 2020.

[44] A. R. Pouya, M. Solimanpur and M. J. Rezaee, “Solving multi-objective portfolio optimization problem
using invasive weed optimization,” Swarm and Evolutionary Computation, vol. 28, pp. 42–57, 2016.

CMC, 2023, vol.75, no.2 2803

[45] T. Joyce and J. M. Herrmann, “A review of no free lunch theorems, and their implications for metaheuristic
optimisation,” Nature-Inspired Algorithms and Applied Optimization, vol. 744, pp. 27–51, 2018.

[46] Z. Wang, S. Dang, Y. Xing, Q. Li and H. Yan, “Applying rank sum ratio (RSR) to the evaluation of feeding
practices behaviors, and its associations with infant health risk in Rural Lhasa, Tibet,” International Journal
of Environmental Research and Public Health, vol. 12, no. 12, pp. 15173–15181, 2015.

	Dark Forest Algorithm: A Novel Metaheuristic Algorithm for Global Optimization Problems
	1 Introduction
	2 Related Works
	3 Dark Forest Algorithm
	4 Results and Discussion
	5 DFA for Engineering Projects
	6 Conclusion
	References

