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Abstract: In this paper, the node based smoothed-strain Abaqus user element (UEL) in 
the framework of finite element method is introduced. The basic idea behind of the node 
based smoothed finite element (NSFEM) is that finite element cells are divided into 
subcells and subcells construct the smoothing domain associated with each node of a 
finite element cell [Liu, Dai and Nguyen-Thoi (2007)]. Therefore, the numerical 
integration is globally performed over smoothing domains. It is demonstrated that the 
proposed UEL retains all the advantages of the NSFEM, i.e., upper bound solution, 
overly soft stiffness and free from locking in compressible and nearly-incompressible 
media. In this work, the constant strain triangular (CST) elements are used to construct 
node based smoothing domains, since any complex two dimensional domains can be 
discretized using CST elements. This additional challenge is successfully addressed in 
this paper. The efficacy and robustness of the proposed work is obtained by several 
benchmark problems in both linear and nonlinear elasticity. The developed UEL and the 
associated files can be downloaded from https://github.com/nsundar/NSFEM. 
 
Keywords: Smoothed finite element method (SFEM), node based SFEM (NSFEM), 
linear and nonlinear elasticity, Abaqus UEL (user elements), compressible and nearly-
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1 Introduction 
The classical FEM is a well established numerical method for simulation of real world 
problems related to science and engineering. The commercial finite element software like 
Abaqus is widely used in such applications. The Finite Element Analysis (FEA) involves 
three steps viz. pre-processing, analysis and post-processing. The pre-processing stage 
focuses on discretization of problem domain into non-overlapping sub-domains known as 
finite elements. This process of discretization is known as meshing. In classical FEM, 
shapes of the elements are restricted to triangles and quadrilaterals in two dimensions and 
tetrahedra and hexahedra in three dimensions [Altair Hypermesh Documentation (2014)]. 
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Due to these restrictions on element topology, the accuracy of the classical FEM is highly 
influenced by mesh distortion [Lee and Bathe (1993)]. In this regard, the triangular 
elements are considered to be robust for meshing but not in terms of accuracy like 
quadrilateral elements [Chandrupatla and Belegundu (2016)]. Therefore, a lot of time is 
spent in generation of well conditioned quadrilateral elements. The present work is 
restricted to two dimensional problems discretized with triangular elements; however, the 
solution accuracy is comparable to the quadrilateral elements. This is possible by using 
SFEM proposed by Liu et al. [Liu, Dai and Nguyen-Thoi (2007)]. Various methods 
proposed in the SFEM framework are the Cell Based SFEM (CSFEM), Node Based 
SFEM (NSFEM), Edge Based SFEM (ESFEM), Face Based SFEM (FSFEM), Selective 
SFEM, α-FEM, β-FEM and other variations [Zeng and Liu (2016)]. All the SFEM 
methods are applicable to triangular, quadrilateral or polygonal elements. These methods 
are well established with characteristics like convergence properties, stability, accuracy, 
and computational complexity [Nguyen-Xuan, Bordas and Nguyen-Dang (2008)]. Also 
the methods can be easily extended to three dimensional and geometric nonlinearity with 
nearly-incompressible material problems [Lee (2016)]. Kumbhar et al. [Kumbhar, Francis, 
Swaminathan et al. (2018); Wang (2014)], developed UEL to implement the CSFEM 
over the Polygonal Finite Element Method (PFEM) and the classical FEM in the 
commercial software Abaqus. Using CSFEM on two dimensional problems discretized 
with triangular elements, provides the numerical results exactly same as the classical 
FEM [Liu, Dai and Nguyen-Thoi (2007)]. The NSFEM is found to be suitable to work 
with triangular elements and less sensitive to mesh distortion and locking issues [Liu, 
Nguyen-Thoi, Nguyen-Xuan et al. (2009)]. 
In this work, Abaqus UEL is developed for the NSFEM and confined to the two 
dimensional problems. However this work can be easily extended to three dimensional 
problems. The problem domain is completely discretized using Constant Strain Triangular 
(CST) elements. The CST elements are chosen because the commercial software available 
can discretize any complex two dimensional geometry using CST elements without much 
difficulty [Altair Hypermesh Documentation (2014)]. Also the use of CST elements ease 
the construction of node based smoothing domain. Since, for the triangular elements, each 
node in the domain is associated with the one-third area of the corresponding attached 
element. All such regions for each node are known as smoothing regions. Therefore, the 
Abaqus UEL for NSFEM requires nodal coordinates and element connectivity of all the 
CST elements attached to each node under consideration. This data is provided to the 
Abaqus UEL through external data file. Depending upon the number of attached CST 
elements, the Abaqus UEL definition changes. For this purpose, a master UEL is written 
which incorporates different UEL elements defined as subroutines. The two dimensional 
linear and nonlinear elasticity problems are solved taking into account nearly-
incompressible materials. For nonlinear large strain problems, hyperelastic material model, 
the quasi-compressible neo-Hookean model in this work, is used. The complete paper is 
divided in the following sections: the governing equations for the elasticity problems, 
NSFEM Abaqus implementation section explains the procedure involved for the NSFEM 
framework, the numerical examples section that validates the developed UEL by solving 
few benchmark problems and followed by the conclusion section. 
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2 Smoothed finite element approximation 
In this section the governing equations are first presented for two dimensional linear 
elasticity and then its Smoothed finite element approximation is derived. In the 
subsequent subsection, the equations pertaining to weak form of two dimensional 
nonlinear elasticity accounting geometric nonlinearity are presented. The neo-Hookean 
hyperelastic material model and the Newton-Raphson iterative method equations for 
obtaining nonlinear solution are presented in brief. 

2.1 Smoothed finite element approximation in linear elasticity 
Let us consider a two dimensional isotropic linear elastic body in d ({≡  1, 2 }) 
dimensional Euclidean space, ℝ𝑑𝑑, whose material point is given by 𝑥𝑥 = ∑ 𝑥𝑥𝐼𝐼𝑒𝑒𝐼𝐼 , where 
𝑒𝑒𝐼𝐼  are the vectors of a chosen basis. Let Ω ⊂ ℝ𝑑𝑑  represent the body with domain 
boundary Γ. The body with domain boundary Γ ≡ 𝛿𝛿Ω consisting of Dirichlet boundary Γ𝐮𝐮 
and Neumann boundary Γ𝐭𝐭 , such that Γ = Γ𝐮𝐮 ∪ Γ𝐭𝐭  and Γ𝐮𝐮 ∩ Γ𝐭𝐭 = Ø  and the outward 
normal to Γ is 𝑛𝑛. Given the body force 𝐛𝐛, the Cauchy stress tensor 𝛔𝛔, the prescribed 
displacement 𝐮𝐮�  and the traction 𝐭𝐭̅ , to find the displacement field 𝐮𝐮  the governing 
differential is written as below: 
∇ ⋅ 𝛔𝛔    + 𝐛𝐛 = 𝟎𝟎    𝑖𝑖𝑛𝑛    Ω,  (1a)  
𝐮𝐮 = 𝐮𝐮�  𝑜𝑜𝑛𝑛  Γ𝐮𝐮,  (1b)  
𝛔𝛔.𝐧𝐧 = 𝐭𝐭 ̅ 𝑜𝑜𝑛𝑛  Γ𝐭𝐭,  (1c) 
Let 𝒰𝒰(Ω) = {𝐮𝐮:Ω  → ℝ𝑑𝑑 | 𝐮𝐮𝐼𝐼 ∈ 𝐻𝐻1(Ω), 𝐼𝐼 = 1, . . . ,𝑑𝑑,𝐮𝐮 = 𝐮𝐮� on Γ𝐮𝐮}  be the displacement 
trial function and 𝒱𝒱(Ω) = {𝐯𝐯:Ω  → ℝ𝑑𝑑|𝐯𝐯𝐼𝐼 ∈ 𝐻𝐻1(Ω), 𝐼𝐼 = 1, . . . ,𝑑𝑑, 𝐯𝐯 = 𝟎𝟎 on Γ𝐮𝐮} be the test 
function spaces, where 𝐻𝐻1 denotes the Hilbert-Sobolev first order space. The variational 
form of Eq. (1a) is written as below: 
∫Ω 𝛔𝛔.∇𝐮𝐮  𝑑𝑑Ω = ∫Ω 𝐛𝐛.𝐯𝐯  𝑑𝑑Ω + ∫Γ𝐭𝐭 𝐭𝐭.̅ 𝐯𝐯  𝑑𝑑Γ (2) 

The Cauchy stress tensor 𝝈𝝈 and strain tensor 𝜺𝜺 can be expressed as:  
𝝈𝝈 = 2𝜇𝜇𝜺𝜺 + 𝜆𝜆tr(𝜺𝜺)𝐈𝐈  (3) 
where shear modulus 𝜇𝜇  and Lamé’s first parameter 𝜆𝜆  can be expressed by Young’s 
modulus 𝐸𝐸 and Poisson’s ratio 𝜈𝜈 as follows:  

𝜇𝜇 = 𝐸𝐸
2(1+𝜈𝜈) ,    𝜆𝜆 = 𝐸𝐸𝜈𝜈

(1+𝜈𝜈)(1−2𝜈𝜈)  (4) 

The strain tensor 𝜺𝜺 is given as:  

𝜺𝜺 = 1
2
�Δ𝐮𝐮 + Δ𝐮𝐮T�  (5) 

Note that, since the relation of the Cauchy stress tensor and strain tensor is given as 𝝈𝝈 =
𝐃𝐃𝜺𝜺, the material modulus matrix 𝐃𝐃 can be defined as: 

𝐃𝐃 = �
2𝜈𝜈 + 𝜆𝜆 𝜆𝜆 0
𝜆𝜆 2𝜈𝜈 + 𝜆𝜆 0
0 0 𝜆𝜆

�  (6) 

In the following, it is assumed that the arbitrary domain is partitioned into nel finite 
elements defined as 𝜔𝜔�𝐼𝐼  such that Ω ≡ ∑𝑛𝑛𝑛𝑛𝑛𝑛𝐼𝐼=1 𝜔𝜔�𝐼𝐼  and 𝜔𝜔�𝐼𝐼 ∩ 𝜔𝜔�𝐽𝐽 = Ø,∀𝐼𝐼 ≠ 𝐽𝐽 . For the 
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discretization of the weak form, let the set 𝒰𝒰(Ω) ⊂ 𝐻𝐻1  consist of polynomial 
interpolation functions of the following form: 
𝐮𝐮𝒉𝒉 = ∑𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛=1 𝜙𝜙𝑛𝑛𝐮𝐮𝑛𝑛  
𝐯𝐯𝒉𝒉 = ∑𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛=1 𝜙𝜙𝑛𝑛𝐯𝐯𝑛𝑛  (7) 
where 𝜙𝜙𝑛𝑛  denote the finite element shape functions. Substituting these displacement 
functions in Eq. (2), the corresponding weak form can be obtained as: 
∫Ω 𝐃𝐃𝐃𝐃(𝐮𝐮ℎ)𝐃𝐃(𝐯𝐯ℎ)  𝑑𝑑Ω = ∫Ω 𝐛𝐛. 𝐯𝐯ℎ  𝑑𝑑Ω + ∫Γ𝐭𝐭 𝐭𝐭.̅ 𝐯𝐯

ℎ  𝑑𝑑Γ (8) 

Using the arbitrariness of testing displacement function 𝐯𝐯ℎ, this can be reduced to the 
following form: 
𝐊𝐊𝐮𝐮 = 𝐟𝐟 
𝐊𝐊 = ∑ℎ 𝐊𝐊ℎ = ∑ℎ ∫Ωℎ 𝐁𝐁

𝐓𝐓𝐃𝐃𝐁𝐁 𝑑𝑑Ω  

𝐟𝐟 = ∑ℎ 𝐟𝐟ℎ = ∑ℎ (∫Ωℎ 𝜙𝜙
𝑇𝑇𝐛𝐛 𝑑𝑑Ω  + ∫Γℎ 𝜙𝜙

𝑇𝑇𝐭𝐭 ̅𝑑𝑑Γ) (9) 
In Eq. (9), 𝐊𝐊 is the global stiffness matrix and 𝐁𝐁 = ∇𝜙𝜙 is the strain-displacement matrix 
that is computed using the derivatives of the shape functions 𝜙𝜙 for each element in case 
of the classical FEM. Liu et al. [Liu, Dai and Nguyen-Thoi (2007a)] employed SFEM 
converting area integration to line integration through the divergence theorem while 
performing numerical integration. The basic idea of SFEM is to divide the problem 
domain into sub-domains where strains are smoothed. These strains are constant over the 
smoothing domains but they are discontinuous across the boundaries of these smoothing 
domains. The smoothing domains are constructed using the topology provided by the 
mesh. For a single CST element shown in Fig. 1(a), NSFEM smoothing domains for 
respective nodes are marked with distinct features. 

 
Figure 1: NSFEM smoothing domains for a CST element 

The smoothed strain-displacement matrix 𝐁𝐁𝐈𝐈 for node 𝐼𝐼 is evaluated as below: 

𝐁𝐁𝐈𝐈 = 1
𝐴𝐴𝐼𝐼
∫Γ 𝐧𝐧𝜙𝜙𝐼𝐼

𝑇𝑇 𝑑𝑑Γ  (10) 

where 𝐴𝐴𝐼𝐼 is the area of the smoothing domain, 𝐧𝐧 is the outward normal vector and Ψ𝐼𝐼 is 
the shape functions. Referring to Fig. 1(b), it is observed that overall numerical 
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integration consists of line integration over the smoothing domain boundaries in SFEM 
compare to classical FEM. Such a line integration is evaluated using the shape function 
value at one Gauss point located at mid-point of the line boundary and the corresponding 
outward normal. After the evaluation of the strain-displacement matrix, construction of 
global stiffness matrix 𝐊𝐊  is similar to classical FEM. Thus in SFEM numerical 
integration is dependent on node coordinates in physical space avoiding locking and 
element distortion issues associated with classical FEM. The detailed construction and 
simplified evaluation of the strain displacement matrix for NSFEM having more than one 
CST elements will be explained in Section 3.1. 

2.2 Smoothed finite element approximation in finite elasticity. 
Here for the completeness of the subsection, few important equations and outline of the 
nonlinear elasticity solution is presented. However the elaborate derivations and detailed 
discussions of nonlinear elasticity accounting geometric nonlinearity and nearly 
incompressible material are found in Bhat [Bhatti (2006)]. 
Galerkin variational form for finite elasticity can be written as:  

∫Ω
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

(𝑋𝑋,𝐹𝐹(𝐮𝐮)):∇𝐯𝐯  𝑑𝑑Ω = ∫Ω 𝐛𝐛. 𝐯𝐯  𝑑𝑑Ω + ∫Γ𝑡𝑡 𝐭𝐭.̅ 𝐯𝐯  𝑑𝑑Γ (11) 

where 𝑊𝑊 is the strain energy density.  
In this work, the compressible neo-Hookean model is used [Bhatti (2006)]:  

𝑊𝑊 = 1
2
𝜆𝜆(ln𝐽𝐽)2 − 𝜇𝜇ln𝐽𝐽 + 1

2
𝜇𝜇(tr𝑪𝑪 − 3)  (12) 

where the right Cauchy-Green tensor 𝑪𝑪 and the Jacobian 𝐽𝐽 are defined as 𝑪𝑪 = 𝐹𝐹𝑇𝑇𝐹𝐹 and 
𝐽𝐽 = det𝐹𝐹 respectively. The deformation gradient 𝐹𝐹 can be evaluated as:  

𝐹𝐹𝑖𝑖𝑖𝑖 = �𝜕𝜕𝑥𝑥𝑖𝑖
𝜕𝜕𝑋𝑋𝑗𝑗

�  (13) 

where 𝑋𝑋 is the initial configuration and 𝑥𝑥 is the current configuration expressed as 𝑥𝑥 =
𝑋𝑋 + 𝐮𝐮. 
Note that, the left hand side and the right hand side of the Eq. (11) are defined as internal 
forces and external forces respectively: 

𝕎𝕎𝑖𝑖𝑛𝑛𝑖𝑖 = ∫Ω
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

(𝑋𝑋,𝐹𝐹(𝐮𝐮)):∇𝐯𝐯  𝑑𝑑Ω
𝕎𝕎𝑛𝑛𝑥𝑥𝑖𝑖 = ∫Ω 𝐛𝐛.𝐯𝐯  𝑑𝑑Ω + ∫Γ𝑡𝑡 𝐭𝐭.̅ 𝐯𝐯  𝑑𝑑Γ

  (14) 

The Newton-Raphson iterative method is used for the estimation of nonlinear solution. In 
this method, initial solution is assumed as zero and a residual is generated in Eq. (11). 
Subsequent incremental solutions are estimated using directional derivative of 𝕎𝕎𝑖𝑖𝑛𝑛𝑖𝑖 and 
𝕎𝕎𝑛𝑛𝑥𝑥𝑖𝑖 . The equation for residual 𝑅𝑅𝐮𝐮  with the current displacement function 𝐮𝐮 can be 
written as: 
𝑅𝑅𝐮𝐮 = 𝕎𝕎𝑖𝑖𝑛𝑛𝑖𝑖 −𝕎𝕎𝑛𝑛𝑥𝑥𝑖𝑖  (15) 
To estimate incremental iterative displacement Δ𝐮𝐮, Eq. (13) can be expressed with the 
directional derivative of 𝕎𝕎𝑖𝑖𝑛𝑛𝑖𝑖 and 𝕎𝕎𝑛𝑛𝑥𝑥𝑖𝑖 as follows:  
𝕎𝕎𝑖𝑖𝑛𝑛𝑖𝑖 + 𝐷𝐷Δ𝐮𝐮𝕎𝕎𝑖𝑖𝑛𝑛𝑖𝑖 = 𝕎𝕎𝑛𝑛𝑥𝑥𝑖𝑖 + 𝐷𝐷Δ𝐮𝐮𝕎𝕎𝑛𝑛𝑥𝑥𝑖𝑖  (16) 
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where the directional derivative for work done by internal forces 𝐷𝐷Δ𝐮𝐮𝕎𝕎𝑖𝑖𝑛𝑛𝑖𝑖 is given as:  

𝐷𝐷Δ𝐮𝐮𝕎𝕎𝑖𝑖𝑛𝑛𝑖𝑖 = ∫Ω
𝜕𝜕2𝜕𝜕

𝜕𝜕𝜕𝜕𝑖𝑖𝑗𝑗𝜕𝜕𝜕𝜕𝑘𝑘𝑘𝑘
�𝑋𝑋,𝐹𝐹(𝐮𝐮)� 𝜕𝜕𝑣𝑣𝑘𝑘

𝜕𝜕𝑋𝑋𝑘𝑘

𝜕𝜕𝑣𝑣𝑖𝑖
𝜕𝜕𝑋𝑋𝑗𝑗

𝑑𝑑Ω (17) 

where 𝑖𝑖, 𝑗𝑗,𝑘𝑘, 𝑙𝑙 ∈ (1,2)  for two-dimensions. Note that 𝐷𝐷Δ𝐮𝐮𝕎𝕎𝑛𝑛𝑥𝑥𝑖𝑖 = 0  as external forces 
will be unaffected by displacement changes except external pressure forces which are 
deformation dependent. 
Combining Eq. (16) and Eq. (17) gives a system of linear equations. Solution of this 
system of linear equations leads to the estimation of displacement increment Δ𝐮𝐮. With the 
new displacement 𝐮𝐮𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖+1 = 𝐮𝐮𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖 + Δ𝐮𝐮𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖 , residual 𝑅𝑅𝐮𝐮  is recalculated. To get more 
accurate solutions, the residual is required to be minimum. 

3 NSFEM Abaqus implementation 
3.1 Construction of node based smoothing domain in the framework of Abaqus UEL 
definition 
Fig. 2 shows an example of the construction of node-based smoothing domain Ω𝑐𝑐. As 
shown in Fig. 2, when node c is selected as the target node, neighboring CST elements 
are divided into subcells by mid-points and centroids. Each neighbored subcell with 
vertices labelled, e.g., a1,c, a11 and a12, is connected to anti-clockwise manner. When 
connected subcells make a closed region, it is called as the smoothing domain.The strain-
displacement matrix 𝑩𝑩𝑵𝑵𝑵𝑵 of the smoothing domain Ω𝑐𝑐 can be evaluated as follows [Liu, 
Nguyen-Thoi, Nguyen-Xuan et al. (2009)]: 

𝑩𝑩𝑵𝑵𝑵𝑵 = 1
𝑨𝑨𝑵𝑵𝑵𝑵

∑𝑁𝑁𝑛𝑛=1
1
3
𝑨𝑨𝒏𝒏𝑩𝑩𝒏𝒏  (18) 

where 𝑨𝑨𝑵𝑵𝑵𝑵 is the area of the smoothing domain Ω𝑐𝑐, 𝑁𝑁 is the number of CST elements 
sharing node c, 𝑨𝑨𝒏𝒏 is the area of CST element and 𝑩𝑩𝒏𝒏 is the strain-displacement matrix 
of CST element in FEM. Since the compatible strain is constant in CST element, 
simplified node-based strain-displacement matrix 𝑩𝑩𝑵𝑵𝑵𝑵 (Eq. (20)) can be used in the 
proposed Abaqus UEL. 

 
Figure 2: Node-based smoothing domain associated with a target node 
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Figure 3: Discretization of a square domain by triangular meshes with nodes labelled N1 
to N8 and elements labelled E1 to E8 

 
Listing 1: Definition of different NSFEM Abaqus UEL elements 

 
Figure 4: Smoothing domains for the NSFEM Abaqus UEL elements U1 to U7 
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For the NSFEM Abaqus UEL definition, first let discretize a square domain with 
triangular meshes as shown in Fig. 3. Then it needs to be found element cells associated 
with each node, for example, Node N1 is contained to node vertices of element E1 while 
node N2 is attached to elements E1 to E4. This means that targeted node N1 is attached to 
only element E1 and node vertices of element E1 are N1, N2 and N4. Similarly, for node 
N2, attached elements have node vertices N1, N2, N3, N4, N5 and N6. This node 
information for the proposed UEL definition is given in  Listing 1, sampling node N1, N2 
and N5 with prefix N dropped. The different NSFEM UEL element numbering like U1, 
U2, U3, etc. is used according to the number of nodes of attached elements. The number 
of variables in the UEL is chosen according to analysis requirements. It can be also 
observed in  Listing 1 that the number of nodes in the NSFEM Abaqus UEL is equal to 
UEL specific number after letter U plus two. In addition, similar property Abaqus UEL 
elements can be grouped together and can be given a particular name for easy reference. 
In the same manner, different definition types of smoothing domains corresponding to the 
NSFEM Abaqus UEL are given in Fig. 4. 

3.2 Major steps in the NSFEM Abaqus UEL implementation 
Fig. 5 depicts the three major steps involved in the implementation of the NSFEM Abaqus 
UEL: 1) Pre-processing, 2) Analysis using NSFEM Abaqus UEL and 3) Post-processing. 

 
Figure 5: Major steps involved in the implementation of NSFEM Abaqus UEL  

3.2.1 Pre-processing 
The first stage of the proposed UEL element is the pre-processing where the problem 
domain is discretized using CST elements. For the domain discretization, the mesh 
generation software Altair Hypermesh [Altair Hypermesh Documentation (2014)] is used. 
NSFEM Abaqus UEL is defined using the nodes of attached elements as explained in the 
previous section. A MATLAB code is used to obtain node vertices of elements associated 
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with the considering node. Once the attached elements are found, their node vertices are 
arranged after the target node to define NSFEM Abaqus UEL. Data set of node 
coordinates and node connectivity of CST elements is used as input parameters for the 
MATLAB code. The data files of the NSFEM Abaqus UEL definition are automatically 
generated using the MATLAB code. 
Before proceeding towards the analysis stage, input data file compatible with the developed 
UEL requires to share the following common keywords [Abaqus Documentation (2012)]: 
*user element to define the UEL and *UEL property to define thickness and material 
properties for element groups. In the keyword of *user element, the NSFEM Abaqus UEL 
elements labelled like U1, U2, U3, etc. need to be matched appropriately with the 
corresponding element type in the Abaqus input data file. Moreover, the NSFEM Abaqus 
UEL elements having the same number of nodes can be grouped into one and given a 
specific name. Rest of the structure of input data file is similar to the typical Abaqus 
standard input data file. 

3.2.2 Analysis using SFEM Abaqus UEL 
The next stage is to run the analysis using NSFEM Abaqus UEL. For the analysis Abaqus 
standard solver can be invoked by the following command: 

abaqus job=<inp file name>  user=<fortran Abaqus UEL file name> other options 
This command is much similar to the one used for other types of Abaqus UEL. The 
difference with NSFEM Abaqus UEL is that the data file containing the data set of CST 
element node coordinates and node connectivity is provided during the analysis. Such 
data file is kept in the same file path as the other analysis files. Note that, this data file 
path and its name need to be carefully mentioned in the definition of the NSFEM master 
UEL. In this stage use of the NSFEM Abaqus UEL FORTRAN code for the analysis is 
included as well. 

3.2.3 Post-processing 
Once the analysis is completed, Abaqus output data base (ODB) file containing the 
requested result is generated in the last stage. Since Abaqus CAE does not support post-
processing of Abaqus UEL elements without significant modifications, Altair Hyperview 
[Altair Hypermesh documentation (2014)], in the present work, is used for the post-
processing. In this case Abaqus ODB results file and Abaqus input data file containing 
CST elements are overlaid for the post-processing. 

3.2.4 The details of the NSFEM Abaqus UEL FORTRAN code 
To complete the implementation of the NSFEM, following FORTRAN code for Abaqus 
UEL is required. In this work, the NSFEM Abaqus UEL structure is arranged as a master 
UEL which further calls an individual UEL like U1, U2, etc. as a subroutine. The outline 
of the master UEL is shown in  Listing 2. The master UEL starts with the name of the 
subroutine with the list of arguments in the parentheses. Parameters section includes 
names of the constants which are assigned a fixed value. This leads the identification of 
constants easy while using them in the FORTRAN code. RHS and AMATRIX matrices 
denote the residual force and stiffness contribution of each element respectively are also 
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completely defined in the UEL. Additional variables such as numnode, numelem, node 
and element are added in the UEL to read node coordinates and elements connectivity 
data from an external data file as shown in  Listing 2. 
The structure of the data file contains total number of nodes at the top and followed by 
node coordinates. It is ensured that all the nodes are renumbered. Using the node numbers, 
their coordinates are arranged in ascending order. In this work, node numbers can be 
eliminated as sequence itself dictates the node number. If the renumbering of nodes is not 
done, it is necessary to include the node numbers in the data file. After the node 
coordinates in the data file, total number of CST elements in the domain are written and 
this is followed by node connectivity data of the CST elements. Similar to the node 
renumbering, the same comments are applied to the element renumbering. The if 
statement in the NSFEM master UEL is used to select the corresponding UEL subroutine 
according to the NSFEM Abaqus UEL element type. 
A detailed definition of a UEL U1 is shown in  Listing 3. In this detailed code, it can be 
observed that element number of NSFEM Abaqus UEL which is actually the node for 
which the smoothing domain is defined. This node number is used for finding the 
attached CST elements. Eq. (20) is used for the calculation of thestrain-displacement 
matrix constructed over the NSFEM smoothing domain. The detailed subroutine 
definition helps in the estimation of RHS and AMATRIX of the corresponding NSFEM 
smoothing domain. The estimation of global stiffness matrix by assembling of the 
matrices of individual UEL elements is taken care by Abaqus. 
The Newton-Raphson iterative method is used for correcting the nonlinear stiffness of the 
model in the same manner with the conventional FEM. Abaqus handles the iterative 
method once the linear and nonlinear stiffness matrices are defined correctly in the 
NSFEM Abaqus UEL subroutine. Material properties are read by the keyword *UEL 
property from the Abaqus input data file. Iterations are performed till it satisfies the 
convergence criteria as set in the Abaqus analysis parameters. Overall the major 
difference in the analysis using NSFEM Abaqus UEL is the estimation of the node-based 
strain-displacement matrix over smoothing domains but the rest of the process is the 
same as FEM4. 

 
  

 
4All MATLAB and FORTRAN codes are downloadable and available on Github 
(hppts://github.com/nsundar/NSFEM) 
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Listing 2: NSFEM master UEL FORTRAN code outline 
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Listing 3: FORTRAN code outline for the NSFEM Abaqus UEL U1 

4 Numerical examples 
In this section, a series of numerical examples is solved to demonstrate the utility of 
Abaqus NSFEM UEL elements: a cantilever beam, a bevelled cantilever beam, a square 
plate with a hole and a sharp V-notched square plate. For the tests, two dimensional 
linear elasticity reference problem is taken from Liu et al. [Liu, Dai and Nguyen-Thoi 
(2007)] and nonlinear elasticity considering geometric nonlinearity with nearly-
incompressible material reference problems is chosen from Lee [Lee (2016)]. Obtained 
numerical results are compared with Abaqus results with quadrilateral elements. 
The accuracy and the convergence rate using different Abaqus elements are analyzed 
using the relative error norm in the displacement and strain energy as given by: 
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Displacement norm:  

∥ 𝐮𝐮 − 𝐮𝐮ℎ ∥𝐿𝐿2(Ω)=
�∫Ω (𝐮𝐮−𝐮𝐮ℎ)𝑇𝑇(𝐮𝐮−𝐮𝐮ℎ)𝑑𝑑Ω

�∫Ω𝐮𝐮
𝑇𝑇𝐮𝐮  𝑑𝑑Ω

  (19) 

Strain energy norm:  

∥ 𝐃𝐃 − 𝐃𝐃ℎ ∥𝐻𝐻1(Ω)=
�∫Ω (𝐃𝐃−𝐃𝐃ℎ)𝑇𝑇𝐷𝐷(𝐃𝐃−𝐃𝐃ℎ)𝑑𝑑Ω

�∫Ω 𝐃𝐃
𝑇𝑇𝐷𝐷𝐃𝐃  𝑑𝑑Ω

  (20) 

4.1 Patch test 
In this section, two patch tests are performed on arbitrary patches of elements to satisfy 
basic convergence requirements of rigid body displacements and constant strain 
conditions to validate Abaqus NSFEM UEL. Note that, the material properties are 
Young’s modulus 𝐸𝐸 = 1000.0 Pa  and Poisson’s ratio 𝜈𝜈 = 0.3  and only pre-described 
displacement boundary conditions are considered for the tests. 
Firstly, a rigid body motion displacement is considered with an arbitrary patch of CST 
elements as shown in Fig. 6(a). The pre-described horizontal displacements which is 1.0 m 
are imposed on boundary nodes a1, a2, a3, a4, a7, a9 and a10. In this test, as a result, the 
computed horizontal displacements at interior nodes a5, a6 and a8 should be 1.0 m. As 
shown in Fig. 6(b), obtained results show that Abaqus NSFEM UEL passes the test. 

 

 
Figure 6: Rigid body motion displacement test with CST elements: (a) geometry of the 
patch and (b) constant strain displacement results 

In the next test, linear displacements 𝐮𝐮 = 𝑥𝑥 are imposed on the boundary nodes b1, b2, 
b3, b4, b6, b7, b8 and b9 for the patch as shown in Fig. 7(a). In order to pass this constant 
strain patch test, interior node b5 must show horizontal displacement equal to its 𝑥𝑥 
coordinate. As shown in Fig. 7(b), Abaqus NSFEM UEL also passes the constant strain 
displacement test. 
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Figure 7: Constant strain displacement test with CST elements: (a) geometry of the patch 
and (b) constant strain displacement results 

4.2 Cantilever beam in linear elasticity 
The geometry of a cantilever beam with length 𝐿𝐿 = 48.0 m and width 𝐷𝐷 = 12.0 m and 
CST element discretization are shown in Fig. 8. The material parameters for the plate are 
𝐸𝐸 = 3.0 × 107 Pa, 𝜈𝜈 = 0.3 and the total parabolic shear load acting over the free edge is 
𝑃𝑃 = −1000 N. 
The exact analytical solution for the above problem is given by: 

𝑢𝑢(𝑥𝑥,𝑦𝑦) = 𝑃𝑃𝑃𝑃
6𝐸𝐸𝐼𝐼

�(6𝐿𝐿 − 3𝑥𝑥)𝑥𝑥 + (2 + 𝜈𝜈) �𝑦𝑦2 − 𝐷𝐷2

4
��

𝑣𝑣(𝑥𝑥,𝑦𝑦) = − 𝑃𝑃
6𝐸𝐸𝐼𝐼

�3𝜈𝜈𝑦𝑦2(𝐿𝐿 − 𝑥𝑥) + (4 + 5𝜈𝜈)𝐷𝐷
2𝑥𝑥
4

+ (3𝐿𝐿 − 𝑥𝑥)𝑥𝑥2�
 (21) 

where 𝐼𝐼 = 𝐷𝐷3/12 is the moment of inertia and a state of plane stress is considered. 

 
Figure 8: The geometry of a cantilever beam: (a) geometry and boundary conditions and 
(b) discretization of the beam with CST elements 
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The convergence rates of the relative error in displacement norm and strain energy norm 
are given in Fig. 9. It is clearly seen that Abaqus NSFEM UEL shows better results than 
that using Abaqus triangular elements without any change in the domain discretization. 
These results are encouraging in the sense that analysis with NSFEM Abaqus UEL 
elements provide comparable results as those obtained using Abaqus quadrilateral 
elements with the same solver. In the next subsections, two dimensional nonlinear 
elasticity problems are considered. 

4.3 Cantilever beam in geometric nonlinearity 
In this section, the geometric nonlinearity is investigated. For this test, the cantilever 
beam used in the previous section is considered again. The parabolic shear load 10,000 N 
is implemented on the right-end edge and the left-end edge of the beam is completely 
constrained in all DOFs. The reference solution for this test is obtained by Abaqus with 
the very fine meshes (526,850 DOFs). 

 
(a) 𝐿𝐿2 norm 

 
(b) 𝐻𝐻1 norm 

Figure 9: The convergence of the relative error for the cantilever beam: (a) L2 norm and 
(b) H1 semi-norm 



 
 
 
496                                                                              CMC, vol.61, no.2, pp.481-502, 2019 

Fig. 10 illustrates the deformed shapes of the beam for Abaqus QUAD CPS4I and the 
proposed Abaqus NSFEM UEL elements and an improved accuracy obtained by the 
proposed elements can be observed in Tab. 1. 
The 𝐿𝐿2  error norm convergence rate for this test is shown in Fig. 11. NSFEM UEL 
elements result shows better convergence rate than triangular elements and it is 
comparable to quadrilateral elements as shown in Fig. 11.  

 
Figure 10: Deformed shapes of the cantilever beam with the vertical displacement plot: 
(a) Abaqus QUAD CPS4I and (b) Abaqus NSFE UEL elements  

Table 1: The vertical displacements at the sampling point ‘A’ of the cantilever beam 

Reference solution: -0.08907 (m) 
Mesh (DOFs) QUAD CPS4I NSFEM UEL 

54 -0.0879805 -0.1293490 
170 -0.0885215 -0.0985716 
594 -0.0888464 -0.0909835 
2210 -0.0889910 -0.0890785 

 
Figure 11: The convergence of the relative error in the 𝐿𝐿2 norm for the cantilever beam 
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4.4 Bevelled Cantilever beam 
A bevelled cantilever beam is studied in this section for the quasi-incompressible 
hyperelasticity. The geometry of the beam is given in Fig. 12 with 𝐿𝐿1 = 0.5 m  and 
vertical load 𝑃𝑃1 = −0.1 N/m. In this work, the neo-Hookean model is used with shear 
modulus 𝜇𝜇 = 0.6 Pa  and bulk modulus 𝜅𝜅 = 107Pa  equivalent to Poisson’s ratio 𝜈𝜈 =
0.49999997. Abaqus with very fine meshes (526,338 DOFs) is also used as the reference 
solution for this problem. 

 
Figure 12: The geometry of a bevelled cantilever beam  

The deformed shapes of the bevelled beam for Abaquas CPE4I and Abaqus NSFEM 
UEL elements are shown in Fig. 13 and their detailed displacement values at the 
sampling point ‘A1’ are given in Tab. 2. The results solved using NSFEM Abaqus UEL 
are in agreement with the results provided in Lee [Lee (2016)]. 

 
Figure 13: Deformed shapes of the bevelled cantilever beam: (a) Abaqus quadrilateral 
CPE4I and (b) Abaqus NSFEM UEL elements  

Table 2: The vertical displacements at the sampling point ‘A1’ of the bevelled beam 
Mesh (DOFs)  QUAD CPS4I elements (m)  NSFEM UEL elements (m) 

18  -0.193628   -0.158183 
50  -0.225601   -0.217090 
162  -0.233652   -0.239422 
578  -0.235873   -0.239782 
2178  -0.236849   -0.237986 
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The convergence of the 𝐿𝐿2 error norm is depicted in Fig. 14. It is observed from Fig. 14 
that Abaqus NSFEM UEL provides better convergence rate than Abaqus triangular 
element. In addition the following displacement and convergence results are confirmed 
again: the proposed Abaqus UEL is comparable to fully integrated elements. 

 
Figure 14: The convergence of the relative error in the 𝐿𝐿2  norm for the bevelled 
cantilever beam 

4.5 A square plate with a hole 
In this section, nonlinear nearly-incompressible problem is once again demonstrated. The 
problem domain is given as a square plate with a hole at the center (see Fig. 15). 
The geometry of the plate is 𝐿𝐿2 = 1.0 m and the radius of the circle is given as 𝑅𝑅 =
0.5 m. Vertical external force 𝑃𝑃2 = −0.1 N is equally distributed on the top edge of the 
plate. The neo-Hookean material with Lamé’s parameters 𝜇𝜇 = 1.8 Pa and 𝜅𝜅 = 107 Pa are 
used (Poisson’s ratio 𝜈𝜈 = 0.49999997 ). Right, left and bottom edges are fully 
constrained in all DOFs. 

 
Figure 15: The geometry of a square plate with a hole at the center  
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The reference solution to the square plate with a hole problem is obtained using Abaqus 
with fine CPE4I element meshes having 791,712 DOFs. Fig. 16 shows deformed shapes 
of the square plate for Abaqus quadrilateral and the proposed NSFEM UEL elements. A 
comparison of vertical displacements of Abaqus CPE4I and Abaqus NSFEM UEL 
elements is given in Tab. 3 with detailed values. The results of vertical displacement 
obtained at the sample point ‘A2’ show an upper bound solution using NSFEM Abaqus 
UEL elements while that Abaqus CPE4I elements give a lower bound solution. 

 
Figure 16: The deformed shapes of the plate: (a) Abaqus quadrilateral CPE4I and (b) the 
proposed Abaqus NSFEM UEL  

Table 3: The vertical displacements at the sampling point ‘A2’ of the square plate 

Reference solution: -0.0349782 (𝑚𝑚) 
Mesh (DOFs) QUAD CPE4I elements (m) NSFEM UEL elements (m) 

218 -0.0365862 -0.0424276 
1214 -0.0367179 -0.0383165 
3740 -0.0374940 -0.0380560 

4.6 A sharp V-notched square plate 
Lastly, a square plate with a sharp V-notch is studied. The geometry of the plate is given as 
𝐿𝐿3 = 1.0 m and 𝐵𝐵 = 0.02 m as shown in Fig. 17. The loading parameter is given as the 
total vertical load 𝑃𝑃3 = 0.05 N on the top edge and shear modulus 𝜇𝜇 = 0.6 Pa and bulk 
modulus 𝜅𝜅 = 105 Pa  are used ( 𝜈𝜈 = 0.499997 ). The bottom edge of the plate is 
constrained in all DOFs and the vertical displacement results are reported at the point ‘A3’. 
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Figure 17: The geometry of a square plate with a sharp V-notch  

Abaqus CPE4I element with the fine meshes (526,850 DOFs) is used as the reference 
solution for this test. The deformed shapes of Abaqus CPE4I and Abaqus NSFEM UEL 
for the plate are illustrated in Fig. 18. The detailed vertical displacements obtained at the 
sampling point ‘A3’ can be found in Tab. 4. Similar to the previous plate with a hole 
problem, the proposed UEL elements provide the upper-bound solution whereas Abaqus 
CPE4I results lower-bound solution. 

 
Figure 18: The deformed shapes of the V-notched plate: (a) Abaqus quadrilateral CPE4I 
and (b) Abaqus NSFEM UEL elements  

Table 4: Sharp V-Notch square plate point ‘A3’ vertical displacement results summary 

Reference solution: 0.16986 (m) 

Mesh (DOFs)  QUAD CPE4I elements (m)   NSFEM UEL elements (m)  

210  0.159277   0.211860  
1070  0.167541  0.188262 
2210  0.167700   0.182385  
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5 Conclusions 
In this work, Abaqus NSFEM UEL is successfully implemented in Abaqus software for 
two dimensional linear and nonlinear problems. The following conclusions can be drawn 
based on the results presented: 
1) The proposed Abaqus NSFEM UEL simplifies the preprocessing process as only CST 

elements are used.  
2) The proposed Abaqus NSFEM UEL provides more accurate results compare to the 

conventional FEM results even when the problem domain is completely discretized 
with linear triangular elements.  

3) This is improvisation in available FEM code. The convergence rate of Abaqus 
NSFEM UEL results are at par with those obtained from fully integrated Abaqus 
quadrilateral elements accounting additional complexities like geometric nonlinearity 
and nearly-incompressible material.   

4) The proposed Abaqus NSFEM UEL provides upper bound solution while the 
conventional FEM provides lower bound solution. Combining these two methods, 
range bound solution for the problem under consideration can be easily predicted 
without any major changes.  
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