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Abstract: Edge computing attracts online service providers (SP) to offload services to edge 
computing micro datacenters that are close to end users. Such offloads reduce packet-loss 
rates, delays and delay jitter when responding to service requests. Simultaneously, edge 
computing resource providers (RP) are concerned with maximizing incomes by allocating 
limited resources to SPs. Most works on this topic make a simplified assumption that each 
SP has a fixed demand; however, in reality, SPs themselves may have multiple task-
offloading alternatives. Thus, their demands could be flexibly changed, which could 
support finer-grained allocations and further improve the incomes for RPs. Here, we 
propose a novel resource bidding mechanism for the RP in which each SP bids resources 
based on the demand of a single task (task-based) rather than the whole service (service-
based) and then the RP allocates resources to these tasks with following the resource 
constraints at edge servers and the sequential rule of task-offloading to guarantee the 
interest of SPs. We set the incomes of the RP as our optimization target and then formulate 
the resource allocation problem. Two typical greedy algorithms are adopted to solve this 
problem and analyze the performance differences using two different bidding methods. 
Comprehensive results show that our proposal optimizes resource utilization and improves 
the RP’s incomes when resources in the edge computing datacenter are limited. 
 
Keywords: Edge computing, resource allocation, task-offloading alternative. 

1 Introduction 
The growing size, popularity and number of applications available on the network have 
introduced more complex network structures and more serious network congestion [Cai, 
Wang, Zheng et al. (2013); Tan, Liu, Wang et al. (2019); Tan, Liu, Xie et al. (2019)]. High 
packet loss rates, delays and delay jitter act to prevent online service providers (SP) from 
promoting their services and meeting the growing functional demand from mobile users 
[Liu, Liu, Liu et al. (2019); Teng, Liu, Liu et al. (2019); Guo, Wu, Zhang et al. (2018)]. 
Edge computing [Liu, Guo, Cai et al. (2019); Zhao, Liu, Cai et al. (2018)] is a good solution 
for SPs that intelligently processes service requests at the edge of the network. In particular, 
edge computing has gradually evolved to play an irreplaceable role in application scenarios 
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that require enhanced mobile broadband, ultrahigh reliability and low latency 
communication, or massive Internet of Things communications [Guo, Liu, Cai et al. (2018); 
Kiss, Reale, Ferrari et al. (2018); Liu, Tang, Li et al. (2019)]. Increasingly, SPs seek to 
expand their profits with the help of edge computing. 
An edge computing resource provider (RP) manages an edge computing micro datacenter 
that consists of several physical edge servers located near a base station [Aazam and Huh 
(2015)]. The value of edge computing as an emerging technology is widely recognized, but 
both SPs and RPs are still unsure about how to best deploy, manage and operate services in 
edge computing micro datacenters. This problem has become a hot research topic in both 
academia and industry [Sun, Zhou and Xu (2017); Fajardo, Taboada and Liberal (2015)]. 
However, few consider the acceptability of SPs. Suppose that each RP adopts a totally 
different edge computing system architecture; then, SPs must expend considerable effort to 
learn the corresponding user guide, which inevitably inhibits the scale and the 
commercialization of edge computing. To make edge computing friendlier and more 
acceptable to SPs, we believe that the existing architecture of a Content Distribution Network 
(CDN) [Shanmugam, Golrezaei, Dimakis et al. (2013)] is a good reference for edge 
computing system architecture design because the CDN service model is quite familiar to 
SPs, and traditional CDNs desperately need edge intelligence to transform and upgrade their 
services. Thus, we design a novel architecture, XDN, that combines existing CDN and the 
promising edge computing. The basic idea in XDN is that the edge computing micro 
datacenter does not simply cache content requested by users; instead, it caches computing 
instances that can handle the computing tasks most frequently involved in users’ requests. 
With the increasing emergence of novel services, demands for resources have also 
increased. Since resources in the edge computing micro datacenter are limited and 
unsatisfactory for meeting all SPs’ resource demands, the major challenge in XDN is to 
determine which computing instances should be allocated resources and activated. 
Consequently, an efficient resource allocation scheme is vital to both RPs and SPs. 
Resource allocation in edge computing has attracted significant attention in recent years 
[Alshuwaili and Simeone (2017); Liu, Bennis and Poor (2017)]. Most existing works 
assume that SPs have completed an evaluation of their resource demands and are ready to 
negotiate with the RP to obtain a resource supply. An SP who loses in a bidding war for 
resources with other SPs will obtain no resources from the edge computing micro 
datacenter; instead, all requests for services must be processed by the remote cloud 
datacenter without the help of the edge computing datacenter. We note that services always 
consist of several functionally independent tasks [Wang, Shen, Li et al. (2018); Wu, Pang, 
Dai et al. (2018); Fang, Cai, Sun et al. (2018)]. This fact allows SPs to maintain one or 
more task-offloading alternatives. Research on task offloading in edge computing always 
attempts to find the best task-offloading solution that achieves the highest service 
performance from the perspective of a single service. Each SP wants to adopt the best task-
offloading solution but rarely can everyone get what they want due to the resource 
constraints in the edge computing micro datacenter. Beyond the best task-offloading 
solution, other task-offloading alternatives can be beneficial to the service even though 
they are somewhat less advantageous. We define such alternatives as ‘acceptable 
alternatives’. If an SP were 1to flexibly adjust to some acceptable task-offloading 
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alternatives to decrease resource demands when the best solution is rejected by the RP, it 
would enable the RP to make finer-grained edge computing resource allocation and further 
optimization and then increase SPs’ possibilities of obtaining resources. In this paper, we 
are motivated to design a resource bidding mechanism for RPs to optimize edge computing 
resource allocation and maximize incomes. Each SP evaluates the gains resulting from 
each acceptable task-offloading alternative (task-based) rather than only one alternative 
(service-based), and then provides the RP with the corresponding resource demands, and 
the bidding prices. For each SP, only one acceptable alternative can be selected. Given 
more alternatives from the SPs, the RPs could make finer-grained global resource 
allocation optimization decisions [Liu, Dai and Wang (2004)]. 
In an edge computing micro datacenter, heterogeneous resources are distributed among 
multiple physical edge servers. Various resource constraints exist when allocating 
resources [Liu, Cai, Xu et al. (2015)]. Based on the above design and resource constraints 
in the edge computing micro datacenter, we model the edge computing resource allocation 
optimization problem among multiple SPs. Greedy algorithm is widely adopted to solve 
the resource allocation problem in the edge computing datacenter [Bahreini, Badri and 
Grosu (2018); Nakamura, Mizumoto, Suwa et al. (2018)], so we use two typical greedy 
algorithms to efficiently find the suboptimal solution for resource allocation. The main 
results and contributions of this paper are summarized as follows. 
 Exploration of service deployment and management in edge computing: We propose 

a novel architecture, XDN, that caches computing instances to handle users’ service 
requests at the edge of the network. The service deployment and management in XDN 
are based on existing CDN concepts, making edge computing more understandable 
and applicable to most SPs. 

 Formulation of the edge computing resource allocation problem: We then discuss the 
edge computing resource allocation problem from two aspects. For SPs, we propose 
that each SP provides one or more acceptable task-offloading alternatives to increase 
their competitiveness during the edge computing resource auction. Given such 
alternatives, resources could be allocated in a more flexible and finer-grained way. 
From RPs, we take into account the various resource constraints in the edge computing 
datacenter and the sequential rules of task offloading in edge computing. Then we 
formulate the problem with the aim of maximizing the incomes of RPs. 

 Evaluation of different resource bidding method: We adopts two typical greedy 
algorithms to match resource supplies and demands in the above resource allocation 
problem. Numerical results demonstrate that the task-based bidding method is superior 
to the service-based bidding method no matter what greedy algorithms we select. And 
we also analyze the impact of several main parameters on the performance differences. 

The remainder of this paper is organized as follows. Section 2 introduces related works. 
Section 3 presents the mobile edge computing system architecture. The resource allocation 
problem formulation and the design of our algorithm are presented in Section 4. We present 
the evaluation results in Section 5. Finally, Section 6 concludes the paper. 
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2 Related work 
Service functions are usually implemented by multiple tasks, so SPs have multiple task-
offloading alternatives. Many research studies have been carried out on task offloading 
mechanism for SPs. LAVEA in Yi et al. [Yi, Hao, Zhang et al. (2017)] proposed to offload 
tasks between mobile terminals and edge servers based on their computational resources 
and the network bandwidth between them. In Mao et al. [Mao, Zhang and Letaief (2016)] 
the execution delay and energy assumption of edge server execution are investigated to 
offload tasks in a reasonable energy-saving way. In Zhao et al. [Zhao, Liu, Cai et al. (2017)] 
it senses the bandwidth of the network and the queue of requests to be processed in real 
time, dynamically adjusts the parameters of the deep learning model, and achieves efficient 
data processing. It could be obviously found that the resources that the RP allocates is vital 
to select the best task-offloading scheme. However, these works only consider their own 
performance, without considering that other services are also competing for limited 
resources in the edge computing micro datacenter. 
Since resource supply in the micro datacenter always fails to meet the increasing demands 
of SPs, resource allocation draws more and more attention of researchers. Some works 
studied the allocation among multiple users [Mao, Zhang, Song et al. (2017); Guo, Song, 
Cui et al. (2017); Li, Martinez-Ortega and Diaz (2018)]. The authors in [Mao, Zhang, Song 
et al. (2017)] consider the dynamical resource demands and develop an online joint radio 
and computational resource management algorithm for multi-user edge computing systems. 
The authors in Guo et al. [Guo, Song, Cui et al. (2017)] discuss the resource allocation 
from the perspective of energy saving. The authors in Li et al. [Li, Martinez-Ortega and 
Diaz (2018)] take into account the interference among users and design a game theory to 
achieve distributed power control. But these works are applicable to mobile users but not 
to SPs. SPs tend to deploy their services in edge computing micro datacenters or cloud 
datacenters for security and management. Most works discuss the resource allocation 
among multiple SPs in an auction way [Zhang, Xiong and Lou (2014); Jin, Song and 
Zhuang (2018)]. RAERA in [Prasad, Arumaithurai, Koll et al. (2017)] proposed that RPs 
kept a reserved price based on historical data and the SP whose bidding price is higher than 
the reserved price and others’ price is the winner. Zenith in Xu et al. [Xu, Palanisamy, 
Ludwig et al. (2017)] evaluated the utility of SPs and RPs, established resource sharing 
contact between them and then proposed a latency-aware scheduling and resource 
provisioning algorithm. The authors in Bahreini et al. [Bahreini, Badri and Grosu (2018)] 
design an envy-free auction mechanism to allocate resources to SPs. These works simply 
regard the resource demands of each SP as an indivisible unit. In this paper, we call this 
bidding method service-based. As we mentioned above, each SP has multiple choice to 
offload tasks. Different task-offloading alternatives require different resource demand and 
make different improvements on performance. But few works discuss the elastic prosperity 
of SPs’ resource demands in the resource allocation. 
Besides these works simply assume that the resources in the edge computing datacenter 
form a resource pool and the RP allocates resources from the pool. Actually, the resource 
allocation problem is more complex. These resources are distributed at physical edge 
servers. And demands on certain resources cannot be simply split into several parts and 
satisfied by different edge servers. Few works discuss the resource allocation problem 
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among several edge servers in the same edge computing datacenter. The resource allocation 
schemes discussed for cloud infrastructure providers [Luo, Wang, Cai et al. (2019); Xie, 
Yuan, Zhou et al. (2018); Cheang, Wang, Cai et al. (2018)] are not suitable. These schemes 
are under the assumption that all these services could be deployed in the cloud when cloud 
resources are allocated in a reasonable way. But the assumption is not always supported in 
edge computing. Besides the placement of services is no longer confined to the remote 
datacenter but also could be an edge computing microdata center. Thus, it introduces new 
considerations to allocate edge resources to deploy these services. 

3 System architecture 
A content delivery network (CDN) caches content at geographically distributed edge 
servers; these proximity edge servers can respond quickly to requests. The rapid 
development of the IoT and AI technology has caused content to become more complicated. 
A traditional CDN configures the remote cloud data center to process dynamic computing 
services. This approach results in substantial overhead due to the long transmission 
distances. In contrast, edge computing leverages computing resources, storage resources 
and network resources available through edge servers to offload most computing tasks to 
the network edge. Only tasks that have high demand for computing resources and storage 
space are executed in the cloud. 
Because both a CDN datacenter and an edge computing datacenter benefit from network 
edge proximity and because the CDN operation model is already familiar to most SPs, 
combining CDN and edge computing will become a future development trend [Zhang, 
Leng, He et al. (2018)]. Therefore, we introduce a novel XDN architecture that references 
the existing CDN architecture, making XDN more understandable and applicable to SPs. 
Compared with a CDN, XDN introduces the concept of edge computing to promote edge 
intelligence, that is, caching computing instances to handle computing tasks involved in 
service requests. The XDN architecture is shown in Fig. 1. Additional service deployment 
and management details in this architecture are presented below. 

 

Figure 1: Architecture of XDN 

SPs encapsulate their services into docker containers [Ma, Yi and Li (2017)] and migrate 
these containers to Template Store module in the edge computing micro datacenter. When 
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a mobile terminal user accesses a service, the DNS parses the domain name and returns the 
IP address of the micro datacenter closet to the mobile user. Based on the IP address, the 
user sends an http(s) request to that datacenter. Upon receiving the request, the Load 
Balancer module further resolves the request header and then distribute the request to one 
of the computing engines based on certain rules. This module also fulfils the role of a 
billing gateway (BGW) to record the request and charge accordingly. Each computing 
engine runs several computing instances, where a computing engine and a computing 
instance correspond to an edge server and a container, respectively. Nginx is a powerful 
high-performance web and reverse proxy service [Reese (2008)] that is used to resolve the 
request content and then determine whether computing instances in the computing engine 
are able to fulfil the service request. When one can, Nginx distributes the request to the 
corresponding computing instance and redirects the response from the computing instance 
to the Load Balancer module. Finally, the module returns the result to the mobile user. 
When no computing instances are available to fulfil the request, Nginx suggests that the 
Load Balancer distributes the request to other computing engines similar to the way a 
traditional CDN redistributes requests when an edge server has not cached requested 
content. When the Load Balancer notices that the request has still not been responded to 
after multiple distributions, it finally asks the cloud to process the request. 
From the description above, it's observed that computing instances running in computing 
engines have a direct influence on the performance of edge computing micro datacenters. 
Due to the limited resources, the computing engine are unable to execute all computing 
instances. The Coordinator module determines the resource allocation among computing 
instances. The Scheduler module is designed to manage containers and is implemented by 
Kubernetes [Bernstein (2014)]. When the Coordinator needs to modify the state of a 
container, it informs the Scheduler module to transfer that container from the Template 
Store to a corresponding computing engine or to remove the container from a computing 
engine. The Template Store module stores containers for various services; we apply a 
docker registry to register the stored containers. When the container that the Coordinator 
wants to activate does not exist in the Template Store module, the module would ask the 
cloud to migrate that container to the edge computing micro datacenter. In this way, the 
edge computing micro datacenter can respond to service requests at the edge of the network. 
In this paper, we discuss the resource allocation schemes in the Coordinator module. 
Generally, the high-level functions of a service are always composed of several tasks. Each 
task is independent and achieves specific sub-functions, which are encapsulated into 
independent containers because they were likely developed by different research and 
development teams. Each container can be migrated to the edge computing micro 
datacenter or be kept in the remote cloud datacenter. Thus, resources at edge servers can 
be allocated based on resource demands of a single task. 
Meanwhile, these tasks are also correlated to achieve the overall function. Sequential 
relationships are common among tasks, which adds basic constraints to most task-
offloading mechanisms in edge computing. Thus, when considering offloading tasks, we 
divide the tasks into two parts: predecessor and successor tasks. In most cases, the edge 
computing micro datecenter plays a preprocessing role in service requests. Predecessor 
tasks are offloaded to the micro datacenter, and successor tasks are offloaded to the remote 
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cloud datacenter when the micro datacenter is unable to execute them. 
To better understand our work, we first provide an example, as shown in Fig. 2. In this 
scenario, the service is composed of three tasks, and the SP has four task-offloading 
alternatives. Alternative 4 provides maximum profit to the SP; however, the SP fails to 
acquire the appropriate edge resources in a bidding process with other SPs. In the existing 
research works, the losing SP would not be able to obtain any edge resources; that is, it 
would reluctantly be forced to adopt Alternative 1. These works neglect the possibility that 
the edge resource supply may be able to satisfy the resource demands of Alternative 3. The 
benefit accrued by alternative 3 is lower than that of Alternative 4 but higher than that of 
Alternative 1. Thus, if the SP were to adopt Alternative 3 and obtains the corresponding 
resources from a RP, it would be a win-win for both the RP and the SP. 

 
Figure 2: Example of task-offloading alternatives 

This win-win possibility inspired us to propose a new resource bidding mechanism in 
which every SP evaluates the service performance advantages accrued by different task-
offloading alternatives, provides the corresponding resource demands and bidding prices. 
Bidding prices are given by SPs and are usually determined by task performance 
improvement and resource demands. If adopting task-offloading alternatives can provide 
obvious performance improvements, the SP increases its profits and will certainly be 
willing to increase the bidding price to ensure that the resource demands of those 
alternatives are satisfied. In addition, bidding prices sometimes relate to service types and 
reflect the quality or importance of services. In this paper, we discuss resource allocation 
from the perspective of the RP to maximize the incomes. Thus, price models are not within 
the scope of this paper; readers can refer to works such as Xu et al. [Xu, Palanisamy, 
Ludwig et al. (2017); Aazam and Huh (2015)] for more information. Then we assume that 
the bidding prices have been calculated by SPs. 

4 Problem 
In this section, we fully consider the constraints when allocating edge resources, formulate 
the resource allocation problem and then adapt two typical greedy algorithms to efficiently 
allocate edge resources to multiple SPs and maximize the incomes of the RP. Tab. 1 
summarizes the main notations in the formulation. 
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Table 1: Notations of the model 

Notation Definition 
𝐶𝐶 The number of edge servers in the edge computing datacenter 
𝐾𝐾 The number of resource types 
�𝑠𝑠𝑙𝑙1, 𝑠𝑠𝑙𝑙2 ⋯ 𝑠𝑠𝑙𝑙𝐾𝐾� Resource supply at server 𝑙𝑙 
𝑁𝑁 The number of services, that is, the number of SPs 
ℎ𝑖𝑖 The number of tasks in service 𝑖𝑖 
�𝑑𝑑𝑖𝑖,𝑗𝑗1 ,𝑑𝑑𝑖𝑖,𝑗𝑗2 ⋯𝑑𝑑𝑖𝑖,𝑗𝑗𝐾𝐾 � Resource demands of the container 𝑐𝑐𝑐𝑐𝑖𝑖,𝑗𝑗 
𝑢𝑢𝑖𝑖,𝑗𝑗 The payment of container cti,j 
𝑥𝑥𝑖𝑖,𝑗𝑗 The server which deploys container cti,j 
𝑠𝑠𝑢𝑢𝑠𝑠𝑖𝑖,𝑗𝑗 The priority of container cti,j in obtaining resources 
𝑤𝑤𝑣𝑣 The weight of resource v 

Assume that the edge computing micro datacenter is a cluster of 𝐶𝐶 homogeneous edge 
servers. Each server supplies K types of resources. �𝑠𝑠𝑙𝑙1, 𝑠𝑠𝑙𝑙2 ⋯ 𝑠𝑠𝑙𝑙𝐾𝐾� (𝑙𝑙 ∈ {1,2⋯𝐶𝐶}) denotes 
the resource supply of the lth server. There are 𝑁𝑁 OSPs attempting to obtain edge resources. 
The 𝑖𝑖𝑡𝑡ℎ(𝑖𝑖 ∈ {1,2⋯𝑁𝑁}) service is composed of hi  tasks. Each task is encapsulated in a 
container. �𝑑𝑑𝑖𝑖,𝑗𝑗1 ,𝑑𝑑𝑖𝑖,𝑗𝑗2 ⋯𝑑𝑑𝑖𝑖,𝑗𝑗𝐾𝐾 � (𝑗𝑗 ∈ {1,2⋯ℎ𝑖𝑖}) denotes the resource demand of the container 
cti,j  which encapsulates jth  task of ith  service. When deploying the container cti,j , the 
OSP's payment is ui,j. xi,j indicates the server that the container 𝑐𝑐𝑐𝑐𝑖𝑖,𝑗𝑗 is deployed on. If  xi,j 
is equal to l (xi,j == l), it means that the container is placed in the lth edge server. If  xi,j 
is equal to 0, it means that the container is kept in the cloud. Then the resource constraints 
in the edge computing micro datacenter are described as 
∑ ∑ �𝑥𝑥𝑖𝑖,𝑗𝑗 == 𝑙𝑙� × 𝑑𝑑𝑖𝑖,𝑗𝑗𝑣𝑣 ≤ 𝑠𝑠𝑙𝑙𝑣𝑣 ,   ∀𝑙𝑙 ∈ {1,2, …𝐶𝐶},∀𝑣𝑣 ∈ {1,2, …𝐾𝐾}ℎ𝑖𝑖

𝑗𝑗=1
𝑁𝑁
𝑖𝑖=1            (1) 

Predecessor tasks are offloaded to the edge computing micro datacenter, and successor 
tasks are offloaded to the cloud datacenter. If  𝑗𝑗𝑡𝑡ℎ task is offloaded to edge servers, that is, 
xi,j is not equal to zero (xi,j! = 0) , (j-1)th  task would also be offloaded to the micro 
datacenter (xi,j-1! = 0). Thus, the sequential rule of task-offloading can be described as 
(𝑥𝑥𝑖𝑖,𝑗𝑗! = 0)  ≤ (𝑥𝑥𝑖𝑖,𝑗𝑗−1! = 0)              (2) 
From the incomes of the RP, the optimization goal is expressed as 
𝑚𝑚𝑚𝑚𝑥𝑥∑ ∑ (𝑥𝑥𝑖𝑖,𝑗𝑗! = 0) × 𝑢𝑢𝑖𝑖,𝑗𝑗

ℎ𝑖𝑖
𝑗𝑗=1

𝑁𝑁
𝑖𝑖=1               (3) 

In essence, the problem is Multiple-dimension Multiple-choice Multiple-knapsack 
knapsack problem (MMMKP). More specifically, various resource constraints and 
ordering constraints make the knapsack problem multidimensional. Every SP has one or 
more scheme choices. And containers that encapsulate tasks can be placed in alternative 
available edge servers, which could be regarded as knapsacks. Therefore, the problem is 
NP hard problem.  
Greedy algorithm (GA) is simple and high-efficient method to solve resource optimization 
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problems [Bahreini, Badri and Grosu (2018); Nakamura, Mizumoto, Suwa et al. (2018); 
Zhang, He, Suto et al. (2018)]. We investigate two typical greedy algorithms among them 
and make simple modifications to them so that they could be applicable to the task-based 
resource bid. In the first greedy algorithm, the prices of tasks represent the priority in 
obtaining resources, that is, 𝑠𝑠𝑢𝑢𝑠𝑠𝑖𝑖,𝑗𝑗 = 𝑢𝑢𝑖𝑖,𝑗𝑗. And the second greedy algorithm calculates the 
weight of each resource {𝑤𝑤1,𝑤𝑤2⋯𝑤𝑤𝐾𝐾} according to the Equation 4 and then sets the priority 
of tasks based on the prices of tasks, the resource demands and the weights of resources 
according to Eq. (5). Since the priority of each task is determined, the following step in the 
two algorithms is to allocate resources to tasks, shown in Algorithm 1.  

𝑤𝑤𝑣𝑣 = ∑ 𝑠𝑠𝑙𝑙
𝑣𝑣𝐶𝐶

𝑙𝑙=1

∑ ∑ 𝑑𝑑𝑖𝑖,𝑗𝑗
𝑣𝑣ℎ𝑖𝑖

𝑗𝑗=1
𝑁𝑁
𝑖𝑖=1

,∀𝑣𝑣 ∈ {1,2⋯𝐾𝐾}               (4) 

𝑠𝑠𝑢𝑢𝑠𝑠𝑖𝑖,𝑗𝑗 = 𝑢𝑢𝑖𝑖,𝑗𝑗
∑ 𝑤𝑤𝑣𝑣×𝑑𝑑𝑖𝑖,𝑗𝑗

𝑣𝑣𝐾𝐾
𝑣𝑣=1

              (5) 

Algorithm 1: task-based resource allocation 

Input: the priority of each task 𝑠𝑠𝑢𝑢𝑠𝑠𝑖𝑖,𝑗𝑗, the resource demand of each task �𝑑𝑑𝑖𝑖,𝑗𝑗1 ,𝑑𝑑𝑖𝑖,𝑗𝑗2 ⋯𝑑𝑑𝑖𝑖,𝑗𝑗𝐾𝐾 � 
and the resource supply at each edge server �𝑠𝑠𝑙𝑙1, 𝑠𝑠𝑙𝑙2 ⋯𝑠𝑠𝑙𝑙𝐾𝐾� 
Output: the placement of each task 𝑥𝑥𝑖𝑖,𝑗𝑗 
1. Initialize all 𝑥𝑥𝑖𝑖,𝑗𝑗  // 𝑥𝑥𝑖𝑖,𝑗𝑗 is initialized to be zero 
2. 𝑤𝑤𝑚𝑚𝑖𝑖𝑐𝑐_𝑐𝑐𝑚𝑚𝑠𝑠𝑡𝑡𝑠𝑠 = {𝑠𝑠𝑢𝑢𝑠𝑠1,1, 𝑠𝑠𝑢𝑢𝑠𝑠2,1 ⋯ 𝑠𝑠𝑢𝑢𝑠𝑠𝑁𝑁,1} // collect the priority of the first task in each 

service 
3. 𝑚𝑚𝑙𝑙𝑙𝑙𝑎𝑎𝑐𝑐𝑚𝑚𝑐𝑐𝑎𝑎_𝑐𝑐𝑚𝑚𝑠𝑠𝑡𝑡 = [0] × 𝑁𝑁 
4. While 𝑤𝑤𝑚𝑚𝑖𝑖𝑐𝑐_𝑐𝑐𝑚𝑚𝑠𝑠𝑡𝑡𝑠𝑠! = [] do 
5.     [𝑠𝑠𝑣𝑣, 𝑐𝑐𝑡𝑡] = 𝑚𝑚𝑚𝑚𝑥𝑥(𝑤𝑤𝑚𝑚𝑖𝑖𝑐𝑐_𝑐𝑐𝑚𝑚𝑠𝑠𝑡𝑡𝑠𝑠) // the corresponding service and task whose priority 

is the highest among wait tasks  
6.      𝑠𝑠𝑎𝑎𝑝𝑝𝑚𝑚𝑙𝑙𝑐𝑐𝑝𝑝 = [0] × 𝐶𝐶 // initial the penalty of each server 
7.      for  𝑙𝑙 = 1; 𝑙𝑙 ≤ 𝐶𝐶; 𝑙𝑙 = 𝑙𝑙 + 1 do 

8.          𝑠𝑠𝑎𝑎𝑝𝑝𝑚𝑚𝑙𝑙𝑐𝑐𝑝𝑝𝑙𝑙 = �∑ (
𝑑𝑑𝑠𝑠𝑣𝑣,𝑡𝑡𝑡𝑡
𝑣𝑣

𝑠𝑠𝑙𝑙
𝑣𝑣 )2𝐾𝐾

𝑣𝑣=1  

9.      // no servers satisfy the resource demands of this task 
10.      if 𝑚𝑚𝑖𝑖𝑝𝑝(𝑠𝑠𝑎𝑎𝑝𝑝𝑚𝑚𝑙𝑙𝑐𝑐𝑝𝑝) > 1 then 
11.          // make the resolution follow the sequential rule of task-offloading 
12.          for 𝑖𝑖 = 𝑐𝑐𝑡𝑡; 𝑖𝑖 ≤ ℎ𝑠𝑠𝑣𝑣; 𝑖𝑖 = 𝑖𝑖 + 1 do 
13.              𝑥𝑥𝑠𝑠𝑣𝑣,𝑖𝑖  = 0 
14.          delete 𝑠𝑠𝑢𝑢𝑠𝑠𝑠𝑠𝑣𝑣,𝑡𝑡𝑡𝑡 from 𝑤𝑤𝑚𝑚𝑖𝑖𝑐𝑐_𝑐𝑐𝑚𝑚𝑠𝑠𝑡𝑡𝑠𝑠 
15.      else 
16.          𝑥𝑥𝑠𝑠𝑣𝑣,𝑡𝑡𝑡𝑡 = 𝑠𝑠𝑎𝑎𝑝𝑝𝑚𝑚𝑙𝑙𝑐𝑐𝑝𝑝. 𝑖𝑖𝑝𝑝𝑑𝑑𝑎𝑎𝑥𝑥(𝑚𝑚𝑖𝑖𝑝𝑝(𝑠𝑠𝑎𝑎𝑝𝑝𝑚𝑚𝑙𝑙𝑐𝑐𝑝𝑝)) 
17.          update the resource supply in server 𝑥𝑥𝑠𝑠𝑣𝑣,𝑡𝑡𝑡𝑡 
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18.          𝑚𝑚𝑙𝑙𝑙𝑙𝑎𝑎𝑐𝑐𝑚𝑚𝑐𝑐𝑎𝑎_𝑐𝑐𝑚𝑚𝑠𝑠𝑡𝑡𝑠𝑠𝑣𝑣 = 𝑐𝑐𝑡𝑡 

19.        delete 𝑠𝑠𝑢𝑢𝑠𝑠𝑠𝑠𝑣𝑣,𝑡𝑡𝑡𝑡 from 𝑤𝑤𝑚𝑚𝑖𝑖𝑐𝑐_𝑐𝑐𝑚𝑚𝑠𝑠𝑡𝑡𝑠𝑠 
20.        if  𝑐𝑐𝑡𝑡 ≤ ℎ𝑠𝑠𝑣𝑣 then 
21.           add 𝑠𝑠𝑢𝑢𝑠𝑠𝑠𝑠𝑣𝑣,𝑡𝑡𝑡𝑡+1 to 𝑤𝑤𝑚𝑚𝑖𝑖𝑐𝑐_𝑐𝑐𝑚𝑚𝑠𝑠𝑡𝑡𝑠𝑠 
22. return all 𝑥𝑥𝑖𝑖,𝑗𝑗 

5 Evaluation 
To evaluate the performance of our scheme, we did multiple simulations in this section. In 
the simulation, we mainly compared the performance differences caused by different 
bidding methods. In the service-based bidding method, we also adopted the basic idea of 
the two algorithms and made the following modifications. The priority of a service is the 
sum of the priorities of all tasks that make up the service. And if no edge servers could 
satisfy the resource demands of one task in the service, all the tasks in the service would 
not obtain resources from the edge computing micro datacenter. 

5.1 Experimental setup 
We simulate that there exist 14 edge servers (𝑁𝑁 = 14) in the micro datacenter. And the 
configuration of these edge servers is the same as ecs.ga1.14xlarge provided by AWS, 
shown in Tab. 2. 

Table 2: Configuration of edge server 

Resource type Resource supply 
vCPU 56 
Memory (GiB) 160 
Local dists (GiB)* 1400 
GPU 4 
Bandwidth (Gbit/s)** 10 
Packet forwarding rate (Thousand pps) *** 120 
NIC queues ****  4 
ENIs ***** 8 

The resource demands of each task are randomly generated without exceeding the scope 
of the resource supply of an idle server. It reflects the different needs of different tasks for 
different resources. Since there are various resources in edge servers, multiple supply and 
demand ratios exist. For the convenience to present simulation results, we introduce a new 
variable, denoted by 𝑠𝑠, and defined as Eq. (6), to represent the overall resource supply and 
demand ratio. The resource allocation scheme is designed for the case that SPs’ resource 
demands exceed resource supplies in the micro datacenter. Thus, we set the range of 𝑠𝑠 
from 0.1 to 2.0 with an interval of 0.1. Note that it does not mean that all SPs could be 
satisfied even if 𝑠𝑠 is equal to 1 because 𝑠𝑠 is calculated based on the statistics of the overall 
resource demand and supply, but actually resource constraints are independent, and the 
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resource allocation scheme must strictly meet all resource constraints. These tasks are 
randomly assigned to services. Each service is composed of 7 tasks at most (ℎ𝑖𝑖 ≤ 7). 
𝑠𝑠 = 𝑚𝑚𝑖𝑖𝑝𝑝{𝑤𝑤1,𝑤𝑤2⋯𝑤𝑤𝐾𝐾}              (6) 
The bidding price of each task in services 𝑢𝑢𝑖𝑖,𝑗𝑗 is randomly generated in the range from 1000 
to 1200. It aims to make the competitiveness of SPs roughly equal. Otherwise, weak 
competitive SPs may never get the resources they want and make no difference in evaluating 
the performance. And we repeat experiments 500 times in each set of simulations. 

5.2 Analysis of result 
As our scheme aims to optimize edge resource allocation for RPs, the most important 
performance matrix is the incomes of RPs. We measure the maximum incomes that the RP 
gains when meeting all resource demands, then calculate the ratio of the incomes gained in 
different bidding methods and the maximum income to normalize the income. The 
normalized income intuitively presents the performance differences among methods in 
terms of income. And then we analyze the impact of the maximum number of tasks in a 
service and the number of servers respectively. 
Firstly, we evaluate the normalized incomes under different overall supply and demand 
ratios. Results are shown in Fig. 3. It illustrates that task-based bidding method always 
shows greater superiority than service-based bidding method no matter what greedy 
algorithm we select. When the ratio is greater than 1, the task-based bidding method 
improves the incomes by 2.12%-11.87%. With the ratio increasing, the relative 
performance difference is decreasing but the absolute performance difference is increasing. 
The reason is that when the ratio is extremely small, the RP can hardly meet any resource 
demands of any SPs whatever the bidding method is adopted. 

  
(a) Greedy Algorithm 1 (b) Greedy Algorithm 2 

Figure 3: Normalized income of schemes 
Then we analyze the impact of the maximum number of tasks in a service on the 
performance differences between the two bidding methods. In this simulation, we set this 
parameter range from 3 to 11 and set the overall supply and demand ratio to be 1. Other 
parameters are kept the same as Section 5.1. Then we calculate the ratio of normalized 
incomes between the task-based bidding method and the service-based bidding method. 
Results are shown in Fig. 4(a). The experiment results of the two algorithms present out 
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the same change trend. When the maximum number of tasks in a service increases, the ratio 
is also increasing. It means that their performance differences are becoming more and more 
significant. Thus, the maximum number of tasks is the main cause of performance differences. 
In the next set of simulations, we investigate the impact of the number of servers, 𝐶𝐶 , on 
the ratio of normalized incomes. The number of servers is another factor that the RP 
concerns because every RP wants to make the best use of existing server resources to meet 
the increasing demands instead of simply increasing the number of servers. We firstly 
generate resource demands when the number of servers is 10 and the overall supply and 
demand ratio is 1, and then update the resource supply, that is, the number of servers ranges 
from 4 to 16. We calculate the performance ratio under different number of servers. Results 
are shown in Fig. 4(b). It is observed that the ratio is always greater than 1 regardless of 
the number of servers. It means that when the resource supplies at these edge servers cannot 
meet the demand of SPs and the number of servers remains unchanged, task-based bidding 
method shows more superiority to service-based bidding method in resource utilization. 
We also observed that the performance gap is disappearing as the number of servers 
increases. The reason is that the resource supply at edge servers is gradually becoming 
saturated, and the normalized incomes of both task-based bidding method and service-
based bidding method are approaching to 1. 

  

(a) The impact of the maximum number 
of tasks in a service  

(b) The impact of the number of servers  
 

Figure 4: The impact of parameter settings on performance differences 

6 Conclusion 
In this paper, we first design a novel architecture, XDN, to explore service deployment and 
management in edge computing micro datacenters. Then, we focus on optimizing resource 
allocation for the benefit of RPs. Our design proposes a task-based resource bidding 
mechanism among multiple SPs which allows the RPs allocate resources in a more fine-
grained and flexible way. In the resource allocation model formulation, we fully consider 
the resource constraints and SPs’ expectations of edge computing when allocating 
resources. Then we investigate two typical greedy algorithm that are often introduced in 
solving resource allocation problem. We have made simple modifications to these two 
algorithms so that they can be applicable to task-based resource bidding method. 
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Simulation compared the performance differences of the task-based resource bid and the 
service-based resource bid. Results demonstrated that the task-based bidding method 
improves resource utilization and the incomes when edge resources are in short supply. In 
the future, we will continue to augment XDN to perfect its functionality and make it more 
suitable to SPs. Besides we will design an efficient and effective algorithm that is more 
suitable to solve the resource allocation problem in the edge computing micro datacenter. 
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