

Computers, Materials & Continua CMC, vol.61, no.2, pp.481-502, 2019

CMC. doi:10.32604/cmc.2019.07967 www.techscience.com/cmc

Implementing the Node Based Smoothed Finite Element Method
as User Element in Abaqus for Linear and Nonlinear Elasticity

S. Kshrisagar1, A. Francis1, J. J. Yee2, S. Natarajan1 and C. K. Lee3, *

Abstract: In this paper, the node based smoothed-strain Abaqus user element (UEL) in
the framework of finite element method is introduced. The basic idea behind of the node
based smoothed finite element (NSFEM) is that finite element cells are divided into
subcells and subcells construct the smoothing domain associated with each node of a
finite element cell [Liu, Dai and Nguyen-Thoi (2007)]. Therefore, the numerical
integration is globally performed over smoothing domains. It is demonstrated that the
proposed UEL retains all the advantages of the NSFEM, i.e., upper bound solution,
overly soft stiffness and free from locking in compressible and nearly-incompressible
media. In this work, the constant strain triangular (CST) elements are used to construct
node based smoothing domains, since any complex two dimensional domains can be
discretized using CST elements. This additional challenge is successfully addressed in
this paper. The efficacy and robustness of the proposed work is obtained by several
benchmark problems in both linear and nonlinear elasticity. The developed UEL and the
associated files can be downloaded from https://github.com/nsundar/NSFEM.

Keywords: Smoothed finite element method (SFEM), node based SFEM (NSFEM),
linear and nonlinear elasticity, Abaqus UEL (user elements), compressible and nearly-
incompressible materials.

1 Introduction
The classical FEM is a well established numerical method for simulation of real world
problems related to science and engineering. The commercial finite element software like
Abaqus is widely used in such applications. The Finite Element Analysis (FEA) involves
three steps viz. pre-processing, analysis and post-processing. The pre-processing stage
focuses on discretization of problem domain into non-overlapping sub-domains known as
finite elements. This process of discretization is known as meshing. In classical FEM,
shapes of the elements are restricted to triangles and quadrilaterals in two dimensions and
tetrahedra and hexahedra in three dimensions [Altair Hypermesh Documentation (2014)].

1 Integrated Modelling and Simulation Lab, Department of Mechanical Engineering, Indian Institute of

Technology Madras, Chennai, 600036, India.
2 The Department of Architectural Engineering, Dong-A University, S04-0302, Engineering 2, 37, Nakdong-

daero 550beon-gil, Saha-gu, Busan, 49315, Korea.
3 National Research Center for Disaster-free & Safe Ocean City, Dong-A University, S04-0311-3,

Engineering 2, 37, Nakdong-daero 550beon-gil, Saha-gu, Busan, 49315, Korea.
* Corresponding Author: C. K. Lee. Email: changkyelee@dau.ac.kr.

482 CMC, vol.61, no.2, pp.481-502, 2019

Due to these restrictions on element topology, the accuracy of the classical FEM is highly
influenced by mesh distortion [Lee and Bathe (1993)]. In this regard, the triangular
elements are considered to be robust for meshing but not in terms of accuracy like
quadrilateral elements [Chandrupatla and Belegundu (2016)]. Therefore, a lot of time is
spent in generation of well conditioned quadrilateral elements. The present work is
restricted to two dimensional problems discretized with triangular elements; however, the
solution accuracy is comparable to the quadrilateral elements. This is possible by using
SFEM proposed by Liu et al. [Liu, Dai and Nguyen-Thoi (2007)]. Various methods
proposed in the SFEM framework are the Cell Based SFEM (CSFEM), Node Based
SFEM (NSFEM), Edge Based SFEM (ESFEM), Face Based SFEM (FSFEM), Selective
SFEM, α-FEM, β-FEM and other variations [Zeng and Liu (2016)]. All the SFEM
methods are applicable to triangular, quadrilateral or polygonal elements. These methods
are well established with characteristics like convergence properties, stability, accuracy,
and computational complexity [Nguyen-Xuan, Bordas and Nguyen-Dang (2008)]. Also
the methods can be easily extended to three dimensional and geometric nonlinearity with
nearly-incompressible material problems [Lee (2016)]. Kumbhar et al. [Kumbhar, Francis,
Swaminathan et al. (2018); Wang (2014)], developed UEL to implement the CSFEM
over the Polygonal Finite Element Method (PFEM) and the classical FEM in the
commercial software Abaqus. Using CSFEM on two dimensional problems discretized
with triangular elements, provides the numerical results exactly same as the classical
FEM [Liu, Dai and Nguyen-Thoi (2007)]. The NSFEM is found to be suitable to work
with triangular elements and less sensitive to mesh distortion and locking issues [Liu,
Nguyen-Thoi, Nguyen-Xuan et al. (2009)].
In this work, Abaqus UEL is developed for the NSFEM and confined to the two
dimensional problems. However this work can be easily extended to three dimensional
problems. The problem domain is completely discretized using Constant Strain Triangular
(CST) elements. The CST elements are chosen because the commercial software available
can discretize any complex two dimensional geometry using CST elements without much
difficulty [Altair Hypermesh Documentation (2014)]. Also the use of CST elements ease
the construction of node based smoothing domain. Since, for the triangular elements, each
node in the domain is associated with the one-third area of the corresponding attached
element. All such regions for each node are known as smoothing regions. Therefore, the
Abaqus UEL for NSFEM requires nodal coordinates and element connectivity of all the
CST elements attached to each node under consideration. This data is provided to the
Abaqus UEL through external data file. Depending upon the number of attached CST
elements, the Abaqus UEL definition changes. For this purpose, a master UEL is written
which incorporates different UEL elements defined as subroutines. The two dimensional
linear and nonlinear elasticity problems are solved taking into account nearly-
incompressible materials. For nonlinear large strain problems, hyperelastic material model,
the quasi-compressible neo-Hookean model in this work, is used. The complete paper is
divided in the following sections: the governing equations for the elasticity problems,
NSFEM Abaqus implementation section explains the procedure involved for the NSFEM
framework, the numerical examples section that validates the developed UEL by solving
few benchmark problems and followed by the conclusion section.

Implementing the Node Based Smoothed Finite Element Method 483

2 Smoothed finite element approximation
In this section the governing equations are first presented for two dimensional linear
elasticity and then its Smoothed finite element approximation is derived. In the
subsequent subsection, the equations pertaining to weak form of two dimensional
nonlinear elasticity accounting geometric nonlinearity are presented. The neo-Hookean
hyperelastic material model and the Newton-Raphson iterative method equations for
obtaining nonlinear solution are presented in brief.

2.1 Smoothed finite element approximation in linear elasticity
Let us consider a two dimensional isotropic linear elastic body in d ({≡ 1, 2 })
dimensional Euclidean space, ℝ𝑑𝑑, whose material point is given by 𝑥𝑥 = ∑ 𝑥𝑥𝐼𝐼𝑒𝑒𝐼𝐼 , where
𝑒𝑒𝐼𝐼 are the vectors of a chosen basis. Let Ω ⊂ ℝ𝑑𝑑 represent the body with domain
boundary Γ. The body with domain boundary Γ ≡ 𝛿𝛿Ω consisting of Dirichlet boundary Γ𝐮𝐮
and Neumann boundary Γ𝐭𝐭 , such that Γ = Γ𝐮𝐮 ∪ Γ𝐭𝐭 and Γ𝐮𝐮 ∩ Γ𝐭𝐭 = Ø and the outward
normal to Γ is 𝑛𝑛. Given the body force 𝐛𝐛, the Cauchy stress tensor 𝛔𝛔, the prescribed
displacement 𝐮𝐮� and the traction 𝐭𝐭̅ , to find the displacement field 𝐮𝐮 the governing
differential is written as below:
∇ ⋅ 𝛔𝛔 + 𝐛𝐛 = 𝟎𝟎 𝑖𝑖𝑛𝑛 Ω, (1a)
𝐮𝐮 = 𝐮𝐮� 𝑜𝑜𝑛𝑛 Γ𝐮𝐮, (1b)
𝛔𝛔.𝐧𝐧 = 𝐭𝐭 ̅ 𝑜𝑜𝑛𝑛 Γ𝐭𝐭, (1c)
Let 𝒰𝒰(Ω) = {𝐮𝐮:Ω → ℝ𝑑𝑑 | 𝐮𝐮𝐼𝐼 ∈ 𝐻𝐻1(Ω), 𝐼𝐼 = 1, . . . ,𝑑𝑑,𝐮𝐮 = 𝐮𝐮� on Γ𝐮𝐮} be the displacement
trial function and 𝒱𝒱(Ω) = {𝐯𝐯:Ω → ℝ𝑑𝑑|𝐯𝐯𝐼𝐼 ∈ 𝐻𝐻1(Ω), 𝐼𝐼 = 1, . . . ,𝑑𝑑, 𝐯𝐯 = 𝟎𝟎 on Γ𝐮𝐮} be the test
function spaces, where 𝐻𝐻1 denotes the Hilbert-Sobolev first order space. The variational
form of Eq. (1a) is written as below:
∫Ω 𝛔𝛔.∇𝐮𝐮 𝑑𝑑Ω = ∫Ω 𝐛𝐛.𝐯𝐯 𝑑𝑑Ω + ∫Γ𝐭𝐭 𝐭𝐭.̅ 𝐯𝐯 𝑑𝑑Γ (2)

The Cauchy stress tensor 𝝈𝝈 and strain tensor 𝜺𝜺 can be expressed as:
𝝈𝝈 = 2𝜇𝜇𝜺𝜺 + 𝜆𝜆tr(𝜺𝜺)𝐈𝐈 (3)
where shear modulus 𝜇𝜇 and Lamé’s first parameter 𝜆𝜆 can be expressed by Young’s
modulus 𝐸𝐸 and Poisson’s ratio 𝜈𝜈 as follows:

𝜇𝜇 = 𝐸𝐸
2(1+𝜈𝜈) , 𝜆𝜆 = 𝐸𝐸𝜈𝜈

(1+𝜈𝜈)(1−2𝜈𝜈) (4)

The strain tensor 𝜺𝜺 is given as:

𝜺𝜺 = 1
2
�Δ𝐮𝐮 + Δ𝐮𝐮T� (5)

Note that, since the relation of the Cauchy stress tensor and strain tensor is given as 𝝈𝝈 =
𝐃𝐃𝜺𝜺, the material modulus matrix 𝐃𝐃 can be defined as:

𝐃𝐃 = �
2𝜈𝜈 + 𝜆𝜆 𝜆𝜆 0
𝜆𝜆 2𝜈𝜈 + 𝜆𝜆 0
0 0 𝜆𝜆

� (6)

In the following, it is assumed that the arbitrary domain is partitioned into nel finite
elements defined as 𝜔𝜔�𝐼𝐼 such that Ω ≡ ∑𝑛𝑛𝑛𝑛𝑛𝑛𝐼𝐼=1 𝜔𝜔�𝐼𝐼 and 𝜔𝜔�𝐼𝐼 ∩ 𝜔𝜔�𝐽𝐽 = Ø,∀𝐼𝐼 ≠ 𝐽𝐽 . For the

484 CMC, vol.61, no.2, pp.481-502, 2019

discretization of the weak form, let the set 𝒰𝒰(Ω) ⊂ 𝐻𝐻1 consist of polynomial
interpolation functions of the following form:
𝐮𝐮𝒉𝒉 = ∑𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛=1 𝜙𝜙𝑛𝑛𝐮𝐮𝑛𝑛
𝐯𝐯𝒉𝒉 = ∑𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛=1 𝜙𝜙𝑛𝑛𝐯𝐯𝑛𝑛 (7)
where 𝜙𝜙𝑛𝑛 denote the finite element shape functions. Substituting these displacement
functions in Eq. (2), the corresponding weak form can be obtained as:
∫Ω 𝐃𝐃𝐃𝐃(𝐮𝐮ℎ)𝐃𝐃(𝐯𝐯ℎ) 𝑑𝑑Ω = ∫Ω 𝐛𝐛. 𝐯𝐯ℎ 𝑑𝑑Ω + ∫Γ𝐭𝐭 𝐭𝐭.̅ 𝐯𝐯

ℎ 𝑑𝑑Γ (8)

Using the arbitrariness of testing displacement function 𝐯𝐯ℎ, this can be reduced to the
following form:
𝐊𝐊𝐮𝐮 = 𝐟𝐟
𝐊𝐊 = ∑ℎ 𝐊𝐊ℎ = ∑ℎ ∫Ωℎ 𝐁𝐁

𝐓𝐓𝐃𝐃𝐁𝐁 𝑑𝑑Ω

𝐟𝐟 = ∑ℎ 𝐟𝐟ℎ = ∑ℎ (∫Ωℎ 𝜙𝜙
𝑇𝑇𝐛𝐛 𝑑𝑑Ω + ∫Γℎ 𝜙𝜙

𝑇𝑇𝐭𝐭 ̅𝑑𝑑Γ) (9)
In Eq. (9), 𝐊𝐊 is the global stiffness matrix and 𝐁𝐁 = ∇𝜙𝜙 is the strain-displacement matrix
that is computed using the derivatives of the shape functions 𝜙𝜙 for each element in case
of the classical FEM. Liu et al. [Liu, Dai and Nguyen-Thoi (2007a)] employed SFEM
converting area integration to line integration through the divergence theorem while
performing numerical integration. The basic idea of SFEM is to divide the problem
domain into sub-domains where strains are smoothed. These strains are constant over the
smoothing domains but they are discontinuous across the boundaries of these smoothing
domains. The smoothing domains are constructed using the topology provided by the
mesh. For a single CST element shown in Fig. 1(a), NSFEM smoothing domains for
respective nodes are marked with distinct features.

Figure 1: NSFEM smoothing domains for a CST element

The smoothed strain-displacement matrix 𝐁𝐁𝐈𝐈 for node 𝐼𝐼 is evaluated as below:

𝐁𝐁𝐈𝐈 = 1
𝐴𝐴𝐼𝐼
∫Γ 𝐧𝐧𝜙𝜙𝐼𝐼

𝑇𝑇 𝑑𝑑Γ (10)

where 𝐴𝐴𝐼𝐼 is the area of the smoothing domain, 𝐧𝐧 is the outward normal vector and Ψ𝐼𝐼 is
the shape functions. Referring to Fig. 1(b), it is observed that overall numerical

Implementing the Node Based Smoothed Finite Element Method 485

integration consists of line integration over the smoothing domain boundaries in SFEM
compare to classical FEM. Such a line integration is evaluated using the shape function
value at one Gauss point located at mid-point of the line boundary and the corresponding
outward normal. After the evaluation of the strain-displacement matrix, construction of
global stiffness matrix 𝐊𝐊 is similar to classical FEM. Thus in SFEM numerical
integration is dependent on node coordinates in physical space avoiding locking and
element distortion issues associated with classical FEM. The detailed construction and
simplified evaluation of the strain displacement matrix for NSFEM having more than one
CST elements will be explained in Section 3.1.

2.2 Smoothed finite element approximation in finite elasticity.
Here for the completeness of the subsection, few important equations and outline of the
nonlinear elasticity solution is presented. However the elaborate derivations and detailed
discussions of nonlinear elasticity accounting geometric nonlinearity and nearly
incompressible material are found in Bhat [Bhatti (2006)].
Galerkin variational form for finite elasticity can be written as:

∫Ω
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

(𝑋𝑋,𝐹𝐹(𝐮𝐮)):∇𝐯𝐯 𝑑𝑑Ω = ∫Ω 𝐛𝐛. 𝐯𝐯 𝑑𝑑Ω + ∫Γ𝑡𝑡 𝐭𝐭.̅ 𝐯𝐯 𝑑𝑑Γ (11)

where 𝑊𝑊 is the strain energy density.
In this work, the compressible neo-Hookean model is used [Bhatti (2006)]:

𝑊𝑊 = 1
2
𝜆𝜆(ln𝐽𝐽)2 − 𝜇𝜇ln𝐽𝐽 + 1

2
𝜇𝜇(tr𝑪𝑪 − 3) (12)

where the right Cauchy-Green tensor 𝑪𝑪 and the Jacobian 𝐽𝐽 are defined as 𝑪𝑪 = 𝐹𝐹𝑇𝑇𝐹𝐹 and
𝐽𝐽 = det𝐹𝐹 respectively. The deformation gradient 𝐹𝐹 can be evaluated as:

𝐹𝐹𝑖𝑖𝑖𝑖 = �𝜕𝜕𝑥𝑥𝑖𝑖
𝜕𝜕𝑋𝑋𝑗𝑗

� (13)

where 𝑋𝑋 is the initial configuration and 𝑥𝑥 is the current configuration expressed as 𝑥𝑥 =
𝑋𝑋 + 𝐮𝐮.
Note that, the left hand side and the right hand side of the Eq. (11) are defined as internal
forces and external forces respectively:

𝕎𝕎𝑖𝑖𝑛𝑛𝑖𝑖 = ∫Ω
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

(𝑋𝑋,𝐹𝐹(𝐮𝐮)):∇𝐯𝐯 𝑑𝑑Ω
𝕎𝕎𝑛𝑛𝑥𝑥𝑖𝑖 = ∫Ω 𝐛𝐛.𝐯𝐯 𝑑𝑑Ω + ∫Γ𝑡𝑡 𝐭𝐭.̅ 𝐯𝐯 𝑑𝑑Γ

 (14)

The Newton-Raphson iterative method is used for the estimation of nonlinear solution. In
this method, initial solution is assumed as zero and a residual is generated in Eq. (11).
Subsequent incremental solutions are estimated using directional derivative of 𝕎𝕎𝑖𝑖𝑛𝑛𝑖𝑖 and
𝕎𝕎𝑛𝑛𝑥𝑥𝑖𝑖 . The equation for residual 𝑅𝑅𝐮𝐮 with the current displacement function 𝐮𝐮 can be
written as:
𝑅𝑅𝐮𝐮 = 𝕎𝕎𝑖𝑖𝑛𝑛𝑖𝑖 −𝕎𝕎𝑛𝑛𝑥𝑥𝑖𝑖 (15)
To estimate incremental iterative displacement Δ𝐮𝐮, Eq. (13) can be expressed with the
directional derivative of 𝕎𝕎𝑖𝑖𝑛𝑛𝑖𝑖 and 𝕎𝕎𝑛𝑛𝑥𝑥𝑖𝑖 as follows:
𝕎𝕎𝑖𝑖𝑛𝑛𝑖𝑖 + 𝐷𝐷Δ𝐮𝐮𝕎𝕎𝑖𝑖𝑛𝑛𝑖𝑖 = 𝕎𝕎𝑛𝑛𝑥𝑥𝑖𝑖 + 𝐷𝐷Δ𝐮𝐮𝕎𝕎𝑛𝑛𝑥𝑥𝑖𝑖 (16)

486 CMC, vol.61, no.2, pp.481-502, 2019

where the directional derivative for work done by internal forces 𝐷𝐷Δ𝐮𝐮𝕎𝕎𝑖𝑖𝑛𝑛𝑖𝑖 is given as:

𝐷𝐷Δ𝐮𝐮𝕎𝕎𝑖𝑖𝑛𝑛𝑖𝑖 = ∫Ω
𝜕𝜕2𝜕𝜕

𝜕𝜕𝜕𝜕𝑖𝑖𝑗𝑗𝜕𝜕𝜕𝜕𝑘𝑘𝑘𝑘
�𝑋𝑋,𝐹𝐹(𝐮𝐮)� 𝜕𝜕𝑣𝑣𝑘𝑘

𝜕𝜕𝑋𝑋𝑘𝑘

𝜕𝜕𝑣𝑣𝑖𝑖
𝜕𝜕𝑋𝑋𝑗𝑗

𝑑𝑑Ω (17)

where 𝑖𝑖, 𝑗𝑗,𝑘𝑘, 𝑙𝑙 ∈ (1,2) for two-dimensions. Note that 𝐷𝐷Δ𝐮𝐮𝕎𝕎𝑛𝑛𝑥𝑥𝑖𝑖 = 0 as external forces
will be unaffected by displacement changes except external pressure forces which are
deformation dependent.
Combining Eq. (16) and Eq. (17) gives a system of linear equations. Solution of this
system of linear equations leads to the estimation of displacement increment Δ𝐮𝐮. With the
new displacement 𝐮𝐮𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖+1 = 𝐮𝐮𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖 + Δ𝐮𝐮𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖 , residual 𝑅𝑅𝐮𝐮 is recalculated. To get more
accurate solutions, the residual is required to be minimum.

3 NSFEM Abaqus implementation
3.1 Construction of node based smoothing domain in the framework of Abaqus UEL
definition
Fig. 2 shows an example of the construction of node-based smoothing domain Ω𝑐𝑐. As
shown in Fig. 2, when node c is selected as the target node, neighboring CST elements
are divided into subcells by mid-points and centroids. Each neighbored subcell with
vertices labelled, e.g., a1,c, a11 and a12, is connected to anti-clockwise manner. When
connected subcells make a closed region, it is called as the smoothing domain.The strain-
displacement matrix 𝑩𝑩𝑵𝑵𝑵𝑵 of the smoothing domain Ω𝑐𝑐 can be evaluated as follows [Liu,
Nguyen-Thoi, Nguyen-Xuan et al. (2009)]:

𝑩𝑩𝑵𝑵𝑵𝑵 = 1
𝑨𝑨𝑵𝑵𝑵𝑵

∑𝑁𝑁𝑛𝑛=1
1
3
𝑨𝑨𝒏𝒏𝑩𝑩𝒏𝒏 (18)

where 𝑨𝑨𝑵𝑵𝑵𝑵 is the area of the smoothing domain Ω𝑐𝑐, 𝑁𝑁 is the number of CST elements
sharing node c, 𝑨𝑨𝒏𝒏 is the area of CST element and 𝑩𝑩𝒏𝒏 is the strain-displacement matrix
of CST element in FEM. Since the compatible strain is constant in CST element,
simplified node-based strain-displacement matrix 𝑩𝑩𝑵𝑵𝑵𝑵 (Eq. (20)) can be used in the
proposed Abaqus UEL.

Figure 2: Node-based smoothing domain associated with a target node

Implementing the Node Based Smoothed Finite Element Method 487

Figure 3: Discretization of a square domain by triangular meshes with nodes labelled N1
to N8 and elements labelled E1 to E8

Listing 1: Definition of different NSFEM Abaqus UEL elements

Figure 4: Smoothing domains for the NSFEM Abaqus UEL elements U1 to U7

488 CMC, vol.61, no.2, pp.481-502, 2019

For the NSFEM Abaqus UEL definition, first let discretize a square domain with
triangular meshes as shown in Fig. 3. Then it needs to be found element cells associated
with each node, for example, Node N1 is contained to node vertices of element E1 while
node N2 is attached to elements E1 to E4. This means that targeted node N1 is attached to
only element E1 and node vertices of element E1 are N1, N2 and N4. Similarly, for node
N2, attached elements have node vertices N1, N2, N3, N4, N5 and N6. This node
information for the proposed UEL definition is given in Listing 1, sampling node N1, N2
and N5 with prefix N dropped. The different NSFEM UEL element numbering like U1,
U2, U3, etc. is used according to the number of nodes of attached elements. The number
of variables in the UEL is chosen according to analysis requirements. It can be also
observed in Listing 1 that the number of nodes in the NSFEM Abaqus UEL is equal to
UEL specific number after letter U plus two. In addition, similar property Abaqus UEL
elements can be grouped together and can be given a particular name for easy reference.
In the same manner, different definition types of smoothing domains corresponding to the
NSFEM Abaqus UEL are given in Fig. 4.

3.2 Major steps in the NSFEM Abaqus UEL implementation
Fig. 5 depicts the three major steps involved in the implementation of the NSFEM Abaqus
UEL: 1) Pre-processing, 2) Analysis using NSFEM Abaqus UEL and 3) Post-processing.

Figure 5: Major steps involved in the implementation of NSFEM Abaqus UEL

3.2.1 Pre-processing
The first stage of the proposed UEL element is the pre-processing where the problem
domain is discretized using CST elements. For the domain discretization, the mesh
generation software Altair Hypermesh [Altair Hypermesh Documentation (2014)] is used.
NSFEM Abaqus UEL is defined using the nodes of attached elements as explained in the
previous section. A MATLAB code is used to obtain node vertices of elements associated

Implementing the Node Based Smoothed Finite Element Method 489

with the considering node. Once the attached elements are found, their node vertices are
arranged after the target node to define NSFEM Abaqus UEL. Data set of node
coordinates and node connectivity of CST elements is used as input parameters for the
MATLAB code. The data files of the NSFEM Abaqus UEL definition are automatically
generated using the MATLAB code.
Before proceeding towards the analysis stage, input data file compatible with the developed
UEL requires to share the following common keywords [Abaqus Documentation (2012)]:
*user element to define the UEL and *UEL property to define thickness and material
properties for element groups. In the keyword of *user element, the NSFEM Abaqus UEL
elements labelled like U1, U2, U3, etc. need to be matched appropriately with the
corresponding element type in the Abaqus input data file. Moreover, the NSFEM Abaqus
UEL elements having the same number of nodes can be grouped into one and given a
specific name. Rest of the structure of input data file is similar to the typical Abaqus
standard input data file.

3.2.2 Analysis using SFEM Abaqus UEL
The next stage is to run the analysis using NSFEM Abaqus UEL. For the analysis Abaqus
standard solver can be invoked by the following command:

abaqus job=<inp file name> user=<fortran Abaqus UEL file name> other options
This command is much similar to the one used for other types of Abaqus UEL. The
difference with NSFEM Abaqus UEL is that the data file containing the data set of CST
element node coordinates and node connectivity is provided during the analysis. Such
data file is kept in the same file path as the other analysis files. Note that, this data file
path and its name need to be carefully mentioned in the definition of the NSFEM master
UEL. In this stage use of the NSFEM Abaqus UEL FORTRAN code for the analysis is
included as well.

3.2.3 Post-processing
Once the analysis is completed, Abaqus output data base (ODB) file containing the
requested result is generated in the last stage. Since Abaqus CAE does not support post-
processing of Abaqus UEL elements without significant modifications, Altair Hyperview
[Altair Hypermesh documentation (2014)], in the present work, is used for the post-
processing. In this case Abaqus ODB results file and Abaqus input data file containing
CST elements are overlaid for the post-processing.

3.2.4 The details of the NSFEM Abaqus UEL FORTRAN code
To complete the implementation of the NSFEM, following FORTRAN code for Abaqus
UEL is required. In this work, the NSFEM Abaqus UEL structure is arranged as a master
UEL which further calls an individual UEL like U1, U2, etc. as a subroutine. The outline
of the master UEL is shown in Listing 2. The master UEL starts with the name of the
subroutine with the list of arguments in the parentheses. Parameters section includes
names of the constants which are assigned a fixed value. This leads the identification of
constants easy while using them in the FORTRAN code. RHS and AMATRIX matrices
denote the residual force and stiffness contribution of each element respectively are also

490 CMC, vol.61, no.2, pp.481-502, 2019

completely defined in the UEL. Additional variables such as numnode, numelem, node
and element are added in the UEL to read node coordinates and elements connectivity
data from an external data file as shown in Listing 2.
The structure of the data file contains total number of nodes at the top and followed by
node coordinates. It is ensured that all the nodes are renumbered. Using the node numbers,
their coordinates are arranged in ascending order. In this work, node numbers can be
eliminated as sequence itself dictates the node number. If the renumbering of nodes is not
done, it is necessary to include the node numbers in the data file. After the node
coordinates in the data file, total number of CST elements in the domain are written and
this is followed by node connectivity data of the CST elements. Similar to the node
renumbering, the same comments are applied to the element renumbering. The if
statement in the NSFEM master UEL is used to select the corresponding UEL subroutine
according to the NSFEM Abaqus UEL element type.
A detailed definition of a UEL U1 is shown in Listing 3. In this detailed code, it can be
observed that element number of NSFEM Abaqus UEL which is actually the node for
which the smoothing domain is defined. This node number is used for finding the
attached CST elements. Eq. (20) is used for the calculation of thestrain-displacement
matrix constructed over the NSFEM smoothing domain. The detailed subroutine
definition helps in the estimation of RHS and AMATRIX of the corresponding NSFEM
smoothing domain. The estimation of global stiffness matrix by assembling of the
matrices of individual UEL elements is taken care by Abaqus.
The Newton-Raphson iterative method is used for correcting the nonlinear stiffness of the
model in the same manner with the conventional FEM. Abaqus handles the iterative
method once the linear and nonlinear stiffness matrices are defined correctly in the
NSFEM Abaqus UEL subroutine. Material properties are read by the keyword *UEL
property from the Abaqus input data file. Iterations are performed till it satisfies the
convergence criteria as set in the Abaqus analysis parameters. Overall the major
difference in the analysis using NSFEM Abaqus UEL is the estimation of the node-based
strain-displacement matrix over smoothing domains but the rest of the process is the
same as FEM4.

4All MATLAB and FORTRAN codes are downloadable and available on Github
(hppts://github.com/nsundar/NSFEM)

Implementing the Node Based Smoothed Finite Element Method 491

Listing 2: NSFEM master UEL FORTRAN code outline

492 CMC, vol.61, no.2, pp.481-502, 2019

Listing 3: FORTRAN code outline for the NSFEM Abaqus UEL U1

4 Numerical examples
In this section, a series of numerical examples is solved to demonstrate the utility of
Abaqus NSFEM UEL elements: a cantilever beam, a bevelled cantilever beam, a square
plate with a hole and a sharp V-notched square plate. For the tests, two dimensional
linear elasticity reference problem is taken from Liu et al. [Liu, Dai and Nguyen-Thoi
(2007)] and nonlinear elasticity considering geometric nonlinearity with nearly-
incompressible material reference problems is chosen from Lee [Lee (2016)]. Obtained
numerical results are compared with Abaqus results with quadrilateral elements.
The accuracy and the convergence rate using different Abaqus elements are analyzed
using the relative error norm in the displacement and strain energy as given by:

Implementing the Node Based Smoothed Finite Element Method 493

Displacement norm:

∥ 𝐮𝐮 − 𝐮𝐮ℎ ∥𝐿𝐿2(Ω)=
�∫Ω (𝐮𝐮−𝐮𝐮ℎ)𝑇𝑇(𝐮𝐮−𝐮𝐮ℎ)𝑑𝑑Ω

�∫Ω𝐮𝐮
𝑇𝑇𝐮𝐮 𝑑𝑑Ω

 (19)

Strain energy norm:

∥ 𝐃𝐃 − 𝐃𝐃ℎ ∥𝐻𝐻1(Ω)=
�∫Ω (𝐃𝐃−𝐃𝐃ℎ)𝑇𝑇𝐷𝐷(𝐃𝐃−𝐃𝐃ℎ)𝑑𝑑Ω

�∫Ω 𝐃𝐃
𝑇𝑇𝐷𝐷𝐃𝐃 𝑑𝑑Ω

 (20)

4.1 Patch test
In this section, two patch tests are performed on arbitrary patches of elements to satisfy
basic convergence requirements of rigid body displacements and constant strain
conditions to validate Abaqus NSFEM UEL. Note that, the material properties are
Young’s modulus 𝐸𝐸 = 1000.0 Pa and Poisson’s ratio 𝜈𝜈 = 0.3 and only pre-described
displacement boundary conditions are considered for the tests.
Firstly, a rigid body motion displacement is considered with an arbitrary patch of CST
elements as shown in Fig. 6(a). The pre-described horizontal displacements which is 1.0 m
are imposed on boundary nodes a1, a2, a3, a4, a7, a9 and a10. In this test, as a result, the
computed horizontal displacements at interior nodes a5, a6 and a8 should be 1.0 m. As
shown in Fig. 6(b), obtained results show that Abaqus NSFEM UEL passes the test.

Figure 6: Rigid body motion displacement test with CST elements: (a) geometry of the
patch and (b) constant strain displacement results

In the next test, linear displacements 𝐮𝐮 = 𝑥𝑥 are imposed on the boundary nodes b1, b2,
b3, b4, b6, b7, b8 and b9 for the patch as shown in Fig. 7(a). In order to pass this constant
strain patch test, interior node b5 must show horizontal displacement equal to its 𝑥𝑥
coordinate. As shown in Fig. 7(b), Abaqus NSFEM UEL also passes the constant strain
displacement test.

494 CMC, vol.61, no.2, pp.481-502, 2019

Figure 7: Constant strain displacement test with CST elements: (a) geometry of the patch
and (b) constant strain displacement results

4.2 Cantilever beam in linear elasticity
The geometry of a cantilever beam with length 𝐿𝐿 = 48.0 m and width 𝐷𝐷 = 12.0 m and
CST element discretization are shown in Fig. 8. The material parameters for the plate are
𝐸𝐸 = 3.0 × 107 Pa, 𝜈𝜈 = 0.3 and the total parabolic shear load acting over the free edge is
𝑃𝑃 = −1000 N.
The exact analytical solution for the above problem is given by:

𝑢𝑢(𝑥𝑥,𝑦𝑦) = 𝑃𝑃𝑃𝑃
6𝐸𝐸𝐼𝐼

�(6𝐿𝐿 − 3𝑥𝑥)𝑥𝑥 + (2 + 𝜈𝜈) �𝑦𝑦2 − 𝐷𝐷2

4
��

𝑣𝑣(𝑥𝑥,𝑦𝑦) = − 𝑃𝑃
6𝐸𝐸𝐼𝐼

�3𝜈𝜈𝑦𝑦2(𝐿𝐿 − 𝑥𝑥) + (4 + 5𝜈𝜈)𝐷𝐷
2𝑥𝑥
4

+ (3𝐿𝐿 − 𝑥𝑥)𝑥𝑥2�
 (21)

where 𝐼𝐼 = 𝐷𝐷3/12 is the moment of inertia and a state of plane stress is considered.

Figure 8: The geometry of a cantilever beam: (a) geometry and boundary conditions and
(b) discretization of the beam with CST elements

Implementing the Node Based Smoothed Finite Element Method 495

The convergence rates of the relative error in displacement norm and strain energy norm
are given in Fig. 9. It is clearly seen that Abaqus NSFEM UEL shows better results than
that using Abaqus triangular elements without any change in the domain discretization.
These results are encouraging in the sense that analysis with NSFEM Abaqus UEL
elements provide comparable results as those obtained using Abaqus quadrilateral
elements with the same solver. In the next subsections, two dimensional nonlinear
elasticity problems are considered.

4.3 Cantilever beam in geometric nonlinearity
In this section, the geometric nonlinearity is investigated. For this test, the cantilever
beam used in the previous section is considered again. The parabolic shear load 10,000 N
is implemented on the right-end edge and the left-end edge of the beam is completely
constrained in all DOFs. The reference solution for this test is obtained by Abaqus with
the very fine meshes (526,850 DOFs).

(a) 𝐿𝐿2 norm

(b) 𝐻𝐻1 norm

Figure 9: The convergence of the relative error for the cantilever beam: (a) L2 norm and
(b) H1 semi-norm

496 CMC, vol.61, no.2, pp.481-502, 2019

Fig. 10 illustrates the deformed shapes of the beam for Abaqus QUAD CPS4I and the
proposed Abaqus NSFEM UEL elements and an improved accuracy obtained by the
proposed elements can be observed in Tab. 1.
The 𝐿𝐿2 error norm convergence rate for this test is shown in Fig. 11. NSFEM UEL
elements result shows better convergence rate than triangular elements and it is
comparable to quadrilateral elements as shown in Fig. 11.

Figure 10: Deformed shapes of the cantilever beam with the vertical displacement plot:
(a) Abaqus QUAD CPS4I and (b) Abaqus NSFE UEL elements

Table 1: The vertical displacements at the sampling point ‘A’ of the cantilever beam

Reference solution: -0.08907 (m)
Mesh (DOFs) QUAD CPS4I NSFEM UEL

54 -0.0879805 -0.1293490
170 -0.0885215 -0.0985716
594 -0.0888464 -0.0909835
2210 -0.0889910 -0.0890785

Figure 11: The convergence of the relative error in the 𝐿𝐿2 norm for the cantilever beam

Implementing the Node Based Smoothed Finite Element Method 497

4.4 Bevelled Cantilever beam
A bevelled cantilever beam is studied in this section for the quasi-incompressible
hyperelasticity. The geometry of the beam is given in Fig. 12 with 𝐿𝐿1 = 0.5 m and
vertical load 𝑃𝑃1 = −0.1 N/m. In this work, the neo-Hookean model is used with shear
modulus 𝜇𝜇 = 0.6 Pa and bulk modulus 𝜅𝜅 = 107Pa equivalent to Poisson’s ratio 𝜈𝜈 =
0.49999997. Abaqus with very fine meshes (526,338 DOFs) is also used as the reference
solution for this problem.

Figure 12: The geometry of a bevelled cantilever beam

The deformed shapes of the bevelled beam for Abaquas CPE4I and Abaqus NSFEM
UEL elements are shown in Fig. 13 and their detailed displacement values at the
sampling point ‘A1’ are given in Tab. 2. The results solved using NSFEM Abaqus UEL
are in agreement with the results provided in Lee [Lee (2016)].

Figure 13: Deformed shapes of the bevelled cantilever beam: (a) Abaqus quadrilateral
CPE4I and (b) Abaqus NSFEM UEL elements

Table 2: The vertical displacements at the sampling point ‘A1’ of the bevelled beam
Mesh (DOFs) QUAD CPS4I elements (m) NSFEM UEL elements (m)

18 -0.193628 -0.158183
50 -0.225601 -0.217090
162 -0.233652 -0.239422
578 -0.235873 -0.239782
2178 -0.236849 -0.237986

498 CMC, vol.61, no.2, pp.481-502, 2019

The convergence of the 𝐿𝐿2 error norm is depicted in Fig. 14. It is observed from Fig. 14
that Abaqus NSFEM UEL provides better convergence rate than Abaqus triangular
element. In addition the following displacement and convergence results are confirmed
again: the proposed Abaqus UEL is comparable to fully integrated elements.

Figure 14: The convergence of the relative error in the 𝐿𝐿2 norm for the bevelled
cantilever beam

4.5 A square plate with a hole
In this section, nonlinear nearly-incompressible problem is once again demonstrated. The
problem domain is given as a square plate with a hole at the center (see Fig. 15).
The geometry of the plate is 𝐿𝐿2 = 1.0 m and the radius of the circle is given as 𝑅𝑅 =
0.5 m. Vertical external force 𝑃𝑃2 = −0.1 N is equally distributed on the top edge of the
plate. The neo-Hookean material with Lamé’s parameters 𝜇𝜇 = 1.8 Pa and 𝜅𝜅 = 107 Pa are
used (Poisson’s ratio 𝜈𝜈 = 0.49999997). Right, left and bottom edges are fully
constrained in all DOFs.

Figure 15: The geometry of a square plate with a hole at the center

Implementing the Node Based Smoothed Finite Element Method 499

The reference solution to the square plate with a hole problem is obtained using Abaqus
with fine CPE4I element meshes having 791,712 DOFs. Fig. 16 shows deformed shapes
of the square plate for Abaqus quadrilateral and the proposed NSFEM UEL elements. A
comparison of vertical displacements of Abaqus CPE4I and Abaqus NSFEM UEL
elements is given in Tab. 3 with detailed values. The results of vertical displacement
obtained at the sample point ‘A2’ show an upper bound solution using NSFEM Abaqus
UEL elements while that Abaqus CPE4I elements give a lower bound solution.

Figure 16: The deformed shapes of the plate: (a) Abaqus quadrilateral CPE4I and (b) the
proposed Abaqus NSFEM UEL

Table 3: The vertical displacements at the sampling point ‘A2’ of the square plate

Reference solution: -0.0349782 (𝑚𝑚)
Mesh (DOFs) QUAD CPE4I elements (m) NSFEM UEL elements (m)

218 -0.0365862 -0.0424276
1214 -0.0367179 -0.0383165
3740 -0.0374940 -0.0380560

4.6 A sharp V-notched square plate
Lastly, a square plate with a sharp V-notch is studied. The geometry of the plate is given as
𝐿𝐿3 = 1.0 m and 𝐵𝐵 = 0.02 m as shown in Fig. 17. The loading parameter is given as the
total vertical load 𝑃𝑃3 = 0.05 N on the top edge and shear modulus 𝜇𝜇 = 0.6 Pa and bulk
modulus 𝜅𝜅 = 105 Pa are used (𝜈𝜈 = 0.499997). The bottom edge of the plate is
constrained in all DOFs and the vertical displacement results are reported at the point ‘A3’.

500 CMC, vol.61, no.2, pp.481-502, 2019

Figure 17: The geometry of a square plate with a sharp V-notch

Abaqus CPE4I element with the fine meshes (526,850 DOFs) is used as the reference
solution for this test. The deformed shapes of Abaqus CPE4I and Abaqus NSFEM UEL
for the plate are illustrated in Fig. 18. The detailed vertical displacements obtained at the
sampling point ‘A3’ can be found in Tab. 4. Similar to the previous plate with a hole
problem, the proposed UEL elements provide the upper-bound solution whereas Abaqus
CPE4I results lower-bound solution.

Figure 18: The deformed shapes of the V-notched plate: (a) Abaqus quadrilateral CPE4I
and (b) Abaqus NSFEM UEL elements

Table 4: Sharp V-Notch square plate point ‘A3’ vertical displacement results summary

Reference solution: 0.16986 (m)

Mesh (DOFs) QUAD CPE4I elements (m) NSFEM UEL elements (m)

210 0.159277 0.211860
1070 0.167541 0.188262
2210 0.167700 0.182385

Implementing the Node Based Smoothed Finite Element Method 501

5 Conclusions
In this work, Abaqus NSFEM UEL is successfully implemented in Abaqus software for
two dimensional linear and nonlinear problems. The following conclusions can be drawn
based on the results presented:
1) The proposed Abaqus NSFEM UEL simplifies the preprocessing process as only CST

elements are used.
2) The proposed Abaqus NSFEM UEL provides more accurate results compare to the

conventional FEM results even when the problem domain is completely discretized
with linear triangular elements.

3) This is improvisation in available FEM code. The convergence rate of Abaqus
NSFEM UEL results are at par with those obtained from fully integrated Abaqus
quadrilateral elements accounting additional complexities like geometric nonlinearity
and nearly-incompressible material.

4) The proposed Abaqus NSFEM UEL provides upper bound solution while the
conventional FEM provides lower bound solution. Combining these two methods,
range bound solution for the problem under consideration can be easily predicted
without any major changes.

Acknowledgement: J.J. Yee and C.K. Lee would like to thank the National Research
Foundation (NRF) of Korea through Ministry of Education (No. 2016R1A6A1A03012812)
for providing financial support for this research undertaking.

References
Abaqus Documentation (2012): Abaqus standard subroutines. Abaqus User Subroutines
Reference Manual. Dassault Systemes Simulia Corp., Providence, RI, USA.
Altair Hypermesh Documentation (2014): 2D Meshing. Hypermesh 13.0 Manual
(Chapter 3). Altair Engineering Inc., Troy, Michigan, USA.
Bhatti, A. M. (2006): Geometric Nonlinearity. Advanced Topics in Finite Element
Analysis of Structures: With Mathematica and MATLAB Computations (Chapter 9). John
Wiley & Sons Ltd., Hoboken, New Jersey, USA.
Bonet, J.; Wood, R. D. (2008): Nonlinear Continuum Mechanics for Finite Element
Analysis. Cambridge University Press, UK.
Chandrupatla, T. R.; Belegundu, A. D. (2016): Axisymmetric Solids Subjected to
Axisymmetric Loading. An Introduction to Finite Element in Engineering (Chapter 7).
Pearson Indian Education Services Pvt. Ltd, Bengaluru, India.
de Borst, R.; Crisfield, M. A.; Remmers, J. J. C.; Verhoosel, C. V. (2012): Nonlinear
Finite Element Analysis of Solids and Structures. John Wiley & Sons Ltd., West Sussex, UK.
Fish, J.; Belytschko, T. (2007): A First Course in Finite Elements. John Wiley & Sons
Ltd., West Sussex, UK.
Kumbhar, P. Y.; Francis, A.; Swaminathan, N.; Annabattula, R. K.; Natarajan, S.
(2018): Development of user element routine (UEL) for cell-based smoothed finite

502 CMC, vol.61, no.2, pp.481-502, 2019

element method (CSFEM) in Abaqus. International Journal of Computational Methods,
vol. 185, pp. 1-28.
Lee, C. K. (2016): Gradient Smoothing in Finite Elasticity: Near-Incompressibility
(Ph.D. Thesis). School of Engineering, Cardiff University, UK.
Lee, N.; Bathe, K. (1993): Effects of element distortions on the performance of
isoparametric elements. International Journal for Numerical Methods in Engineering, vol.
36, no. 20, pp. 3553-3576.
Liu, G. R.; Dai, K. Y.; Nguyen-Thoi, T. (2007): A smoothed finite element method for
mechanics problems. Computational Mechanics, vol. 39, no. 6, pp. 859-877.
Liu, G. R.; Nguyen-Thoi, T.; Nguyen-Xuan, H.; Lam, K. Y. (2009): A node based
smoothed finite element (NS-FEM) for upper bound solution to solid mechanics
problems. Computers and Structures, vol. 87, no. 1-2, pp. 14-26.
Nguyen-Xuan, H.; Bordas, S.; Nguyen-Dang, H. (2008): Smooth finite element
methods: convergence, accuracy and properties. International Journal for Numerical
Methods in Engineering, vol. 74, no. 2, pp. 175-208.
Reddy, J. N. (2004): An Introduction to Nonlinear Finite Element Analysis. Oxford
University Press, USA.
Wang, S. (2014): An Abaqus Implementation of the Cell-Based Smoothed Finite Element
Method using Quadrilateral Elements (Ph. D. Thesis). University of Cincinnati, USA.
Zeng, W.; Liu, G. R. (2016): Smoothed finite element methods (S-FEM): an overview
and recent developments. Archives of Computational Methods in Engineering, vol. 25, no.
2, pp. 397-435.

	Implementing the Node Based Smoothed Finite Element Method as User Element in Abaqus for Linear and Nonlinear Elasticity
	S. Kshrisagar0F , A. Francis1, J. J. Yee1F , S. Natarajan1 and C. K. Lee2F , *
	2.2 Smoothed finite element approximation in finite elasticity.

	3 NSFEM Abaqus implementation
	3.1 Construction of node based smoothing domain in the framework of Abaqus UEL definition
	3.2 Major steps in the NSFEM Abaqus UEL implementation
	Fig. 5 depicts the three major steps involved in the implementation of the NSFEM Abaqus UEL: 1) Pre-processing, 2) Analysis using NSFEM Abaqus UEL and 3) Post-processing.

	Listing 3: FORTRAN code outline for the NSFEM Abaqus UEL U1
	4 Numerical examples
	4.1 Patch test
	4.2 Cantilever beam in linear elasticity
	4.3 Cantilever beam in geometric nonlinearity
	4.4 Bevelled Cantilever beam
	4.5 A square plate with a hole
	4.6 A sharp V-notched square plate

	5 Conclusions

	References

