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Abstract: Spark is a distributed data processing framework based on memory. Memory 
allocation is a focus question of Spark research. A good memory allocation scheme can 
effectively improve the efficiency of task execution and memory resource utilization of 
the Spark. Aiming at the memory allocation problem in the Spark2.x version, this paper 
optimizes the memory allocation strategy by analyzing the Spark memory model, the 
existing cache replacement algorithms and the memory allocation methods, which is on 
the basis of minimizing the storage area and allocating the execution area according to 
the demand. It mainly including two parts: cache replacement optimization and memory 
allocation optimization. Firstly, in the storage area, the cache replacement algorithm is 
optimized according to the characteristics of RDD Partition, which is combined with 
PCA dimension. In this section, the four features of RDD Partition are selected. When the 
RDD cache is replaced, only two most important features are selected by PCA dimension 
reduction method each time, thereby ensuring the generalization of the cache replacement 
strategy. Secondly, the memory allocation strategy of the execution area is optimized 
according to the memory requirement of Task and the memory space of storage area. In 
this paper, a series of experiments in Spark on Yarn mode are carried out to verify the 
effectiveness of the optimization algorithm and improve the cluster performance. 
 
Keywords: Memory calculation, memory allocation optimization, cache replacement 
optimization. 

1 Introduction 
Spark is a memory-based distributed data processing framework. It is a fast and universal 
computing engine designed for large-scale data processing. During the execution of tasks 
on the Spark, it is necessary to load the data source to be processed from HDFS into RDD, 
and to generate the result by a series of RDD operations. Memory allocation is a key issue 
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in memory computing framework. A good memory allocation scheme can effectively 
improve the resource utilization of memory and speed up the execution of tasks. 
The existing memory management schemes include static memory partitioning and 
dynamic memory partitioning. Prior to Spark1.6, there was only static memory 
management and the size of the execution area and storage area cannot be changed. 
Memory allocation schemes are mainly FCFS and FA. In the FCFS algorithm, if one of 
the tasks has a large memory requirement, the other task cannot be allocated to memory, 
and the utilization of CPU is low. When the memory requirement of a task is very small, 
it will affect the utilization of memory, so the FCFS algorithm is suitable for the tasks of 
moderate and uniform memory requirement. The FA algorithm overcomes the 
disadvantages of low resource utilization and uneven memory allocation of FCFS algorithm 
to some extent, but it only considers the number of active tasks and does not consider the 
amount of data actually required by each task, causing the unfair in execution time of tasks, 
see Chen [Chen (2016)]. In recent years, many scholars have studied the memory allocation 
algorithm of Spark platform. For static memory management, an adaptive scheduling 
algorithm (SBSA) is proposed in Chen [Chen (2016)] based on FA algorithm, the times of 
tasks overflow and the overflow history of tasks. This study believes that tasks with more 
overflows requires more and will get more memory when there is free memory, but it does 
not take into account the initial memory allocation of task. Ying [Ying (2016)] also 
optimized the FA algorithm, and proposed an improved fair allocation algorithm, which is 
needed to distinguish the size of the task when tasks requests memory, for tasks with large 
memory requirements based on task overflow times and waiting time after task overflow. 
For dynamic memory management, Liao et al. [Liao, Huang and Bao (2018)] proposed that 
the storage space should be reduced without affecting RDD reuse and task execution 
efficiency, and the execution area should allocate memory according to the requirement of 
the task. Although this study improves the overall task execution efficiency to a certain 
extent, the speed of execution for tasks with small memory is reduced. Bian [Bian (2017)] 
points out that when the space allocated to the execution memory is larger, the job 
completion time is shorter. 
Based on the above studies, the work done in this paper is as follows: 
(1) Based on the goal of minimizing the storage area and allocating the execution area 
according to the demand, the weight calculation model of the RDD partition is improved, 
and the more valuable RDD partition is saved, thus the memory cache mechanism is 
optimized and the maximum memory is obtained in the execution area. 
(2) In the execution area, according to the memory requirement of tasks, the task with 
small requirement of memory directly allocates memory, while the task with large 
memory requirement dynamically adjusts the whole memory allocation according to the 
memory demand and overflow times. 
(3) The simulation results show that compared with the LRU algorithm, DWRP strategy 
and AWRP strategy, the optimized cache replacement mechanism is improved in three 
aspects: RDD computing cost, the times of cache replacement and memory utilization. 
By modifying and compiling the Spark source code, compiling and related experiments, 
the effectiveness of the optimized memory allocation algorithm is verified. 
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2 Correlation studies 
2.1 Spark Memory allocation management 
Spark Memory allocation is shown in Fig. 1. The default JVM heap size in Spark is 
512M, which can be adjusted by the parameter spark.executor.memory. The memory here 
is basically shared by all tasks within the Executor, see Ying [Ying (2016)]. 
Spark Memory is the space needed to run the system framework, which is made up of 
two parts, Storage Memory and Execution Memory. After Spark1.6, Storage and 
Execution used Unified to use Spark Memory (Heap Size-300 MB) together. By default, 
Storage and Execution took up 50 percent of the space, and stored memory and executed 
memory shared the same space. You can dynamically adjust the respective memory areas. 
When there is not enough memory for execution, it can also spill some data to disk in 
addition to borrowing memory space from Storage Memory, see reference [Apache Spark 
(2018)]. The size of Execution Memory space directly affects the efficiency of job 
execution, so this paper mainly optimizes the RDD cache replacement algorithm based 
on Storage Memory to ensure the minimum space of Storage Memory and make the 
Execution Memory space maximum. 

           
Figure 1: Spark memory allocation 

2.2 Introduction to RDD 
RDD (Resilient Distributed Data Set) is an immutable set of distributed objects. RDD can 
be logically abstracted into a HDFS file, but in fact, RDD can be divided into multiple 
RDD partitions and run on different nodes in the cluster. For developers, RDD can be 
seen as an object of Spark that itself runs in memory, such as reading a file is a RDD, 
evaluating files is a RDD and the result set is also a RDD. At the same time, RDD is 
fault-tolerant. If a RDD Partition on the node is lost because of the node failure, the RDD 
will recalculate the RDD Partition through its own data source. RDD is usually created 
from HDFS files or Hive tables, or from collections in an application. 
Because the data in RDD may be TB, PB level, it is not realistic to store and compute on 
one node. Therefore, according to the distributed idea, Spark divides RDD into several 
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subsets, that is, partition, which is similar to split in MapReduce. The number of 
partitions determines the granularity of the RDD calculation, and the calculation of 
partitions in RDD is performed in a single task. 
RDD supports two types of operations, one is Transformation operations, and the other is 
Action operations, see Chen et al. [Chen, Li, Cao et al. (2016)]. Transformation 
operations (such as map operations, join operations, groupByKey operations) create new 
RDD for the next calculation. The Action operation, such as the reduce operations, count 
operation, is the last operation on the RDD. In Spark, when the RDD is converted, the 
operation is not executed immediately. The system records only the information about the 
conversion operation until the Action operation triggers the real operation. The RDD 
execution process is shown in Fig. 2. 

 

Figure 2: The RDD execution process 

Because RDD is a coarse-grained set of operational data, each Transformation operation 
produces a new RDD, so that there are dependencies between RDD. There are two types 
of dependencies between RDD, Wide Dependency (or shuffle Dependency) and Narrow 
Dependency. Narrow Dependency means that one Partition of each parent RDD is used 
by up to one Partition of child RDD. Wide Dependency means that the Partition of a 
parent RDD is used by the Partition of multiple child RDD. 

 
Figure 3: Narrow dependency and wide dependencies 

2.3 Research on Spark cache management 
Since the memory space of the execution area directly affects the efficiency of the job 
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execution, the memory occupied by the storage area should be minimized as much as 
possible. Spark uses RDD as the data structure, and the RDD is the abstraction of the 
memory data set by Spark, and the intermediate results produced in the course of Spark 
operation are stored in memory as RDD, see reference [Liao, Huang and Xu (2018)]. The 
cached data in the storage area is frequently defined by the user. When the data is no 
longer needed, it cannot be cleaned up in time, so it cannot effectively use the memory 
space. At the same time, when memory is fixed, more valuable RDD partitions should be 
cached to speed up the execution of tasks. Therefore, the storage memory should be 
reduced and utilized as much as possible to ensure that the execution area has sufficient 
memory resources to accelerate job execution efficiency. And if the RDD is persisted, 
then each node will leave the calculated RDD partition results in memory. If the RDD is 
used again in subsequent processes, it will not need to be recalculated, thus speeding up 
the execution of the action. 
The persistence of RDD is handled by the Storage module of Spark, which realizes the 
decoupling of RDD and physical storage. The Storage module is responsible for 
managing the data generated by Spark in the process of calculation and encapsulates the 
functions of accessing data locally or remotely in memory or disk. In the implementation, 
the Storage module of the Driver side and the Executor side constitutes the architecture of 
master-slave, that is, the BlockManager on the Driver side is the Master and the 
BlockManager on the Executor side is the Slave. 

 
Figure 4: Storage module schematic 

However, the use of memory in Spark is still in the primary and inefficient stages. The 
efficiency of memory usage depends entirely on the quality of the code written by the 
programmer. The programmer must specify the RDD to be cached. It is cached when the 
cache program statement is executed, see Meng et al. [Meng, Yu and Liu (2017)]. In the 
Spark framework, when the storage memory space is insufficient, the LRU algorithm is used 
by default to implement cache replacement, and the least recently used RDD is replaced. 
In recent years, many scholars have studied the cache replacement algorithm for Spark 
platform. Liao et al. [Liao, Huang, Xu et al. (2018)] introduces RDD weight model. 
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Considering the RDD calculation cost and the the frequency of the RDD partition to be 
used, the Master records the RDD's initial calculation time and completion time by 
monitoring the RDD state change, that is, the RDD calculation cost. Liao et al. [Liao, 
Huang and Bao (2018)] considers the memory occupied by the RDD partition on the basis 
of that. Zhang et al. [Zhang, Chen, Zhang et al. (2017)] considers the distributed storage 
characteristics of the RDD partition. It is considered that when the Storage Memory space 
is insufficient, the complete RDD partition should be kept as much as possible. For the 
calculation of the RDD partition weight, the memory space occupied by the partition, 
access frequency and time characteristics are considered, but The RDD calculation cost is 
not considered. In Swain and Paikaray [Swain and Paikaray (2011)], according to the DAG 
diagram, the fine-grained RDD check-pointing and kick-out selection strategies are 
proposed to reduce the computational cost of RDD and maximize the memory usage during 
the selection of cache RDD. AWRP algorithm is designed and implemented by studying 
FIFO, LRU and other cache algorithms, see Duan et al. [Duan, Li, Tang et al. (2016)]. The 
algorithm calculates the weights of each cached object and selects the least recently used 
cache object. Meng et al. [Meng, Yu, Liu et al. (2017)] proposed the DWRP strategy 
considering the time when the RDD partition was stored in memory. 

2.4 Spark execution memory allocation research 
Spark 1.6 began to introduce dynamic memory management. The dynamic memory 
management mode is used in Spark by default. In the source code of SparkEnv.scala, if 
spark.memory.useLegacyMode is set to true, it will be changed to static memory 
management. There are two main scheduling modes in Spark: FIFO (first in, first out) 
and FAIR (fair scheduling). By default, the scheduling mode used in Spark is FIFO 
which means that the task submitted first is executed first, and the subsequent waiting 
tasks need to wait for the previous tasks to complete before continuing. 
In the Spark work process, multiple jobs are generated for each Application submitted. A 
job can generate multiple stages through the demarcation point, and each stage contains 
multiple tasks. The memory allocation problem for tasks is similar to the job scheduling 
problem, which uses different scheduling methods to effectively utilize fixed resources. 

3 Improved cache replacement algorithm 
By minimizing the storage memory, the task execution efficiency can be effectively 
improved, and the RDDs that are no longer used are deleted from the cache list. If a new 
RDD is added to the cache list, and the size of the RDD stored in the cache list exceeds 
the cache memory, cache replacement is required. 
Choosing a more valuable RDD is a core part of cache replacement, so sorting the RDDs 
in the cache list according to the principle of RDD’s importance is needed. 

3.1 Influencing factors of RDD cache  
Through the research of RDD cache replacement algorithm, the weights of RDD mainly 
have the following important factors: 
(1) Total frequency of use of RDD: The number of times of the RDD appears in a 
DAG diagram. 
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(2) The frequency of RDD to be used: With the execution of the job, each time RDD is 
used, the frequency of RDD to be used minus 1. The higher the frequency of RDD to be 
used, the higher the value of being cached. 
(3) RDD computing cost: The larger the computing cost, the higher the weight of RDD. 
The computing cost can be divided into the size of input data, the complexity of operation 
type and the complexity of closure (the concrete calculation content of RDD operation).  
The generation time 

ijRPT  for each partition is as follows: 

ijijRP STETT
ji

−=              (1)  

where ijET represents the end time of each partition build and ijST  represents the time that 
the partition start build. At the same time, the generation time of a RDD is determined by 
the longest generation time for all partitions, see Feng [Feng (2013)], so the computing 
cost of the RDD is： 

}....max{
.,1 inijii RPRPRPR TTTT =                                                                                          (2)                        

 
(4) The size of RDD partition capacity: Memory resource occupied by partition. 
(5) Life cycle: The definition of life cycle in Xiong et al. [Xiong, Xia and Yang (2018)] is 
the number of Action experienced by a RDD from its inception to its destruction. In Liao 
et al. [Liao, Huang and Bao (2018)], it is defined as the time interval between the start 
and the end of each RDD. The maximum life cycle is from the start time of RDD to the 
time of job completion, and the minimum life cycle is the time from the start time of 
RDD to the last use of RDD. 
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(6) The storage time: considering the idea of LRU algorithm, the longer a certain RDD 
partition is stored in memory, the more it is shown that it is a relatively “old” RDD 
partition. In other equal conditions, priority is given to the elimination of these “old” data, 
see Zhang et al. [Zhang, Chen, Zhang et al. (2017)]. 

3.2 Improved cache replacement algorithm 
In the improved cache replacement algorithm, only four factors affecting RDD cache are 
selected: the frequency of RDD to be used, RDD computing cost, the size of RDD and 
the storage time. The specific algorithm process is as follows: 
(1) When calculating weights, first convert partitioning and feature values to matrix form 
Suppose there are n partitions in a storage memory, each partition has m characteristic 
attribute, in which four characteristics are given: partition to be used frequency f, 
partition computation cost Cost, partition size S, storage time T. The matrix is as follows: 
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n represents the number of partitions, and m represents the characteristic attribute of each 
partition, here is 4. where mnX represents the value of the n-th indicator of the m-th partition. 
(2) Feature attribute normalization processing.Since the level difference between the four 
characteristic indicators is large, if the analysis is directly performed, the role of the 
higher value index in the comprehensive analysis will be highlighted, so that each index 
participates in the calculation with unequal weight. This paper uses the Max-min 
standardization method, see Wang et al. [Wang, Zhang, Zhang et al. (2018)]. The 
partition to be used frequency and partition cost calculation are positive correlation 
indicators, while the size and partition storage time are negative correlation indicators. 
Therefore, the indicators should be normalized and the conversion formula is as follows: 
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(3) PCA dimensional reduction: by using the single feature and combined feature of RDD 
partition as its value, many experiments show that when one or more of these features are 
used, the experimental results are quite different. Because the cached RDD partitions in 
the storage space are constantly changing, the criteria that measure the value of the RDD 
partitions also need to be dynamically adjusted each time. In the cache replacement 
mechanism, only the two most important features of the partition in memory are retained 
at a time, so only the first two columns of principal components are required at a time. 
The PCA algorithm is described as follows: 

Input: sample set: },...xx,{x m21=D ; 
      Low-dimensional space dimension: d’ 
Process: 

1. Centralization of all samples： ∑
=

−←
m

i

iii x
m

xx
1

1 ; 

2. Calculate the covariance matrix for the sample: TXX ; 

3. Eigenvalue decomposition of covariance matrix; 

4. Take the eigenvector corresponding to the maximum number of d’eigenvalues 

Output: projection matrix: ）（ '21 w,...w,w* dW =  

 
(4) Weight calculation equation: the product of the two strongest features of RDD partition. 
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2*1weight wiwii =                                                                                                                         (6) 
  

 

(5) Finally, by calculating the weights of each partition, the partition with smaller 
elimination weight should be considered first when the partition is replaced. The main 
ideas are as follows: 
① Get information about the RDD that needs to be cached. 
② Put all RDD objects in the candidate replacement list and sort by weight, if the 
replacement list is empty, you do not need a replacement, and if not null, Step ③. 
③ The RDD with the smallest option value in the replacement list begins to replace until 
the remaining RDD partition is smaller than the memory size and the computational cost 
of the replaced RDD is recorded. 

4 Optimization strategy of execution memory allocation  
Through the introduction of FIFO and FAIR scheduling algorithms, we can understand 
the characteristics of these two algorithms. During the execution of the tasks, if 
Execution memory is insufficient, in addition to choosing to borrow memory from the 
Storage Memory,  a part of the data can be spilled to the disk, but the data is read from 
the disk much less than the data is read from the memory. Therefore, this paper optimizes 
the FAIR algorithm according to the memory demand of each task and the dynamic 
changes of the task during execution. 

4.1 Correlation model 
This section defines the following for Spark task execution and memory allocation: 
(1) Job execution time. Spark is a memory-based distributed data processing framework. 
The main goal of using Spark is to improve job execution efficiency and reduce job 
execution time. Spark divides jobs into multiple stages, and each stage has one or more 
RDD, and each RDD also contains multiple partitions. The number of pipelines in each 
stage is determined by the number of partitions. 
Suppose there are n stages, there are m RDD in stagei. Except for the last wide dependent 
RDDim, in each stage, the other RDD is divided into x pipeline, each pipeline is a task. In 
addition to the final wide dependent RDDim of each phase, the RDD is divided into x 
pipeline and each pipeline is a task. The collection of partitions for the pipeline is 

}pipe,...,pipe,{pipepipe ixjix2ix1ix = , The execution time of each pipeline is ixj

m

j

pTT ∑
−

=

=
1

1

pipeix , 

the execution time of stagei is the sum of the maximum execution time of each pipeline 
and the computing time of RDDim: ),...,max( ixi2i1imi pipepipepipeRDDstage TTTTT += , the 

execution time of the job is istageTT ∑
=

=
n

1i

job . 

(2) Task parallelism. Task parallelism is the number of tasks executed concurrently at the 
same time. In the actual working environment, the degree of task parallelism is mainly 
determined by the number of working nodes and the number of CPU nodes. Assuming 
that the number of working nodes is n and the number of CPU cores per working node is 
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g, the maximum number of concurrency supported by the whole Spark environment is n 
* g, which is also called physical parallelism. If the user-specified parallel parameter is L, 
the minimum value priority should be followed, so the actual task parallelism can be 
expressed as: 

),min(dp gnLi ×=                                                                                                                        (7)  
When the user parallelism is greater than the physical parallelism, that is, the pipeline 
number of the stage is greater than the task parallelism degree, then the task needs to be 
assigned by multiple wheels, and the number of task assignment rounds can be expressed 
as: 

)n(ceilingound g
LR ×=                                                                                                                 (8) 

(3) Amount of allocation memory in the execution area. The initial allocation of the 
execution area is related to the system setting parameters, which is determined by the 
parameter of Spark.memory.fracton. By default, StorageMemory and ExecutorMemory 
can be allocated the same amount 50%. Because the memory of the Storage and the 
memory of the Execution can be dynamically adjusted and the memory of the Storage 
can be borrowed from the execution area, the maximum amount of the allocated amount 
of memory in the execution area is the whole memory space. The memory allocation 
policy of the execution area directly affects the memory size that can be allocated by each 
task. In the FA algorithm, the memory size allocated by each task is the same. The sum of 
memory allocated for each parallel run of task cannot exceed the current amount of 
allocatable memory in the execution area. 

moryExecutorMe
i

Taski≤∑
=

num

1
                                                                                            (9)          

(4) Amount of overflow memory in execution area. When the amount of memory 
allocated to Taski is less than the amount required for the task, the difference between 
them is the amount of memory overrun for the task. 

∑
=

−=

−=
n

i
ationTaskiemoryAllocexecutionMDemandiTaskMemoryyExecutorspillMemor

ationTaskiemoryAllocexecutionMDemandiTaskMemoryaskiillMemoryT

1

sp
 (10)                                        

4.2 Detailed design of improved algorithm 
In the improved memory allocation strategy, the weight is calculated according to the 
memory requirement and the number of overflows of the task, and then the weight is used 
to calculate how much memory should be allocated to the task. 
Free memory refers to all memory in Execution memory that has not been used. The 
definition is as follows: 

∑
=

∈=
m

1i
Mmask(i),memoryForT-maxPoolfreeMemory                                                        (11)                                

 
where memoryForTask stores all the unfinished tasks in the memory pool, M is the set of 
elements contained in memoryForTask, i is the id of the Task, and MemoryForTask(id) 
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indicates the memory that the Task already occupies. 
In the optimization algorithm, in order to ensure the execution efficiency of the task with 
small memory requirements, the minimum usable memory of each task is defined as 
MemLow, and the calculation equation is )*2/(maxPoolem ow activityl TaskM = , where   maxPool  is 
the maximum memory of the execution area, and activityTask is the number of active tasks 
in the current Worker.If the memory size required by the task iTask is less than owemlM , 
and the current free memory has enough memory allocated to the task, then the Executor 
only needs to allocate the amount of memory required for the task, namely: 

)(emgrant MemlowMemapplyMemapplyM <==                                                                   (12)                                                  
)freeMemory Memgrant,min(toGrant =                                                                                 (13)                    

where applyMem refers to the minimum memory available of Taski , freeMemory refers to the free 
memory in the current Executor, and toGrant is the actual memory size obtained by iTask . 
For tasks whose memory requirements are greater than MemLow, the weight calculation 
is required. The share that a task can get from memory depends on the ratio of the 
number of task overflows to the total number of task overflows that have not completed 
running, and the ratio of the amount of memory required by the task to the sum of the 
amount of memory required by the current active task. 
The weight calculation equation is as follows: 

）（）（ mMemapplysuMemapplyispillSumispillCountW /*2/*1eighti αα +=                           (14)  

∑
=

=
n

spillCountspillSum
1i

i                                                                                                 (15)                                                                                     

∑
=

=
n

applyiMapplysumM
1i

emem                                                                                     (16)                                                                                      
 

where spillCounti indicates the number of times the i-th task overflows, spillSum indicates 
the total number of task overflows that did not complete the run; Memapplyi indicates the 
amount of memory required for the i-th task, and Memapplysum indicates the sum of the 
amount of memory required for the currently active task.The maximum memory that a 
task can get depends on the number of overflows of the task and the amount of memory 
required, that is, the free memory weight of the task. The maximum memory that can 
theoretically be obtained is ii Weight*maxPoolemhigh =M .The maximum memory that 
the current task can actually get is: 

)))(high,0(max,min(rantomax ktaskMemorykMemMemapplykkGT −=                                (17)  
where )(ktaskMemory is the memory that the task has currently acquired. 
Finally, if the current free memory has enough memory allocated for the task, then the 
Executor can allocate the maximum amount of memory needed for the task. 

)freeMemory ,rantomaxmin(toGrant kGT=                                                                           (18) 
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4.3 Execution flow of improved algorithm  
In the improved algorithm, it is first determined whether the task exists in taskMeomory. 
The taskMemory stores the task that has not been completed, the taskMemory(id) stores 
the memory occupied by the task, and the spillCount(id) stores the number of overflows 
of the task. If the current task has became an active task, it is needed to determine the 
memory required by the task. If the required memory is less than the minimum allocated 
memory guarantee, the maximum amount of memory allocated to the task is the amount 
of memory required for the task. If the required memory is greater than the minimum 
allocated memory guarantee, you need to calculate maxPool, weight, MemHigh, 
maxToGrant according to the relevant model definition in 4.2, and determine the toGrant 
to be returned. 

 
Figure 5: Improve memory allocation algorithm flow 
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The code is implemented as follows: 
Improved Spark memory allocation algorithm

 
Input：   

Set of active tasks on Executor：activeTask 
Algorithm： 

spillSum=0; 
    weight=0.0; 
    spill = new mutable.HashMap[Long, Int]() 
    while (true) { 
      val numActiveTasks = memoryForTask.keys.size 
      val curMem = memoryForTask(taskAttemptId)         
      maybeGrowPool(numBytes - memoryFree) 
      val maxPoolSize = computeMaxPoolSize() 
      if(spillSum!=0) 

weight=a*numBytes/maxPoolSize+b*spill(taskAttemptId)/spillSum 
        val maxToGrant = math.min(numBytes, math.max(0, maxPoolSize *weight - curMem)) 
      else 
      val maxToGrant = math.min(numBytes, math.max(0, maxPoolSize *numBytes/maxPoolSize - 
curMem)) 
      val toGrant = math.min(maxToGrant, memoryFree) 
      if (toGrant < numBytes && curMem + toGrant < minMemoryPerTask) { 
        logInfo(s"TID $taskAttemptId waiting for at least 1/2N of $poolName pool to be free") 
        lock.wait() 
      } else { 
        Assign(memory); 
        Refresh(taskMemoryInfo); 
        Refresh(spill(taskAttemptId)); 
      } 
    }  

5 Experimental results and analysis 
5.1 Improved cache replacement algorithm 
This part is implemented by Matlab simulation. The dependencies between the various 
RDDs in Spark form a directed acyclic graph (DAG), so a DAG needs to be randomly 
generated. Considering that in different jobs, the characteristics of RDD size and 
generation cost are different. Therefore, each node (RDD partition) features are randomly 
generated, and Storage Memeory uses fixed size of memory space. In order to test and 
analyze the performance of the improved cache replacement algorithm, this paper 
implement the DWRP policy, AWRP strategy and LRU algorithm. In addition, in the 
experiment, we find that by PCA dimensionality reduction, it can be guaranteed that the 
improved cache replacement algorithm is less cost to calculate than each other algorithm 
in each experiment. 
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When the memory size allocated to the Storage Memeory is fixed, the number of cache 
replacements by using the DWRP policy, the AWRP policy, the LRU algorithm, and the 
improved cache replacement algorithm (NEWlru) is as shown in Fig. 6: 

 
Figure 6: Number of replacements 

When the memory is fixed, the improved cache replacement algorithm (NEWlru) has 
higher utilization of memory relative to the LRU algorithm, but the memory utilization is 
lower compared to the AWRP strategy as shown in Fig. 7. 

 
Figure 7: Memory occupancy rate 
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The computational cost of using the four algorithms is shown in Fig. 8: 

 
Figure 8: Cost 

In addition, after many experiments, it is found that using the four features of the RDD 
partition, but not using PCA dimensionality reduction, does not guarantee the optimal 
results for each experiment. 
In summary, the improved cache replacement algorithm not only can effectively improve 
memory utilization, reduce the number of cache replacements and the extra computational 
cost, but also ensure the cache effect in the case of RDD partition feature diversity. 

5.2 Improved Spark memory allocation algorithm 
In order to verify the effectiveness of the improved memory allocation algorithm, this 
study built Spark cluster and selected a variety of jobs for experiments. The experimental 
environment is shown in the following tables. Tab. 1 is the experimental cluster roles. Tab. 2 
is the information of cluster.  Tab. 3 is the information of the software version.  

Table 1: Experimental cluster roles 

IP The name of the 
machine Role 

192.168.113.128 master NameNode, secondaryNameNode, 
ResourceManager, Master 

192.168.113.129 slave1 NodeManager, DataNode, Worker 

192.168.113.130 slave2 NodeManager, DataNode, Worker 
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Table 2: Experimental cluster roles 
The name of the 
machine CPU cores Memory (GB) 

master 4 2 

slave1 4 2 

slave2 4 2 

Table 3: Software version information 

Software  Version 

Centos 6.5 
JDK 1.8 
Hadoop 2.7.0 
Spark 2.1.0 

In the K-means experiment, the data set of Absenteeism at work was used. Three cluster 
centers were selected and the number of iterations was 100. The experimental results 
after multiple experiments on the three algorithms are shown in Tab. 4, where Best 
represents the minimum execution time in multiple experiments, and Mean represents the 
time average of multiple executions. It can be seen that the improved memory allocation 
algorithm (IM-FAIR) has similar task execution time compared to FIFO and FAIR 
algorithms when dealing with small data sets. 

Table 4: Job execution time 

JVM 
 

FIFO FAIR IM-FAIR 

Best Mean Best Mean Best Mean 
512 M 1.25 1.32 1.30 1.40 1.30 1.35 
1024 M 1.20 1.22 1.20 1.26 1.20 1.26 
1536 M 1.20 1.20 1.20 1.25 1.20 1.22 

In the Wordcount experiment, the input data was 5 million lines and the file size was 547 
M. In the three experimental environments of Driver memory size 512 M, 1024 M, 1536 
M, the experimental results after multiple experiments on the three algorithms are shown 
in Fig. 9. It can be seen that when processing large data sets, as the JVM memory 
increases, the execution time becomes shorter and shorter, and the improved memory 
allocation algorithm (IM-FAIR) is superior to the FIFO and FAIR algorithms in terms of 
execution time. 
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Figure 9: Execution time comparison 

In the Wordcount experiment, the input data is 40 million lines and the file size is 4.62G. In 
the experimental environment with the driver memory size of 1536M and the task number 
of 37, the task completion time of the FAIR algorithm and the improved memory allocation 
algorithm is analyzed. The data processing time of the FAIR algorithm is 1.4 h, and the 
data processing time of the improved memory allocation algorithm (IM-FAIR) is 1.2 h. Fig. 
10 is the Duration time of each task in the Stage0 stage, and Fig. 11 is the Duration time of 
each task in the Stage1 stage. It can be seen that in the improved algorithm, the average 
duration time of the task is less than the average duration time of the task in the FAIR 
algorithm, and the variation range of the average duration time is small. 

 
Figure 10: Task Duration time comparison in Stage 0 

 
Figure 11: Task Duration time comparison in Stage 1 
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6 Conclusion 
Based on the idea of storage area minimization and execution area on-demand allocation, 
this paper optimized the cache replacement algorithm according to the characteristics of 
the RDD partition and the PCA dimensionality reduction mechanism. At the same time, 
according to the memory needs of the Task, the memory allocation strategy of the 
execution area is optimized. Matlab simulation experiments show that the improved 
cache replacement algorithm is more effective than the LRU algorithm in terms of 
memory utilization, computation cost, and number of replacements. At the same time, the 
experiment is carried out on a Spark cluster, which verified that the memory allocation 
strategy proposed in this paper can effectively reduce the execution time of tasks and 
improve the execution efficiency. Next, we will verify the improved RDD partition cache 
replacement model in the Spark cluster, and further improve the job execution efficiency 
by combining the implemented memory allocation strategy. 
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