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Abstract: In the machine learning (ML) paradigm, data augmentation serves
as a regularization approach for creating ML models. The increase in the
diversification of training samples increases the generalization capabilities,
which enhances the prediction performance of classifiers when tested on
unseen examples. Deep learning (DL) models have a lot of parameters, and
they frequently overfit. Effectively, to avoid overfitting, data plays a major
role to augment the latest improvements in DL. Nevertheless, reliable data
collection is a major limiting factor. Frequently, this problem is undertaken
by combining augmentation of data, transfer learning, dropout, and methods
of normalization in batches. In this paper, we introduce the application of data
augmentation in the field of image classification using Random Multi-model
Deep Learning (RMDL) which uses the association approaches of multi-
DL to yield random models for classification. We present a methodology
for using Generative Adversarial Networks (GANs) to generate images for
data augmenting. Through experiments, we discover that samples generated
by GANs when fed into RMDL improve both accuracy and model efficiency.
Experimenting across both MNIST and CIAFAR-10 datasets show that,
error rate with proposed approach has been decreased with different random
models.

Keywords: Data augmentation; generative adversarial networks; classification;
machine learning; random multi-model deep learning

1 Introduction

In the data science community, classification and categorization using complex data of images,
video and documents are crucial challenges. In recent years, there has been a growing interest in
applying DL structures and architectures to such problems.
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However, popular deep architectures are intended specifically for data type or domain. Therefore,
there is an essential need to improve further information handling approaches for categorization and
classification through an extensive variety of data types.

Even though DL has been successfully utilized to solve classification problems [1] the key issue
is deciding which DL architecture such as Deep Neural Network (DNN), Convolutional Neural
Network (CNN) or Recurrent Neural Network (RNN) to use for a given task. Several nodes (units)
and hidden layers are also very useful for varied data kinds and application structures. Hence, the best
way to solve this issue is by trial and error method for the application or dataset.

The difficulty of deploying ensembles of deep architectures is addressed in this paper with a
method known as RMDL [2]. In short, RMDL is a method that incorporates three DL architectures:
CNN, DNN and RNN. Experiments with numerous sorts of data have shown that this method is
accurate, dependable and efficient.

For their input layers, the three basic DL designs use various feature space techniques. DNN,
for example, extracts features from the text using frequency-inverse document frequency (TF-IDF)
[3]. RMDL uses randomly generated hyper-parameters to find the number of both hidden layers and
nodes (density) in each DNN hidden layer. By using random feature maps and random numbers of
hidden layers, RMDL selects hyper-parameters in CNN.

The CNN structures used by RMDL are 1-dimensional CNN (Conv1D) which only moves along
a single axis so it used for text, a 2-dimensional CNN (Conv2D) which works by applying kernels
that strides along 2-dimensional space so it used for picture. In 3-dimensions CNNs (Conv3D) the
kernels move in three dimensions so it is suitable for video processing [1]. Text classification is primarily
accomplished using RNN architectures. The RMDL model employs two RNN structures: Gated
Recurrent Units (GRUs) and Long Short-Term Memory (LSTM). As a result, the RMDL’s number
of GRU or LSTM and the hidden layers are determined through a search of randomly generated
hyper-parameters [1].

The rest of the paper is organized as follows; Section 2 gives the related works. The proposed
approach for data augmentation using GANS is described in Section 3. Section 4 discusses an
approach for text augmentation. Section 5 presents an overview for RMDL that used for classification.
The experimental results are elaborated in Section 6, Finally, Section 7 is the Conclusion of the paper.

2 Related Works

Generally, for the validation and test sets, the model does not generalize well if trained using
a small set of samples. Therefore, such models may suffer from the overfitting problem. Numerous
approaches have been proposed to reduce overfitting [4]. The simplest method is to add a regularization
term on the weight’s norm. An additional common technique employed is a dropout.

Probabilistically, dropout is a workaround in case the lesser computation is the target as such the
neurons (units) are dropped randomly in the training process. It enables neurons to be independent as
units are randomly dropped. At test time, this has the averaging effect on the predictions over several
networks [5,6]. In [7], the authors show that dropout attains superior results on various test datasets.

Batch normalization is another common technique to avoid the model’s overfitting; it normalizes
layers and permits training of the normalization weights. Within the network, batch normalization can
be applied on any layer and therefore it works effectively. Particularly when it is utilized in GANs [8]
such as CycleGAN in [9]. Furthermore, transfer learning is a method of efficiently solving an issue by
training neural net pre-trained weights on some relevant or more broad data and suitable parameters.
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Previous research to systematically understand the benefits and limitations of data augmentation
demonstrate that data augmentation can act as a regularizer in preventing overfitting in neural
networks [10].

Data augmentation is not a novel field and several data augmentation methods have been applied
to explicit problems. Data augmentation is the procedure of increasing the training dataset by creating
more samples taking advantage of the training data.

There are several approaches to augment data. Geometric transformations and color augmen-
tation are famous approaches when using images to increase dataset size. Smart Augmentation (SA)
[11] and Neural Augmentation (NA) [12] have been proposed in recent years for similar tasks. During
the training of the target network, smart augmentation creates a network that is learned to generate
augmented data such that the loss of the target networks is minimized.

NA behaves like SA such that they separate networks to perform data augmentation which
improves the classifier. However, NA uses pair of images randomly selected from the same class as
an input. Manual data augmentation and data augmentation through training neural networks are
the two main types of data augmentation approaches. Different neural network topologies, on the
other hand, can be employed in data augmentation by training neural networks. The focus of this
paper is on GANs.

Artificially, augmentation in image classification methods generates training images by altering
available images [13]. Classification tasks take benefit of the augmentation of many images. The
structure of images is changed to enhance the number of samples available to the ML algorithm, while
flexibility is included in the final model [14].

As such, data augmentation techniques belong to the category of data warping, a method
that searches directly to augment the input data to the data space. The idea of augmentation was
accomplished on the MNIST dataset in [15]. A very common and conventional method to augment
image data is to achieve geometry and augmentations of color, such as image reflecting, translating,
cropping of the image, and changing the palette of image color as in [13,16]. The performance of
classifiers on the MNIST database has been improved over elastic deformation’s introduction in [17],
additionally using the existing affine transformations.

In [18], a method called neural augmentation is proposed to allow a neural net to learn augmenta-
tions which improve the ability to correctly classify images. They proposed two different approaches to
data augmentation. The first approach is generating augmented data before training the classifier by
applying GANs and basic transformations to create a larger dataset. The second approach attempts to
learn augmentation through a prepended neural net. AutoAugment [19], developed by Cubuk et al.,
is a much different approach to meta-learning than Neural Augmentation or Smart Augmentation.
AutoAugment is a Reinforcement Learning algorithm that searches for an optimal augmentation
policy amongst a constrained set of geometric transformations with miscellaneous levels of distortions.

Data augmentation techniques generally fall under two categories: Firstly, data augmentation by
manual approaches, and secondly, using neural networks. In this paper, we particularly emphasize
using GANs. In this approach, new data samples are generated from the distribution, which is learned
from already available data. Therefore, we believe that it is a good alternative compared to manual
augmentation.



5194 CMC, 2023, vol.74, no.3

3 Generative Adversarial Networks (GANs)

In fields like Computer Vision (CV), the GANs have been excessively employed to generate new
images for training. Moreover, even with relatively insignificant sets of data, GANs have been effective
by learning techniques as in [20]. Single neural net produces better counterfeit examples from the
original distribution of the data using a min-max strategy to trick the other net. Subsequently, the other
net is trained to differentiate the counterfeits better. For style transfer in CycleGAN, GANs are used
as image transferring from one setting to another. Furthermore, at augmenting datasets, GANs have
shown to be very effective such as in increasing the input images resolution [21]. Infrequent instances,
GANs have accomplished a lot of success.

The framework in [22] attains good overall performance on the datasets MNIST [23], CIFAR-10
[24] GANs have also proven effective in instance paragraph generation [25]. The proposed system in
[26] has achieved good results using CNN. CNNs can effectively extract and learn a huge number of
features. The superior performance of the CNNs is related to the sparse connections between neurons
with several variables in these networks being low.

A generator G model and a discriminator D model are common in GANs. The generator learns the
dataset G distribution gap. The discriminator D determines if the data comes from a true distribution
or a gap. The discriminator D distinguishes between actual and synthetic images when it comes to
visuals. The generator G aids in the creation of natural-looking photographs. While the generator is
attempting to deceive the discriminator, the discriminator is attempting to avoid being deceived by the
generator. GANs have been found to be particularly unstable for training, resulting in generators that
produce insufficient outputs.

To overcome this problem, in this paper, we introduce the advantage of using Deep Convolutional
Generative Adversarial Networks (DCGAN). Based on these generative models, a hierarchy of
abstract features can be learned from parts of objects in the scene. As such, the learned features can
characterize the distribution of underlying data and samples, which have been generated from these
features, are common in real-world scenarios. Significantly, DCGAN achieves good results mostly
because of the stability of its architecture in training which affects the quality of the samples. Both the
generator and discriminator models in DCGAN are CNNs rather than multilayer perceptron.

In this paper, we describe a method for augmenting data using DCGAN. Through a range of
datasets, the proposed framework trains GANs which leads to stable training. Mainly, our proposed
framework relies on three modifications in the architecture of CNN. Traditionally in every layer of
CNN, a pooling layer follows convolutional layers. Practically, applying pooling is to down-sample
the previous input. Nonetheless, later, it is validated that getting all convolutional layers and getting
the network to train its spatial downsampling improves the performance of CNNs. Thus, this is the
first interesting contribution to the proposed architecture.

Generally, neural network architecture is achieved by creating CNN layers block, followed by
stacked fully connected layers. With each node in the layer, the latest layer is fully connected which has
a Softmax activation function specifying the image probability of a specific class. As such, the fully
connected layers have abundant parameters resulting in overfitting. Thus, dropout is used to avoid
overfitting.

Recently, to reduce overfitting global average pooling is proposed in which parameters number
in the network is reduced. Global average pooling reduces spatial dimensions in a similar manner
as the max-pooling technique, but the global average-pooling technique reduces the dimensions very
efficiently. Simply, by taking an average of WH values, W × H × d tensor is converted to 1 × 1 × d.
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To calculate the probability on this layer, the soft-max activation function is applied. This will be the
second contribution to our architecture.

Nevertheless, the stability of the model is increased by global average-pooling which hits the speed
of convergence. In [22], the authors proposed to connect the maximum features to the generator and the
discriminators’ input and output respectively. Commonly while GANs training, the generator collapses
to generate samples from the same point. Hence, to avoid this problem we suggested using batch
normalization. To achieve unit-variance and zero-mean, the batch normalization approach normalizes
the input for each unit. Thus, this allows treating with poor initialization problems and similarly reliefs
vanishing addressing, explosion and further gradient descent problems. This is the third contribution
to our architecture.

As mentioned already, the generation of high-resolution images by GANs modeling is an unstable
procedure. Consequently, selecting the same architecture for generator and discriminator for diverse
datasets by varying images resolutions is illogical. Therefore, our architecture is modeled in such a
manner that CNN layers’ number in generator and discriminator are contingent on images resolution.
Several convolutional layers in the generator are calculated as:

num_of _layers = (height of image) − 2 (1)

Contrariwise, the number of the convolutional layers in the discriminator is calculated as
(num_of _layers)+1. A vector drawn from the normal or uniform distribution is used as the generator
input. As a result, the initial layer in a generator architecture can be a completely connected layer with
a matrix multiplication. As a result, the layer’s output is reformed into a four-dimensional tensor.
Batch-normalization was previously used on the 4-dimensional tensor. The tensor obtained works as
a surprise of the convolution stack having size m×4×4× c where m represents the number of images
in batch size heuristically, c is the features of the convolutional number which is computed as:

c = 128 ∗ (num_of _layers − 1) (2)

It is expected for each convolutional layer to take a tensor of the following form for the last layer
in the stack:

n × [4 ∗ layer_number] × [4 ∗ layer_number ] × [c/2 (̂layer_number − 1)] (3)

where the tensors’ input and outputs are of the form:

n × [4 ∗ (layer_number + 1)] × [4 ∗ (layer_number + 1)] × [f /2 (̂layer_number)] (4)

where: layer_number = 1 . . . ((num_of _layers) − 1). Noticeably, in each layer, the height and width
are up-sampled by factor two such that the features number is also down-sampled by factor two. The
transpose of a convolution layer is upscaled for each convolutional NN, with a kernel of size 5-by-5
by two strides for vertical and horizontal directions.

Subsequently, it is required to carry out batch-normalization for the output of each convolutional
layer before taking it as the following CNN layer input. Thus, the last layer in the convolutional stack
yields an output of size m×s×s× f where f is the channels number inside the image and s is the image
size. Hence, batch-normalization is not carried out on the final layer so that oscillation of the sample
can be avoided, and stability of the model is maintained. Lastly, tanh activation-function is applied to
the output which is handled as generated models.

An image is taken as input to discriminator which has size m × s × s × f . Additionally, the
discriminator only has one more convolutional layer rather than the layers’ number in the generator. In
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the proposed architecture, the first layer is a convolutional layer. So, instead of decreasing dimensions
in this layer of input, further feature maps are produced. More accurately, this layer output is
represented of size m × s × s × 64.

To avoid overfitting, dropout is applied to this layer output. Finally, the remaining convolutional
layers are stacked taking input of the form: n × [s/(2 ∗ (layer_number − 1))] × [s/2 ∗ (layer_number −
1)] × 64 ∗ (layer_number − 1)

where input and outputs yield a tensor of the form:

n × [s/(layer_number ∗ 2] × [s/(2 ∗ (layer_number − 1) ))] × [layer_number ∗ 64] (5)

where layer_number = 2 . . . (num_of _layers + 1). For each layer, the generator height and width are
up-sampled with factor two and the features number is down-sampled with a factor two. Furthermore,
in each layer, the height and width of the discriminator are down-scaled by two and the features number
is up-scaled with factor two.

Considerably, the proposed architecture is exhibited such that the convolutional layers’ highest
number are connected respectively to generators’ and discriminators’ input and output. Convolution
is applied in the vertical and horizontal directions from second convolutional layer to downscale using
a 3 × 3 kernel with a step of two. In case of generator batch-normalization is carried out for each
convolutional layer output. Moreover, dropout is applied in the last convolutional layer for all layers
before been passed as input to CNN layer. In the convolutional stack, the last layer yields an output
which has the following size representation 64 × m × 4 × 4 ∗ (num_of _layers + 1).

From last convolutional layer, for the resulting output, global average-pooling is applied in of size
m × 1 × 1 × 64 ∗ (num_of _layers + 1). In the proposed architecture, the final layer is a fully connected
layer and this layer output is a matrix representation that has size m× (k + 1). Finally, on output from
this layer, soft-max activation function is applied which estimates an image probability to belong k+1
different classes. Algorithm 1 describes the proposed data augmentation using GANs.

Algorithm 1: Data Augmentation using GANs
Input: Z = {z1 , z2 . . . zm } with zi = (yi, xi)

1. Initialization of the weights in both generator and discriminator
2. for j ← 0 to L do

Update the weights of discriminator using back propagation technique, in order to minimize
loss of the discriminator

Update generators’ weights using back propagation technique, in order to reduce the loss
of generator

end for
3. for j ← 0 to C do
4. foreach image y in jth class do

Learn inverse mapping z of image y, using gradient − based model
5. for j ← 1 to A do
6. Add random noise �z to z for producing z′

7. create image z′ as pq (z + �z)
8. add (z′, j) to Z′

(Continued)
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Algorithm 1: Continued
end for

end for
end for

Output: Z′ {z′
1, z′

2 . . . . . . z′
n

}
where (n > m)

At training time, training batch is generated from a batch of images then this image is fed into
RMDL to do classification. Subsequently, randomly from the same class, two images are sampled and
served as an input to augmentation network to generate the successive augmented image.

4 Text Augmentation

Text augmentation approaches have different factors associated with them for creating robust
models. Some of the text augmentation techniques are more dependent on the details of the language
[27] while other techniques do not require much detail if a model based on language is provided [28].

The models of semantic data have improved over the past few years with the aid of distributed word
embedded representations [29]. New approaches for text understandability have been created such as
text classification approaches as deployed in this research. The text augmentation techniques can be
deployed for improving classification accuracy and creating robust models. This way, the classification
models can be trained with a lesser requirement for labeled data.

The process of data labeling is very time and efficiency costly. Scenarios such as identification of
fake news [30], getting the context of political news, public response on administration services [31], or
crucial scenarios such as emergencies where better coordination is required, aptly labeled data is very
difficult to attain. ML techniques require a huge amount of data to perform well and give optimal
results. Such big data are available and accessible to big organizations along with the resources for
labeling such data, but small organizations do not have such resources or access to data.

The changes in input data affect the performance of the classifier but for a robust classifier, it is
required to have an ability to handle the data changes and have a learned model that gives a good
response to input distribution changes. The reason for data changes in the evolution of language and
changes in geographical aspects. Another use is semi-supervised learning, in which we use the few
labels we must generate a noisy classifier that labels more unlabeled data before feeding it back to
train another classifier.

This work introduces a text augmentation system that replaces terms that are used similarly from a
global perspective rather than a context-specific perspective. So, rather than focusing on what the ideal
word to replace in this sentence in this paper is, consider how similar words are utilized throughout
texts. We further assess the proposed technique on various classification data.

Limited data is an issue when it comes to acquiring well-labeled data for supervised learning tasks
[32], and it is even more of a problem for low-resource languages [33]. The augmentation effect on
learning for DNN models is demonstrated here.

We employ pre-trained word vector representations from Glove [34] for the DNN. For the AG
News dataset, the pre-trained Wikipedia model is utilized, and for the social media datasets, the
pre-trained Twitter model is used. We augment the data five times across all the datasets in this
experiment. We also incorporate the original dataset, resulting in a six-fold enlarged dataset. When
no augmentation is used, we simply rerun the original dataset six times to make the findings similar.
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Word2vec-based augmentation (learned semantic similarity) Word2vec is a strong augmentation
method that uses a word embedding model [29] trained on the public dataset to locate words that are
mostly similar to a particular input word. We use a pre-trained Wikipedia Word2Vec model for formal
text. To convert a Glove model pre-trained on Twitter data to Word2vec format for social media data,
we employ Gen-sim [35]. The updated models are used in the proposed strategy to augment data by
randomly assigning a word in a sentence and utilizing cosine similarity to determine the distributed
representations of words and phrases as well as their compositionality. When selecting a comparable
phrase, we use the cosine similarity as a relative weight to find a term that replaces the input word.

We are provided with a string and an integer in Algorithm 2, where the string represents the input
data and the integer represents the number of repeats to supplement that data. Word2vec has the
advantage of producing more contextually connected vectors, which means that words with similar
meanings can be expressed accordingly.

Algorithm 2: Text Augmentation
1. Input: Input: s (sentence), a (number)
2. Let V be a vocabulary
3. for i in range (a)

• randomly select a word from s
• find similar words to randomly selected word
• randomly select a word given weights as distance
• replace with similar word randomly selected before

end for
Output: a sentence with words replaced

We send the updated data (picture or text) into RMDL, which does categorization.

5 Random Multi Model Deep Learning

Multi random DL models [2] including DNN, RNN, and CNN techniques (or GRU) are used
for text and image categorization. We’ll go over RMDL first, followed by the three DL architecture
techniques (DNN, RNN, and CNN). The usage of multi optimizer methods in various random models
will next be examined.

Multi-model random DL is a one-of-a-kind technique that involves training a large number of
DNN, Deep CNN, and Deep RNN at the same time. The number of layers and nodes are produced
for all of these deep learning multi-models (for instance, nine random models in RMDL consist of
three CNNs, three RNNs, and three DNNs, such that all of them are unique owing to the random
creation).

M (yi1, yi2 , . . . , yin) =
⎡
⎢⎣1

2
+

(∑n

j=1yij

) − 1
2

n

⎤
⎥⎦ (6)

where n is random models’ number, and yij is the prediction of model output for data point i in model
j Output space employs majority vote for final ŷi. Hence, ŷi can be expressed as follows:

ŷi = [
ŷi1 . . . . ŷij . . . ŷin

]
(7)
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where n is random models’ number, and ŷij illustrates the document prediction of label either for
document or data point of Di ε {xi, yi} for model j and ŷij is defined as follows:

ŷij = [
softmax

(
yij

)]
(8)

After all of RDL’s models (RMDL) have been trained, the final forecast is made using the majority
vote of these models.

5.1 Deep Learning in RMDL

The RMDL model structure contains three basic techniques of DL in parallel. In what follows,
every individual model will be described separately. Consequently, the final model consists of d random
DNNs, RNNs, and CNNs models.

5.2 Deep Neural Network

Layer multiconnection is used to learn the structure of DNNs, where each layer receives only
connections from the preceding layer and only grants connections to the subsequent layer in hidden
layers. This layer input is a link between feature space and all random models’ initial hidden layer.
As a result, the output layer for multi-class classification is the number of classes, whereas for binary
classification it is individual output.

In this paper, DNNs are trained several times for different purposes. In our proposed technique,
multi-classes DNNs learned models are generated randomly. For instance, nodes number in each layer
and furthermore layers’ number are entirely random assigned.

In our approach, DNNs are discriminative trained models that use sigmoid Eq. (9) and ReLU [36]
as activation functions in a typical back-propagation algorithm. Finally, Softmax (11) should be used
in output layer for classification of multi-class.

f (x) = 1
1 + e−x

ε (0, 1) (9)

f (x) = max (0, x) (10)

σ (z)j = ezj∑K

k=1e
zk

j ε {1, . . . , K} (11)

Mainly, the goal is to learn from a set of example pairs (x, y), xεX, yεY, and target spaces using
hidden layers. On the other hand, in classification of text, the input is string that is created by text
vectorization.

5.3 Recurrent Neural Networks

Additional neural network architecture which contributes in RMDL model is RNNs. Practically,
RNNs assign extra weights to the earlier sequence data points. Consequently, this procedure is a worthy
method for classification of text, string and sequential data. Furthermore, in this work this procedure
could be used for classification of images. RNN the neural net cogitates the previous nodes information
which allows improved analysis of semantic for dataset structures. At step t, the formulation of this
notion is given in Eq. (12) such that xt is the state on time t and ut denotes the input.

xt = F (xt−1, ut, θ) (12)
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More explicitly, weights can be used to formulate Eq. (12) with specified parameters in Eq. (13):

xt = Wrecσ (xt−1) + Winut + b (13)

where Wrec indicates recurrent matrix weight, Win refers to weights of the input, b is the bias and σ

denotes an element-wise function. Once more, the basic architecture for RMDL model is modified.
Even though benefits of RNN, it has two major problems, first, when the gradient descent algorithm
error is back propagated over the network and the second problem is vanishing gradient and exploding
gradient [37].

In this paper, we have used the Gated hidden unit proposed by Choet al. (2014a), for RNN
activation function σg. Simply, as an elementwise tanh, the gated concealed unit is an alternative to
ordinary units. The gated unit is like Hochreiter and Schmidhuber’s (1997) long short-term memory
(LSTM) unit, which can learn and model with long-term dependencies more effectively. Probably,
this can be done by taking paths of computation within the unfolded RNN such that the derivatives
product is close to one. By the way, these paths permit gradients to easily flow backward deprived of
excessively suffering from the vanishing effect (Pascanu et al., 2013a). Consequently, it is potential to
use LSTM units as an alternative to the gated hidden unit described but with some modification to
the new state. The RNN new state si taking on n gated hidden units is calculated as follows:

si = σg (si−1, yi−1, ci) = (1 − zi) ◦ si−1 + zi ◦ si (14)

where σg is an element-wise multiplication, and zi is the update gates output. We have used the following
updated state si which is computed by:

s̃i = tanh tanh (We (yi−1) + U [ri ◦ si−1] + Cci) (15)

where e (yi−1) ε n is an n-dimensional word yi−1 embedding, and ri is the retuned gates output. Such that
yi is represented as a 1 − of − M vector, simply e (yi) is a column of an embedding matrix E ε Rn×M .
Occasionally, bias terms are omitted to get equations which are less muddled. The update gate zi

allows each hidden unit to keep its preceding activation, such that the reset gate ri which controls
the information quantity which should be rest from the previous state. This is computed as follows:

zi = σ (Wze (yi−1) + Uzsi−1 + Czci) (16)

ri = σ (Wre (yi−1) + Ursi−1 + Crci) (17)

where W , U represent parameter matrices and σ(.) is a logistic sigmoid function.

5.4 Convolutional Neural Networks (CNN)

The final DL technique that contributes to RMDL is CNNs developed for hierarchical document
or picture classification. The basic CNN convolves a tensor of the image with a set of kernels of size dd
for image processing. The feature maps are convolutional layers that can be stacked to offer different
input filters. Pooling is a technique used in CNN to decrease computational complexity by lowering
output size from one layer to the next. We employ global average pooling to reduce overfitting by
lowering the number of parameters in the network. The maps are converted to columns so that the
output from the stacked featured maps can be fed into the next layer.

The final layers of a CNN are usually fully connected. During the backpropagation step of a
CNN, not only the weights but also the feature detector filters are modified. The channels number,
which reflects the feature area size, is, on the other hand, a major challenge for CNN when it comes
to text. Practically, the CNN dimensionality for text is high.
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5.4.1 Optimization

In this paper, we used two stochastic gradient optimizers in implementation of NNs that are
Adagrad and Adadelta. Adagrad is addressed in [38] which are sub gradient methods, dynamically it
absorbs geometry data knowledge to achieve more helpful the gradient based on learning. In iteration
k, define:

G(k) = diag
[∑k

i=1
g(i)

(
g(i)

)T
] 1

2
(18)

Diagonal matrix:

G(k)

jj =
√∑k

i=1
(gi

(i))
2 (19)

Update rule:

x(k+1) = arg argminxεX

{
< ∇f

(
x(k)

)
, x > + 1

2αk

‖x − x(k)‖2
G(k)

}
(20)

= x(k) − αB−1∇f
(
x(k)

)
(if X = Rn) (21)

AdaDelta is introduced by MD. Zeiler [39] as an updated version of Adagrad. This method uses
decaying average of gt exponentially as 2nd gradient moment. In fact, this method depends on only
first order. For Adadelta, the update rule is as follows:

gt+1 = γ gt + (1 − γ )∇L (θ)
2 (22)

xt+1 = γ xt + (1 − γ ) v2
t+1 (23)

vt+1 = −
√

xt + εδL (θt)√
gt+1 + ε

(24)

5.4.2 Multi Optimization Rule

Practically, if one optimizer does not offer a good fitting for an explicit dataset, the RMDL using
multi model has n random models. Such that some of them might utilize various optimizers which
could disregard k models that are not effective if and only if n > k. In this paper, we only utilized two
optimizers (Adagrad, and Adadelta) for the model evaluation, however the RMDL model can utilize
slightly other optimizer.

6 Experimental Results

This section provides comprehensive experiments on the efficacy of classification using data
augmentation techniques. The results indicate that using neural augmentation is more precisely using
GANs. At training time, the MNIST [23] and CIFAR-10 [24] datasets are used experimentally with
GANs. On CIFAR-10 and MNIST, GANs were trained for 200 and 140 k iterations, respectively.
Alternatively, at each iteration, the generator and discriminator losses are fixed. For training, Adagrad
and Adadelta optimizers are employed, which incorporate shifting parameter averages, allowing for
larger effective steps and hence faster convergence.

In order to improve performance and reduce training time, the learning rate should be reduced
when training grows. As a result, the learning rate will be based on an exponential decay.
The exponential decay is calculated as:
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decayedlearningrate = learningrate ∗ decayrate ∗
(

globalstep

decaysteps

)
(25)

where initial learning rate, rate of decay, iteration number, and decay number steps are starting learning
rate, rate of decay, global step, and decay steps, respectively.

Initial learning is set to 0.01, number of decay steps to 20000, and decay rate to 0.1 in our model.
In both generator and discriminator, a used batch size is 128. To avoid overfitting, dropout is used in
discriminator architecture. In our experiments, a dropout probability employed is 0.05. Input to the
generator is a latent space variable of 100.

6.1 Evaluation

In this paper, the accuracy and Micro F1-Score are given as follows:

Precisionmicro =
∑L

l=1TPl∑L

l=1TPl + FPl

(26)

Recallmicro =
∑L

l=1TPl∑L

l=1TPl + FNl

(27)

F1 − Scoremicro =
∑L

l=12TPl∑L

l=1TPl + FPl

(28)

The performance of the proposed model is assessed in terms of F1-score and error rate for
accuracy evaluation. Formally, given I = {1, 2, . . . , k} a set of indices, we define the ith class as Ci.
We denote TPi_true positive of Ci, TPi_false positive, TNi_false negative, TNi_true negative counts
respectively.

6.2 Experimental Setup

For testing and evaluating the performance of our approach, two datasets type one for text and the
other for image have been used. Nevertheless, the model has ability to solve problems of classification
using different data such as video, images, and text.

6.2.1 Image Datasets

For all these experiments, we used MNIST [23] and CIFAR-10 [24] datasets. We briefly describe
characteristics of the datasets before proceeding to experiments. The CIFAR-10: The tagged photos
are a subset of the 80 million Tiny labeled images dataset. The data collection contains images from
ten different classes. Automobile, Airplane, Bird, Cat, Dog, Deer, Frog, Truck, Horse and Ship are the
categories in which all the images fall. Interestingly, the groups are mutually exclusive.

Each class has 6000 images in the CIFAR-10 dataset, which has 60000 32 × 32 color images. In
practice, this dataset is split into two parts: training data with 50000 images and testing data with 10000
images. Contrariwise, MNIST dataset comprises handwritten digits’ images. In the MNIST database,
there are 70000 handwritten digits. The photos are 28 × 28 in size and are divided into ten categories.
There are 50000 images in the training data and 10,000 images in the testing data in this dataset.
Because all the photos in both datasets are the same size, data pre-processing was minimal, except for
normalizing the images.
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6.2.2 Text Datasets

Practically, four different datasets have been used for text classification, namely; WOS, Reuters,
IMDB and 20 newsgroups. A collection of academic articles’ abstracts named Web of Science (WOS)
[40] dataset consists of three corpora (5736, 11967, and 46985 documents) for (11, 34, and 134 topics).
The Reuters-21578 news dataset includes 10,788 documents distributed into 7,769 documents used for
training and 3,019 for validation through 90 classes totally.

IMDB dataset comprises 50,000 reviews divided into 25,000 highly widely set held reviews of
movie used for training, and a set 25,000 for validation. 20 NewsGroup dataset contains 19,997
documents which its maximum length is 1,000 words. For this dataset, there are 15,997 used for training
and 4,000 for testing.

6.2.3 Framework

The suggested framework is implemented in Python using a parallel computing platform and
Application Programming Interface (API) paradigm established by Nvidia known as Compute
Unified Device Architecture (CUDA). Finally, TensorFlow and Keras library have been used for the
neural network creation [41].

6.3 Empirical Results

In this paper, execution of all shown results are performed on Central Process Units (CPU) and
Graphical Process Units (GPU). Correspondingly, RMDL can run on either GPU, CPU, or composed.
The processing unit used in these experiments is intel on Xeon E5-2640 (2.6 GHz) with 12 cores and
64 GB memory. Moreover, three graphical cards have been used which are two NVidia GeForce GTX
1080 Ti and NVidia Tesla K20c.

Before proceeding to experiment results, it is required to generate training batches. We only used
a subset of the datasets as training data in practice. More specifically, the training data for CIFAR-10
and MNIST contains 5000 images, 500 of which belong to each of the 10 classes, while the testing data,
which contains 10,000 images, remains unchanged. The experimental results of RMDL are shown in
text categorization and image classification.

6.3.1 Image Classification

The baselines used for image classification are: Deep L2-SVM [42], PCANet-1 [43], gcForest [44]
and RMDL with no augmentation. Table 1 shows the RMDL error rate for images classification
generated by neural augmentation. The comparison between the RMDL with augmentation and
RMDL with baselines, explicit that the RMDL error rate with augmentation for MNIST and
CIAFAR-10 datasets has been decreased with different random models.

Table 1: Comparison of error rate for image classification (MNIST and CIAFAR-10 datasets)

Methods MNIST CIFAR-10

Baseline DeepL2-SVM [43] 0.86 11.8
PCANet-1 [44] 0.67 21.31
geForest [45] 0.73 30.00

(Continued)
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Table 1: Continued
Methods MNIST CIFAR-10

RMDL [2] 3 RDLS 0.56 9.88
9 RDLS 0.44 9.0
15 RDLS 0.21 8.74
30 RDLS 0.18 8.79

RMDL with augmentation 3 RDLS 0.45 8.21
9 RDLS 0.38 7.85
15 RDLS 0.18 7.23
30 RDLS 0.10 7.51

6.3.2 Text Categorization

As Table 2 shows, RMDL with augmentation the accuracy has been enhanced comparing with
the baselines. The empirical results in Table 2 are evaluated using four RMDL models (using 3, 9, 15,
and 30 RDLs). The accuracy for Web of Science (WOS-5,736) is increased to 92.43, 93.00, 94.56 and
94.98 respectively. The accuracy for Web of Science (WOS-11,967), is improved to 93.85, 94.88, 93.18
and 94.45 respectively, and finally the accuracy for Web of Science (WOS-46,985) has improved to
82.87, 85.62, 85.35 and 86.56 correspondingly. The accuracy of Reuters-21578 is 91.25, 93.56, 93.95
and 92.77 respectively. As it is mentioned, the accuracy has been improved with all datasets.

Table 2: Text classification accuracy comparison for W.1 (WOS-5736), W.2, W.3, AND R STANDS
REUTERS-21578

Methods W.1 W.2 W.3 R

Baseline DNN 86.14 80.00 66.89 85.1
CNN 88.66 83.20 70.45 86.1
RNN 88.98 83.88 72.11 88.23

RMDL [2] 3 RDLS 90.85 87.32 78.35 88.98
9 RDLS 92.59 90.54 81.91 90.35
15 RDLS 92.64 90.59 81.78 89.88
30 RDLS 92.55 90.52 82.68 90.65

RMDL with augmentation 3 RDLS 92.43 93.85 82.87 91.25
9 RDLS 93.00 94.88 85.62 93.56
15 RDLS 94.56 93.18 85.35 93.95
30 RDLS 94.98 94.45 86.56 92.77

Other datasets, such as the Large Movie Review Dataset (IMDB) and 20 NewsGroups, also
have results. Table 3 shows how RMDL with augmentation improves accuracy for two ground truth
datasets.
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Table 3: Comparison of accuracy for text classification on IMDB and 20 newsgroup datasets

Methods IMDB 20 NewsGroup

Baseline DNN 87.59 86.42
CNN [45] 87.32 82.89
RNN [45] 88.52 83.72

RMDL [2] 3 RDLS 88.90 86.72
9 RDLS 91.11 87.61
15 RDLS 90.89 87.90

RMDL with augmentation 3 RDLS 92.35 90.89
9 RDLS 94.21 92.75
15 RDLS 93.87 92.45

The accuracy of IMDB dataset is 92.35%, 94.21% and 93.87% respectively for 3, 9, and 15 RDLs,
where the accuracy of DNN is 87.59%, CNN [45] is 87.32%, and RNN [45] is 88.52%. The accuracy
of 20 NewsGroup dataset is 90.89%, 92.75% and 92.45% for 3, 9, and 15 random models respectively,
where the accuracy of DNN is 86.42%, CNN [45] is 82.89%, and RNN [45] is 83.72%.

7 Conclusion and Discussion

In ML, to generalize findings of a classification task, we normally need to increase the training
data amount, however, that causes the model to be overfitted and hence poorly performs on the testing
set. In this work, an alternative mean of data augmentation problem using GANs has been introduced
to overcome such a challenge. In particular, the proposed framework forces the convolutional
architecture’s ability to learn low features for data capturing. By using these architectures, the data
which is more meaningful and accurate can be collected. For classification, we used the RMDL model
that solved the problem of choosing best technique in DL. The results show that combining RMDL
with neural augmentation network provides improvements for classification for both images and text.
The proposed approach has capability of improving model efficiency and accuracy and also can be
used through a widespread variety of types of data.
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