

Computers, Materials & Continua CMC, vol.61, no.2, pp.777-792, 2019

CMC. doi:10.32604/cmc.2019.06366 www.techscience.com/cmc

Task-Based Resource Allocation Bid in Edge Computing Micro
Datacenter

Yeting Guo1, Fang Liu2, *, Nong Xiao1 and Zhengguo Chen1, 3

Abstract: Edge computing attracts online service providers (SP) to offload services to edge
computing micro datacenters that are close to end users. Such offloads reduce packet-loss
rates, delays and delay jitter when responding to service requests. Simultaneously, edge
computing resource providers (RP) are concerned with maximizing incomes by allocating
limited resources to SPs. Most works on this topic make a simplified assumption that each
SP has a fixed demand; however, in reality, SPs themselves may have multiple task-
offloading alternatives. Thus, their demands could be flexibly changed, which could
support finer-grained allocations and further improve the incomes for RPs. Here, we
propose a novel resource bidding mechanism for the RP in which each SP bids resources
based on the demand of a single task (task-based) rather than the whole service (service-
based) and then the RP allocates resources to these tasks with following the resource
constraints at edge servers and the sequential rule of task-offloading to guarantee the
interest of SPs. We set the incomes of the RP as our optimization target and then formulate
the resource allocation problem. Two typical greedy algorithms are adopted to solve this
problem and analyze the performance differences using two different bidding methods.
Comprehensive results show that our proposal optimizes resource utilization and improves
the RP’s incomes when resources in the edge computing datacenter are limited.

Keywords: Edge computing, resource allocation, task-offloading alternative.

1 Introduction
The growing size, popularity and number of applications available on the network have
introduced more complex network structures and more serious network congestion [Cai,
Wang, Zheng et al. (2013); Tan, Liu, Wang et al. (2019); Tan, Liu, Xie et al. (2019)]. High
packet loss rates, delays and delay jitter act to prevent online service providers (SP) from
promoting their services and meeting the growing functional demand from mobile users
[Liu, Liu, Liu et al. (2019); Teng, Liu, Liu et al. (2019); Guo, Wu, Zhang et al. (2018)].
Edge computing [Liu, Guo, Cai et al. (2019); Zhao, Liu, Cai et al. (2018)] is a good solution
for SPs that intelligently processes service requests at the edge of the network. In particular,
edge computing has gradually evolved to play an irreplaceable role in application scenarios

1 College of Computer, National University of Defense Technology, Harbin, 410073, China.
2 School of Data and Computer Science, Sun Yat-Sen University, Guangzhou, 510006, China.
3 Computer Science Department, University of Pittsburgh, Pittsburgh, 15213, USA.
* Corresponding Author: Fang Liu. Email: liufang25@mail.sysu.edu.cn.

778 CMC, vol.61, no.2, pp.777-792, 2019

that require enhanced mobile broadband, ultrahigh reliability and low latency
communication, or massive Internet of Things communications [Guo, Liu, Cai et al. (2018);
Kiss, Reale, Ferrari et al. (2018); Liu, Tang, Li et al. (2019)]. Increasingly, SPs seek to
expand their profits with the help of edge computing.
An edge computing resource provider (RP) manages an edge computing micro datacenter
that consists of several physical edge servers located near a base station [Aazam and Huh
(2015)]. The value of edge computing as an emerging technology is widely recognized, but
both SPs and RPs are still unsure about how to best deploy, manage and operate services in
edge computing micro datacenters. This problem has become a hot research topic in both
academia and industry [Sun, Zhou and Xu (2017); Fajardo, Taboada and Liberal (2015)].
However, few consider the acceptability of SPs. Suppose that each RP adopts a totally
different edge computing system architecture; then, SPs must expend considerable effort to
learn the corresponding user guide, which inevitably inhibits the scale and the
commercialization of edge computing. To make edge computing friendlier and more
acceptable to SPs, we believe that the existing architecture of a Content Distribution Network
(CDN) [Shanmugam, Golrezaei, Dimakis et al. (2013)] is a good reference for edge
computing system architecture design because the CDN service model is quite familiar to
SPs, and traditional CDNs desperately need edge intelligence to transform and upgrade their
services. Thus, we design a novel architecture, XDN, that combines existing CDN and the
promising edge computing. The basic idea in XDN is that the edge computing micro
datacenter does not simply cache content requested by users; instead, it caches computing
instances that can handle the computing tasks most frequently involved in users’ requests.
With the increasing emergence of novel services, demands for resources have also
increased. Since resources in the edge computing micro datacenter are limited and
unsatisfactory for meeting all SPs’ resource demands, the major challenge in XDN is to
determine which computing instances should be allocated resources and activated.
Consequently, an efficient resource allocation scheme is vital to both RPs and SPs.
Resource allocation in edge computing has attracted significant attention in recent years
[Alshuwaili and Simeone (2017); Liu, Bennis and Poor (2017)]. Most existing works
assume that SPs have completed an evaluation of their resource demands and are ready to
negotiate with the RP to obtain a resource supply. An SP who loses in a bidding war for
resources with other SPs will obtain no resources from the edge computing micro
datacenter; instead, all requests for services must be processed by the remote cloud
datacenter without the help of the edge computing datacenter. We note that services always
consist of several functionally independent tasks [Wang, Shen, Li et al. (2018); Wu, Pang,
Dai et al. (2018); Fang, Cai, Sun et al. (2018)]. This fact allows SPs to maintain one or
more task-offloading alternatives. Research on task offloading in edge computing always
attempts to find the best task-offloading solution that achieves the highest service
performance from the perspective of a single service. Each SP wants to adopt the best task-
offloading solution but rarely can everyone get what they want due to the resource
constraints in the edge computing micro datacenter. Beyond the best task-offloading
solution, other task-offloading alternatives can be beneficial to the service even though
they are somewhat less advantageous. We define such alternatives as ‘acceptable
alternatives’. If an SP were 1to flexibly adjust to some acceptable task-offloading

Task-Based Resource Allocation Bid in Edge Computing 779

alternatives to decrease resource demands when the best solution is rejected by the RP, it
would enable the RP to make finer-grained edge computing resource allocation and further
optimization and then increase SPs’ possibilities of obtaining resources. In this paper, we
are motivated to design a resource bidding mechanism for RPs to optimize edge computing
resource allocation and maximize incomes. Each SP evaluates the gains resulting from
each acceptable task-offloading alternative (task-based) rather than only one alternative
(service-based), and then provides the RP with the corresponding resource demands, and
the bidding prices. For each SP, only one acceptable alternative can be selected. Given
more alternatives from the SPs, the RPs could make finer-grained global resource
allocation optimization decisions [Liu, Dai and Wang (2004)].
In an edge computing micro datacenter, heterogeneous resources are distributed among
multiple physical edge servers. Various resource constraints exist when allocating
resources [Liu, Cai, Xu et al. (2015)]. Based on the above design and resource constraints
in the edge computing micro datacenter, we model the edge computing resource allocation
optimization problem among multiple SPs. Greedy algorithm is widely adopted to solve
the resource allocation problem in the edge computing datacenter [Bahreini, Badri and
Grosu (2018); Nakamura, Mizumoto, Suwa et al. (2018)], so we use two typical greedy
algorithms to efficiently find the suboptimal solution for resource allocation. The main
results and contributions of this paper are summarized as follows.
 Exploration of service deployment and management in edge computing: We propose

a novel architecture, XDN, that caches computing instances to handle users’ service
requests at the edge of the network. The service deployment and management in XDN
are based on existing CDN concepts, making edge computing more understandable
and applicable to most SPs.

 Formulation of the edge computing resource allocation problem: We then discuss the
edge computing resource allocation problem from two aspects. For SPs, we propose
that each SP provides one or more acceptable task-offloading alternatives to increase
their competitiveness during the edge computing resource auction. Given such
alternatives, resources could be allocated in a more flexible and finer-grained way.
From RPs, we take into account the various resource constraints in the edge computing
datacenter and the sequential rules of task offloading in edge computing. Then we
formulate the problem with the aim of maximizing the incomes of RPs.

 Evaluation of different resource bidding method: We adopts two typical greedy
algorithms to match resource supplies and demands in the above resource allocation
problem. Numerical results demonstrate that the task-based bidding method is superior
to the service-based bidding method no matter what greedy algorithms we select. And
we also analyze the impact of several main parameters on the performance differences.

The remainder of this paper is organized as follows. Section 2 introduces related works.
Section 3 presents the mobile edge computing system architecture. The resource allocation
problem formulation and the design of our algorithm are presented in Section 4. We present
the evaluation results in Section 5. Finally, Section 6 concludes the paper.

780 CMC, vol.61, no.2, pp.777-792, 2019

2 Related work
Service functions are usually implemented by multiple tasks, so SPs have multiple task-
offloading alternatives. Many research studies have been carried out on task offloading
mechanism for SPs. LAVEA in Yi et al. [Yi, Hao, Zhang et al. (2017)] proposed to offload
tasks between mobile terminals and edge servers based on their computational resources
and the network bandwidth between them. In Mao et al. [Mao, Zhang and Letaief (2016)]
the execution delay and energy assumption of edge server execution are investigated to
offload tasks in a reasonable energy-saving way. In Zhao et al. [Zhao, Liu, Cai et al. (2017)]
it senses the bandwidth of the network and the queue of requests to be processed in real
time, dynamically adjusts the parameters of the deep learning model, and achieves efficient
data processing. It could be obviously found that the resources that the RP allocates is vital
to select the best task-offloading scheme. However, these works only consider their own
performance, without considering that other services are also competing for limited
resources in the edge computing micro datacenter.
Since resource supply in the micro datacenter always fails to meet the increasing demands
of SPs, resource allocation draws more and more attention of researchers. Some works
studied the allocation among multiple users [Mao, Zhang, Song et al. (2017); Guo, Song,
Cui et al. (2017); Li, Martinez-Ortega and Diaz (2018)]. The authors in [Mao, Zhang, Song
et al. (2017)] consider the dynamical resource demands and develop an online joint radio
and computational resource management algorithm for multi-user edge computing systems.
The authors in Guo et al. [Guo, Song, Cui et al. (2017)] discuss the resource allocation
from the perspective of energy saving. The authors in Li et al. [Li, Martinez-Ortega and
Diaz (2018)] take into account the interference among users and design a game theory to
achieve distributed power control. But these works are applicable to mobile users but not
to SPs. SPs tend to deploy their services in edge computing micro datacenters or cloud
datacenters for security and management. Most works discuss the resource allocation
among multiple SPs in an auction way [Zhang, Xiong and Lou (2014); Jin, Song and
Zhuang (2018)]. RAERA in [Prasad, Arumaithurai, Koll et al. (2017)] proposed that RPs
kept a reserved price based on historical data and the SP whose bidding price is higher than
the reserved price and others’ price is the winner. Zenith in Xu et al. [Xu, Palanisamy,
Ludwig et al. (2017)] evaluated the utility of SPs and RPs, established resource sharing
contact between them and then proposed a latency-aware scheduling and resource
provisioning algorithm. The authors in Bahreini et al. [Bahreini, Badri and Grosu (2018)]
design an envy-free auction mechanism to allocate resources to SPs. These works simply
regard the resource demands of each SP as an indivisible unit. In this paper, we call this
bidding method service-based. As we mentioned above, each SP has multiple choice to
offload tasks. Different task-offloading alternatives require different resource demand and
make different improvements on performance. But few works discuss the elastic prosperity
of SPs’ resource demands in the resource allocation.
Besides these works simply assume that the resources in the edge computing datacenter
form a resource pool and the RP allocates resources from the pool. Actually, the resource
allocation problem is more complex. These resources are distributed at physical edge
servers. And demands on certain resources cannot be simply split into several parts and
satisfied by different edge servers. Few works discuss the resource allocation problem

Task-Based Resource Allocation Bid in Edge Computing 781

among several edge servers in the same edge computing datacenter. The resource allocation
schemes discussed for cloud infrastructure providers [Luo, Wang, Cai et al. (2019); Xie,
Yuan, Zhou et al. (2018); Cheang, Wang, Cai et al. (2018)] are not suitable. These schemes
are under the assumption that all these services could be deployed in the cloud when cloud
resources are allocated in a reasonable way. But the assumption is not always supported in
edge computing. Besides the placement of services is no longer confined to the remote
datacenter but also could be an edge computing microdata center. Thus, it introduces new
considerations to allocate edge resources to deploy these services.

3 System architecture
A content delivery network (CDN) caches content at geographically distributed edge
servers; these proximity edge servers can respond quickly to requests. The rapid
development of the IoT and AI technology has caused content to become more complicated.
A traditional CDN configures the remote cloud data center to process dynamic computing
services. This approach results in substantial overhead due to the long transmission
distances. In contrast, edge computing leverages computing resources, storage resources
and network resources available through edge servers to offload most computing tasks to
the network edge. Only tasks that have high demand for computing resources and storage
space are executed in the cloud.
Because both a CDN datacenter and an edge computing datacenter benefit from network
edge proximity and because the CDN operation model is already familiar to most SPs,
combining CDN and edge computing will become a future development trend [Zhang,
Leng, He et al. (2018)]. Therefore, we introduce a novel XDN architecture that references
the existing CDN architecture, making XDN more understandable and applicable to SPs.
Compared with a CDN, XDN introduces the concept of edge computing to promote edge
intelligence, that is, caching computing instances to handle computing tasks involved in
service requests. The XDN architecture is shown in Fig. 1. Additional service deployment
and management details in this architecture are presented below.

Figure 1: Architecture of XDN

SPs encapsulate their services into docker containers [Ma, Yi and Li (2017)] and migrate
these containers to Template Store module in the edge computing micro datacenter. When

782 CMC, vol.61, no.2, pp.777-792, 2019

a mobile terminal user accesses a service, the DNS parses the domain name and returns the
IP address of the micro datacenter closet to the mobile user. Based on the IP address, the
user sends an http(s) request to that datacenter. Upon receiving the request, the Load
Balancer module further resolves the request header and then distribute the request to one
of the computing engines based on certain rules. This module also fulfils the role of a
billing gateway (BGW) to record the request and charge accordingly. Each computing
engine runs several computing instances, where a computing engine and a computing
instance correspond to an edge server and a container, respectively. Nginx is a powerful
high-performance web and reverse proxy service [Reese (2008)] that is used to resolve the
request content and then determine whether computing instances in the computing engine
are able to fulfil the service request. When one can, Nginx distributes the request to the
corresponding computing instance and redirects the response from the computing instance
to the Load Balancer module. Finally, the module returns the result to the mobile user.
When no computing instances are available to fulfil the request, Nginx suggests that the
Load Balancer distributes the request to other computing engines similar to the way a
traditional CDN redistributes requests when an edge server has not cached requested
content. When the Load Balancer notices that the request has still not been responded to
after multiple distributions, it finally asks the cloud to process the request.
From the description above, it's observed that computing instances running in computing
engines have a direct influence on the performance of edge computing micro datacenters.
Due to the limited resources, the computing engine are unable to execute all computing
instances. The Coordinator module determines the resource allocation among computing
instances. The Scheduler module is designed to manage containers and is implemented by
Kubernetes [Bernstein (2014)]. When the Coordinator needs to modify the state of a
container, it informs the Scheduler module to transfer that container from the Template
Store to a corresponding computing engine or to remove the container from a computing
engine. The Template Store module stores containers for various services; we apply a
docker registry to register the stored containers. When the container that the Coordinator
wants to activate does not exist in the Template Store module, the module would ask the
cloud to migrate that container to the edge computing micro datacenter. In this way, the
edge computing micro datacenter can respond to service requests at the edge of the network.
In this paper, we discuss the resource allocation schemes in the Coordinator module.
Generally, the high-level functions of a service are always composed of several tasks. Each
task is independent and achieves specific sub-functions, which are encapsulated into
independent containers because they were likely developed by different research and
development teams. Each container can be migrated to the edge computing micro
datacenter or be kept in the remote cloud datacenter. Thus, resources at edge servers can
be allocated based on resource demands of a single task.
Meanwhile, these tasks are also correlated to achieve the overall function. Sequential
relationships are common among tasks, which adds basic constraints to most task-
offloading mechanisms in edge computing. Thus, when considering offloading tasks, we
divide the tasks into two parts: predecessor and successor tasks. In most cases, the edge
computing micro datecenter plays a preprocessing role in service requests. Predecessor
tasks are offloaded to the micro datacenter, and successor tasks are offloaded to the remote

Task-Based Resource Allocation Bid in Edge Computing 783

cloud datacenter when the micro datacenter is unable to execute them.
To better understand our work, we first provide an example, as shown in Fig. 2. In this
scenario, the service is composed of three tasks, and the SP has four task-offloading
alternatives. Alternative 4 provides maximum profit to the SP; however, the SP fails to
acquire the appropriate edge resources in a bidding process with other SPs. In the existing
research works, the losing SP would not be able to obtain any edge resources; that is, it
would reluctantly be forced to adopt Alternative 1. These works neglect the possibility that
the edge resource supply may be able to satisfy the resource demands of Alternative 3. The
benefit accrued by alternative 3 is lower than that of Alternative 4 but higher than that of
Alternative 1. Thus, if the SP were to adopt Alternative 3 and obtains the corresponding
resources from a RP, it would be a win-win for both the RP and the SP.

Figure 2: Example of task-offloading alternatives

This win-win possibility inspired us to propose a new resource bidding mechanism in
which every SP evaluates the service performance advantages accrued by different task-
offloading alternatives, provides the corresponding resource demands and bidding prices.
Bidding prices are given by SPs and are usually determined by task performance
improvement and resource demands. If adopting task-offloading alternatives can provide
obvious performance improvements, the SP increases its profits and will certainly be
willing to increase the bidding price to ensure that the resource demands of those
alternatives are satisfied. In addition, bidding prices sometimes relate to service types and
reflect the quality or importance of services. In this paper, we discuss resource allocation
from the perspective of the RP to maximize the incomes. Thus, price models are not within
the scope of this paper; readers can refer to works such as Xu et al. [Xu, Palanisamy,
Ludwig et al. (2017); Aazam and Huh (2015)] for more information. Then we assume that
the bidding prices have been calculated by SPs.

4 Problem
In this section, we fully consider the constraints when allocating edge resources, formulate
the resource allocation problem and then adapt two typical greedy algorithms to efficiently
allocate edge resources to multiple SPs and maximize the incomes of the RP. Tab. 1
summarizes the main notations in the formulation.

784 CMC, vol.61, no.2, pp.777-792, 2019

Table 1: Notations of the model

Notation Definition
𝐶𝐶 The number of edge servers in the edge computing datacenter
𝐾𝐾 The number of resource types
�𝑠𝑠𝑙𝑙1, 𝑠𝑠𝑙𝑙2 ⋯ 𝑠𝑠𝑙𝑙𝐾𝐾� Resource supply at server 𝑙𝑙
𝑁𝑁 The number of services, that is, the number of SPs
ℎ𝑖𝑖 The number of tasks in service 𝑖𝑖
�𝑑𝑑𝑖𝑖,𝑗𝑗1 ,𝑑𝑑𝑖𝑖,𝑗𝑗2 ⋯𝑑𝑑𝑖𝑖,𝑗𝑗𝐾𝐾 � Resource demands of the container 𝑐𝑐𝑐𝑐𝑖𝑖,𝑗𝑗
𝑢𝑢𝑖𝑖,𝑗𝑗 The payment of container cti,j
𝑥𝑥𝑖𝑖,𝑗𝑗 The server which deploys container cti,j
𝑠𝑠𝑢𝑢𝑠𝑠𝑖𝑖,𝑗𝑗 The priority of container cti,j in obtaining resources
𝑤𝑤𝑣𝑣 The weight of resource v

Assume that the edge computing micro datacenter is a cluster of 𝐶𝐶 homogeneous edge
servers. Each server supplies K types of resources. �𝑠𝑠𝑙𝑙1, 𝑠𝑠𝑙𝑙2 ⋯ 𝑠𝑠𝑙𝑙𝐾𝐾� (𝑙𝑙 ∈ {1,2⋯𝐶𝐶}) denotes
the resource supply of the lth server. There are 𝑁𝑁 OSPs attempting to obtain edge resources.
The 𝑖𝑖𝑡𝑡ℎ(𝑖𝑖 ∈ {1,2⋯𝑁𝑁}) service is composed of hi tasks. Each task is encapsulated in a
container. �𝑑𝑑𝑖𝑖,𝑗𝑗1 ,𝑑𝑑𝑖𝑖,𝑗𝑗2 ⋯𝑑𝑑𝑖𝑖,𝑗𝑗𝐾𝐾 � (𝑗𝑗 ∈ {1,2⋯ℎ𝑖𝑖}) denotes the resource demand of the container
cti,j which encapsulates jth task of ith service. When deploying the container cti,j , the
OSP's payment is ui,j. xi,j indicates the server that the container 𝑐𝑐𝑐𝑐𝑖𝑖,𝑗𝑗 is deployed on. If xi,j
is equal to l (xi,j == l), it means that the container is placed in the lth edge server. If xi,j
is equal to 0, it means that the container is kept in the cloud. Then the resource constraints
in the edge computing micro datacenter are described as
∑ ∑ �𝑥𝑥𝑖𝑖,𝑗𝑗 == 𝑙𝑙� × 𝑑𝑑𝑖𝑖,𝑗𝑗𝑣𝑣 ≤ 𝑠𝑠𝑙𝑙𝑣𝑣 , ∀𝑙𝑙 ∈ {1,2, …𝐶𝐶},∀𝑣𝑣 ∈ {1,2, …𝐾𝐾}ℎ𝑖𝑖

𝑗𝑗=1
𝑁𝑁
𝑖𝑖=1 (1)

Predecessor tasks are offloaded to the edge computing micro datacenter, and successor
tasks are offloaded to the cloud datacenter. If 𝑗𝑗𝑡𝑡ℎ task is offloaded to edge servers, that is,
xi,j is not equal to zero (xi,j! = 0) , (j-1)th task would also be offloaded to the micro
datacenter (xi,j-1! = 0). Thus, the sequential rule of task-offloading can be described as
(𝑥𝑥𝑖𝑖,𝑗𝑗! = 0) ≤ (𝑥𝑥𝑖𝑖,𝑗𝑗−1! = 0) (2)
From the incomes of the RP, the optimization goal is expressed as
𝑚𝑚𝑚𝑚𝑥𝑥∑ ∑ (𝑥𝑥𝑖𝑖,𝑗𝑗! = 0) × 𝑢𝑢𝑖𝑖,𝑗𝑗

ℎ𝑖𝑖
𝑗𝑗=1

𝑁𝑁
𝑖𝑖=1 (3)

In essence, the problem is Multiple-dimension Multiple-choice Multiple-knapsack
knapsack problem (MMMKP). More specifically, various resource constraints and
ordering constraints make the knapsack problem multidimensional. Every SP has one or
more scheme choices. And containers that encapsulate tasks can be placed in alternative
available edge servers, which could be regarded as knapsacks. Therefore, the problem is
NP hard problem.
Greedy algorithm (GA) is simple and high-efficient method to solve resource optimization

Task-Based Resource Allocation Bid in Edge Computing 785

problems [Bahreini, Badri and Grosu (2018); Nakamura, Mizumoto, Suwa et al. (2018);
Zhang, He, Suto et al. (2018)]. We investigate two typical greedy algorithms among them
and make simple modifications to them so that they could be applicable to the task-based
resource bid. In the first greedy algorithm, the prices of tasks represent the priority in
obtaining resources, that is, 𝑠𝑠𝑢𝑢𝑠𝑠𝑖𝑖,𝑗𝑗 = 𝑢𝑢𝑖𝑖,𝑗𝑗. And the second greedy algorithm calculates the
weight of each resource {𝑤𝑤1,𝑤𝑤2⋯𝑤𝑤𝐾𝐾} according to the Equation 4 and then sets the priority
of tasks based on the prices of tasks, the resource demands and the weights of resources
according to Eq. (5). Since the priority of each task is determined, the following step in the
two algorithms is to allocate resources to tasks, shown in Algorithm 1.

𝑤𝑤𝑣𝑣 = ∑ 𝑠𝑠𝑙𝑙
𝑣𝑣𝐶𝐶

𝑙𝑙=1

∑ ∑ 𝑑𝑑𝑖𝑖,𝑗𝑗
𝑣𝑣ℎ𝑖𝑖

𝑗𝑗=1
𝑁𝑁
𝑖𝑖=1

,∀𝑣𝑣 ∈ {1,2⋯𝐾𝐾} (4)

𝑠𝑠𝑢𝑢𝑠𝑠𝑖𝑖,𝑗𝑗 = 𝑢𝑢𝑖𝑖,𝑗𝑗
∑ 𝑤𝑤𝑣𝑣×𝑑𝑑𝑖𝑖,𝑗𝑗

𝑣𝑣𝐾𝐾
𝑣𝑣=1

 (5)

Algorithm 1: task-based resource allocation

Input: the priority of each task 𝑠𝑠𝑢𝑢𝑠𝑠𝑖𝑖,𝑗𝑗, the resource demand of each task �𝑑𝑑𝑖𝑖,𝑗𝑗1 ,𝑑𝑑𝑖𝑖,𝑗𝑗2 ⋯𝑑𝑑𝑖𝑖,𝑗𝑗𝐾𝐾 �
and the resource supply at each edge server �𝑠𝑠𝑙𝑙1, 𝑠𝑠𝑙𝑙2 ⋯𝑠𝑠𝑙𝑙𝐾𝐾�
Output: the placement of each task 𝑥𝑥𝑖𝑖,𝑗𝑗
1. Initialize all 𝑥𝑥𝑖𝑖,𝑗𝑗 // 𝑥𝑥𝑖𝑖,𝑗𝑗 is initialized to be zero
2. 𝑤𝑤𝑚𝑚𝑖𝑖𝑐𝑐_𝑐𝑐𝑚𝑚𝑠𝑠𝑡𝑡𝑠𝑠 = {𝑠𝑠𝑢𝑢𝑠𝑠1,1, 𝑠𝑠𝑢𝑢𝑠𝑠2,1 ⋯ 𝑠𝑠𝑢𝑢𝑠𝑠𝑁𝑁,1} // collect the priority of the first task in each

service
3. 𝑚𝑚𝑙𝑙𝑙𝑙𝑎𝑎𝑐𝑐𝑚𝑚𝑐𝑐𝑎𝑎_𝑐𝑐𝑚𝑚𝑠𝑠𝑡𝑡 = [0] × 𝑁𝑁
4. While 𝑤𝑤𝑚𝑚𝑖𝑖𝑐𝑐_𝑐𝑐𝑚𝑚𝑠𝑠𝑡𝑡𝑠𝑠! = [] do
5. [𝑠𝑠𝑣𝑣, 𝑐𝑐𝑡𝑡] = 𝑚𝑚𝑚𝑚𝑥𝑥(𝑤𝑤𝑚𝑚𝑖𝑖𝑐𝑐_𝑐𝑐𝑚𝑚𝑠𝑠𝑡𝑡𝑠𝑠) // the corresponding service and task whose priority

is the highest among wait tasks
6. 𝑠𝑠𝑎𝑎𝑝𝑝𝑚𝑚𝑙𝑙𝑐𝑐𝑝𝑝 = [0] × 𝐶𝐶 // initial the penalty of each server
7. for 𝑙𝑙 = 1; 𝑙𝑙 ≤ 𝐶𝐶; 𝑙𝑙 = 𝑙𝑙 + 1 do

8. 𝑠𝑠𝑎𝑎𝑝𝑝𝑚𝑚𝑙𝑙𝑐𝑐𝑝𝑝𝑙𝑙 = �∑ (
𝑑𝑑𝑠𝑠𝑣𝑣,𝑡𝑡𝑡𝑡
𝑣𝑣

𝑠𝑠𝑙𝑙
𝑣𝑣)2𝐾𝐾

𝑣𝑣=1

9. // no servers satisfy the resource demands of this task
10. if 𝑚𝑚𝑖𝑖𝑝𝑝(𝑠𝑠𝑎𝑎𝑝𝑝𝑚𝑚𝑙𝑙𝑐𝑐𝑝𝑝) > 1 then
11. // make the resolution follow the sequential rule of task-offloading
12. for 𝑖𝑖 = 𝑐𝑐𝑡𝑡; 𝑖𝑖 ≤ ℎ𝑠𝑠𝑣𝑣; 𝑖𝑖 = 𝑖𝑖 + 1 do
13. 𝑥𝑥𝑠𝑠𝑣𝑣,𝑖𝑖 = 0
14. delete 𝑠𝑠𝑢𝑢𝑠𝑠𝑠𝑠𝑣𝑣,𝑡𝑡𝑡𝑡 from 𝑤𝑤𝑚𝑚𝑖𝑖𝑐𝑐_𝑐𝑐𝑚𝑚𝑠𝑠𝑡𝑡𝑠𝑠
15. else
16. 𝑥𝑥𝑠𝑠𝑣𝑣,𝑡𝑡𝑡𝑡 = 𝑠𝑠𝑎𝑎𝑝𝑝𝑚𝑚𝑙𝑙𝑐𝑐𝑝𝑝. 𝑖𝑖𝑝𝑝𝑑𝑑𝑎𝑎𝑥𝑥(𝑚𝑚𝑖𝑖𝑝𝑝(𝑠𝑠𝑎𝑎𝑝𝑝𝑚𝑚𝑙𝑙𝑐𝑐𝑝𝑝))
17. update the resource supply in server 𝑥𝑥𝑠𝑠𝑣𝑣,𝑡𝑡𝑡𝑡

786 CMC, vol.61, no.2, pp.777-792, 2019

18. 𝑚𝑚𝑙𝑙𝑙𝑙𝑎𝑎𝑐𝑐𝑚𝑚𝑐𝑐𝑎𝑎_𝑐𝑐𝑚𝑚𝑠𝑠𝑡𝑡𝑠𝑠𝑣𝑣 = 𝑐𝑐𝑡𝑡

19. delete 𝑠𝑠𝑢𝑢𝑠𝑠𝑠𝑠𝑣𝑣,𝑡𝑡𝑡𝑡 from 𝑤𝑤𝑚𝑚𝑖𝑖𝑐𝑐_𝑐𝑐𝑚𝑚𝑠𝑠𝑡𝑡𝑠𝑠
20. if 𝑐𝑐𝑡𝑡 ≤ ℎ𝑠𝑠𝑣𝑣 then
21. add 𝑠𝑠𝑢𝑢𝑠𝑠𝑠𝑠𝑣𝑣,𝑡𝑡𝑡𝑡+1 to 𝑤𝑤𝑚𝑚𝑖𝑖𝑐𝑐_𝑐𝑐𝑚𝑚𝑠𝑠𝑡𝑡𝑠𝑠
22. return all 𝑥𝑥𝑖𝑖,𝑗𝑗

5 Evaluation
To evaluate the performance of our scheme, we did multiple simulations in this section. In
the simulation, we mainly compared the performance differences caused by different
bidding methods. In the service-based bidding method, we also adopted the basic idea of
the two algorithms and made the following modifications. The priority of a service is the
sum of the priorities of all tasks that make up the service. And if no edge servers could
satisfy the resource demands of one task in the service, all the tasks in the service would
not obtain resources from the edge computing micro datacenter.

5.1 Experimental setup
We simulate that there exist 14 edge servers (𝑁𝑁 = 14) in the micro datacenter. And the
configuration of these edge servers is the same as ecs.ga1.14xlarge provided by AWS,
shown in Tab. 2.

Table 2: Configuration of edge server

Resource type Resource supply
vCPU 56
Memory (GiB) 160
Local dists (GiB)* 1400
GPU 4
Bandwidth (Gbit/s)** 10
Packet forwarding rate (Thousand pps) *** 120
NIC queues **** 4
ENIs ***** 8

The resource demands of each task are randomly generated without exceeding the scope
of the resource supply of an idle server. It reflects the different needs of different tasks for
different resources. Since there are various resources in edge servers, multiple supply and
demand ratios exist. For the convenience to present simulation results, we introduce a new
variable, denoted by 𝑠𝑠, and defined as Eq. (6), to represent the overall resource supply and
demand ratio. The resource allocation scheme is designed for the case that SPs’ resource
demands exceed resource supplies in the micro datacenter. Thus, we set the range of 𝑠𝑠
from 0.1 to 2.0 with an interval of 0.1. Note that it does not mean that all SPs could be
satisfied even if 𝑠𝑠 is equal to 1 because 𝑠𝑠 is calculated based on the statistics of the overall
resource demand and supply, but actually resource constraints are independent, and the

Task-Based Resource Allocation Bid in Edge Computing 787

resource allocation scheme must strictly meet all resource constraints. These tasks are
randomly assigned to services. Each service is composed of 7 tasks at most (ℎ𝑖𝑖 ≤ 7).
𝑠𝑠 = 𝑚𝑚𝑖𝑖𝑝𝑝{𝑤𝑤1,𝑤𝑤2⋯𝑤𝑤𝐾𝐾} (6)
The bidding price of each task in services 𝑢𝑢𝑖𝑖,𝑗𝑗 is randomly generated in the range from 1000
to 1200. It aims to make the competitiveness of SPs roughly equal. Otherwise, weak
competitive SPs may never get the resources they want and make no difference in evaluating
the performance. And we repeat experiments 500 times in each set of simulations.

5.2 Analysis of result
As our scheme aims to optimize edge resource allocation for RPs, the most important
performance matrix is the incomes of RPs. We measure the maximum incomes that the RP
gains when meeting all resource demands, then calculate the ratio of the incomes gained in
different bidding methods and the maximum income to normalize the income. The
normalized income intuitively presents the performance differences among methods in
terms of income. And then we analyze the impact of the maximum number of tasks in a
service and the number of servers respectively.
Firstly, we evaluate the normalized incomes under different overall supply and demand
ratios. Results are shown in Fig. 3. It illustrates that task-based bidding method always
shows greater superiority than service-based bidding method no matter what greedy
algorithm we select. When the ratio is greater than 1, the task-based bidding method
improves the incomes by 2.12%-11.87%. With the ratio increasing, the relative
performance difference is decreasing but the absolute performance difference is increasing.
The reason is that when the ratio is extremely small, the RP can hardly meet any resource
demands of any SPs whatever the bidding method is adopted.

(a) Greedy Algorithm 1 (b) Greedy Algorithm 2

Figure 3: Normalized income of schemes
Then we analyze the impact of the maximum number of tasks in a service on the
performance differences between the two bidding methods. In this simulation, we set this
parameter range from 3 to 11 and set the overall supply and demand ratio to be 1. Other
parameters are kept the same as Section 5.1. Then we calculate the ratio of normalized
incomes between the task-based bidding method and the service-based bidding method.
Results are shown in Fig. 4(a). The experiment results of the two algorithms present out

788 CMC, vol.61, no.2, pp.777-792, 2019

the same change trend. When the maximum number of tasks in a service increases, the ratio
is also increasing. It means that their performance differences are becoming more and more
significant. Thus, the maximum number of tasks is the main cause of performance differences.
In the next set of simulations, we investigate the impact of the number of servers, 𝐶𝐶 , on
the ratio of normalized incomes. The number of servers is another factor that the RP
concerns because every RP wants to make the best use of existing server resources to meet
the increasing demands instead of simply increasing the number of servers. We firstly
generate resource demands when the number of servers is 10 and the overall supply and
demand ratio is 1, and then update the resource supply, that is, the number of servers ranges
from 4 to 16. We calculate the performance ratio under different number of servers. Results
are shown in Fig. 4(b). It is observed that the ratio is always greater than 1 regardless of
the number of servers. It means that when the resource supplies at these edge servers cannot
meet the demand of SPs and the number of servers remains unchanged, task-based bidding
method shows more superiority to service-based bidding method in resource utilization.
We also observed that the performance gap is disappearing as the number of servers
increases. The reason is that the resource supply at edge servers is gradually becoming
saturated, and the normalized incomes of both task-based bidding method and service-
based bidding method are approaching to 1.

(a) The impact of the maximum number
of tasks in a service

(b) The impact of the number of servers

Figure 4: The impact of parameter settings on performance differences

6 Conclusion
In this paper, we first design a novel architecture, XDN, to explore service deployment and
management in edge computing micro datacenters. Then, we focus on optimizing resource
allocation for the benefit of RPs. Our design proposes a task-based resource bidding
mechanism among multiple SPs which allows the RPs allocate resources in a more fine-
grained and flexible way. In the resource allocation model formulation, we fully consider
the resource constraints and SPs’ expectations of edge computing when allocating
resources. Then we investigate two typical greedy algorithm that are often introduced in
solving resource allocation problem. We have made simple modifications to these two
algorithms so that they can be applicable to task-based resource bidding method.

Task-Based Resource Allocation Bid in Edge Computing 789

Simulation compared the performance differences of the task-based resource bid and the
service-based resource bid. Results demonstrated that the task-based bidding method
improves resource utilization and the incomes when edge resources are in short supply. In
the future, we will continue to augment XDN to perfect its functionality and make it more
suitable to SPs. Besides we will design an efficient and effective algorithm that is more
suitable to solve the resource allocation problem in the edge computing micro datacenter.

Acknowledgement: This work is supported by The National Key Research and
Development Program of China (2016YFB1000302) and National Natural Science
Foundation of China (61433019, 61832020).

References
Aazam, M.; Huh, E. (2015): Dynamic resource provisioning through fog micro
datacenter. IEEE International Conference on Pervasive Computing and Communication
Workshops (PerCom Workshops), pp. 105-110.
Aazam, M.; Huh, E. (2015): Fog computing micro datacenter based dynamic resource
estimation and pricing model for IoT. IEEE International Conference on Advanced
Information Networking and Applications, pp. 687-694.
Alshuwaili, A.; Simeone, O. (2017): Energy-efficient resource allocation for mobile edge
computing-based augmented reality applications. IEEE Wireless Communications Letters,
vol. 6, no. 3, pp. 398-401.
Bahreini, T.; Badri, H.; Grosu, D. (2018): An envy-free auction mechanism for resource
allocation in edge computing systems. IEEE/ACM Symposium on Edge Computing, pp.
313-322.
Bernstein, D. (2014): Containers and cloud: from lxc to docker to kubernetes. IEEE Cloud
Computing, vol. 1, no. 3, pp. 81-84.
Cai, Z.; Wang, Z.; Zheng, K.; Cao, J. (2013): A distributed TCAM coprocessor
architecture for integrated longest prefix matching, policy filtering, and content filtering.
IEEE Transactions on Computers, vol. 62, no. 3, pp. 417-427.
Cheang, C. F.; Wang, Y.; Cai, Z.; Xu, G. (2018): Multi-VMs intrusion detection for
cloud security using dempster-shafer theory. Computers, Materials & Continua, vol. 57,
no. 2, pp. 297-306.
Fang, S.; Cai, Z.; Sun, W.; Liu, A.; Liu, F. et al. (2018): Feature selection method based
on class discriminative degree for intelligent medical diagnosis. Computers, Materials &
Continua, vol. 55, no. 3, pp. 419-433.
Fajardo, J. O.; Taboada, I.; Liberal, F. (2015): Improving content delivery efficiency
through multi-layer mobile edge adaptation. IEEE Network, vol. 29, no. 6, pp. 40-46.
Guo, S.; Wu, D.; Zhang, H.; Yuan, D. (2018): Resource modeling and scheduling for
mobile edge computing: a service provider’s perspective. IEEE Access, vol. 6, no. 99, pp.
35611-35623.
Guo, Y.; Liu, F.; Cai, Z.; Xiao, N.; Zhao, Z. (2018): Edge-based efficient search over
encrypted data mobile cloud storage. Sensors, vol. 18, no. 1189, pp. 1-13.

790 CMC, vol.61, no.2, pp.777-792, 2019

Guo, J.; Song, Z.; Cui, Y.; Liu, Z.; Ji, Y. (2017): Energy-efficient resource allocation for
multi-user mobile edge computing. IEEE Global Communications Conference, pp. 1-7.
Jin, A.; Song, W.; Zhuang, W. (2018): Auction-based resource allocation for sharing
cloudlets in mobile cloud computing. IEEE Transactions on Emerging Topics in
Computing, vol. 6, no. 1, pp. 45-57.
Kiss, P.; Reale, A.; Ferrari, C. J.; Istenes, Z. (2018): Deployment of IoT applications on
5G edge. IEEE International Conference on Future IoT Technologies, pp. 1-9.
Li, N.; Martinez-Ortega, J.; Diaz, V. H. (2018): Distributed power control for
interference-aware multi-user mobile edge computing: a game theory approach. IEEE
Access, vol. 6, pp. 36105-36114.
Liu, Y.; Liu, A.; Liu, X.; Huang, X. (2019): A statistical approach to participant selection
in location-based social networks for offline event marketing. Information Sciences, vol.
480, pp. 90-108.
Liu, C.; Bennis, M.; Poor, H. V. (2017): Latency and reliability-aware task offloading
and resource allocation for mobile edge computing. IEEE Global Communications
Conference Workshops, pp. 1-7.
Liu, F.; Dai, K.; Wang, Z. (2004): Improving security architecture development based on
multiple criteria decision making. Advanced Workshop on Content Computing, pp. 214-218.
Liu, F.; Guo, Y.; Cai, Z.; Xiao, N.; Zhao, Z. et al. (2019): Edge-enabled disaster rescue: a
case study of searching for missing people. ACM Transactions on Intelligent Systems and
Technology, vol. 10, no. 5, pp. 36-49.
Liu, F.; Tang, G.; Li, Y.; Cai, Z. P.; Zhang, X. et al. (2019): A survey on edge computing
systems and tools. Proceedings of the IEEE, vol. 107, no. 10, pp. 17-34.
Liu, S.; Cai, Z.; Xu, H.; Xu, M. (2015): Towards security-aware virtual network
embedding. Computer Networks, vol. 91, pp. 151-163.
Luo, M. H.; Wang, K.; Cai, Z. P.; Liu, A. F.; Li, Y. Y. et al. (2019): Using imbalanced
triangle synthetic data for machine learning anomaly detection. Computers, Materials &
Continua, vol. 58, no. 1, pp. 15-26.
Ma, L.; Yi, S.; Li, Q. (2017): Efficient service handoff across edge servers via docker
container migration. IEEE/ACM Symposium on Edge Computing, pp. 11-23.
Mao, Y.; Zhang, J.; Letaief, K. B. (2016): Dynamic computation offloading for mobile-
edge computing with energy harvesting devices. IEEE Journal on Selected Areas in
Communications, vol. 34, no. 12, pp. 3590-3605.
Mao, Y.; Zhang, J.; Song, S.; Letaief, K. B. (2017): Stochastic joint radio and
computational resource management for multi-user mobile-edge computing systems. IEEE
Transactions on Wireless Communications, vol. 16, no. 9, pp. 5994-6009.
Nakamura, Y.; Mizumoto, T.; Suwa, H.; Arakawa, Y.; Yamaguchi H. et al. (2018):
In-situ resource provisioning with adaptive scale-out for regional IoT services. IEEE/ACM
Symposium on Edge Computing, pp. 203-213.

https://ieeexplore.ieee.org/author/37327585100

Task-Based Resource Allocation Bid in Edge Computing 791

Prasad, A. S.; Arumaithurai, M.; Koll, D.; Fu, X. (2017): Raera: a robust auctioning
approach for edge resource allocation. ACM Special Interest Group on Data
Communication Workshop on Mobile Edge Communications, pp. 49-54.
Reese, W. (2008): Nginx: the high-performance web server and reverse proxy. Linux
Journal, vol. 173, no. 2, pp. 1-4.
Shanmugam, K.; Golrezaei, N.; Dimakis, A. G.; Molisch, A. F.; Caire, G. (2013):
Femtocaching: wireless content delivery through distributed caching helpers. IEEE
Transactions on Information Theory, vol. 59, no. 12, pp. 8402-8413.
Shi, W.; Cao, J.; Zhang, Q.; Li, Y.; Xu, L. (2016): Edge computing: vision and
challenges. IEEE Internet of Things Journal, vol. 3, no. 5, pp. 637-646.
Sun, Y.; Zhou, S.; Xu, J. (2017): Emm: energy-aware mobility management for mobile
edge computing in ultra dense networks. IEEE Journal on Selected Areas in
Communications, vol. 35, no. 11, pp. 2637-2646.
Tan, J.; Liu, W.; Wang, T.; Xiong, N.; Song, H. et al. (2019): An adaptive collection
scheme-based matrix completion for data gathering in energy-harvesting wireless sensor
networks. IEEE Access, vol. 7, pp. 6703-6723.
Tan, J.; Liu, W.; Xie, M.; Song, H.; Liu, A. et al. (2019): A low redundancy data
collection scheme to maximize lifetime using matrix completion technique. EURASIP
Journal on Wireless Communications and Networking, vol. 2019, no. 1, pp. 5.
Teng, H.; Liu, Y.; Liu, A.; Xiong, N. N.; Cai, Z. et al. (2019): A novel code data
dissemination scheme for Internet of Things through mobile vehicle of smart cities. Future
Generation Computer Systems, vol. 94, pp. 351-367.
Wang, R.; Shen, M.; Li, Y.; Gomes, S. (2018): Multi-task joint sparse representation
classification based on fisher discrimination dictionary learning. Computers, Materials &
Continua, vol. 57, pp. 25-48.
Wu, H.; Pang, B.; Dai, D. (2018): Unmanned aerial vehicle recognition based on
clustering by fast search and find of density peaks (CFSFDP) with polarimetric
decomposition. Electronics, vol. 7, no. 364, pp. 1-18.
Xie, X.; Yuan, T.; Zhou, X.; Cheng, X. (2018): Research on trust model in container-
based cloud service. Computers, Materials & Continua, vol. 56, no. 2, pp. 273-283.
Xu, J.; Palanisamy, B.; Ludwig, H.; Wang, Q. (2017): Zenith: utility-aware resource
allocation for edge computing. IEEE International Conference on Edge Computing, pp.
47-54.
Yi, S.; Hao, Z.; Zhang, Q.; Zhang, Q.; Shi, W. et al. (2017): Lavea: latency-aware video
analytics on edge computing platform. IEEE International Conference on Distributed
Computing Systems, pp. 2573-2574.
Zhang, J.; Xiong, T.; Lou, W. (2014): Community clinic: economizing mobile cloud
service cost via cloudlet group. IEEE International Conference on Mobile Ad Hoc and
Sensor Systems, pp. 208-216.
Zhang, K.; Leng, S.; He, Y.; Maharjan, S.; Zhang, Y. (2018): Cooperative content
caching in 5G networks with mobile edge computing. IEEE Wireless Communications, vol.
25, no. 3, pp. 80-87.

792 CMC, vol.61, no.2, pp.777-792, 2019

Zhang, S.; He, P.; Suto, K.; Yang, P.; Zhao, L. et al. (2018): Cooperative edge caching
in user-centric clustered mobile networks. IEEE Transactions on Mobile Computing, vol.
17, no. 8, pp. 1791-1805.
Zhao, Z.; Liu, F.; Cai, Z.; Xiao, N. (2018): Edge computing: platforms, applications and
challenges. Journal of Computer Research & Development, vol. 55, no. 2, pp. 327-337.
Zhao, Z.; Liu, F.; Cai, Z.; Xiao, N. (2017): Edge-based content-aware crowdsourcing
approach for image sensing in disaster environment. International Conference on Mobile
and Ubiquitous Systems: Computing, Networking and Services, pp. 225-231.

	Task-Based Resource Allocation Bid in Edge Computing Micro Datacenter
	Yeting Guo0F , Fang Liu1F , *, Nong Xiao1 and Zhengguo Chen1, 3

	References

