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Abstract: In this paper, we investigate video quality enhancement using computation 
offloading to the mobile cloud computing (MCC) environment. Our objective is to reduce 
the computational complexity required to covert a low-resolution video to high-resolution 
video while minimizing computation at the mobile client and additional communication 
costs. To do so, we propose an energy-efficient computation offloading framework for 
video streaming services in a MCC over the fifth generation (5G) cellular networks. In the 
proposed framework, the mobile client offloads the computational burden for the video 
enhancement to the cloud, which renders the side information needed to enhance video 
without requiring much computation by the client. The cloud detects edges from the 
upsampled ultra-high-resolution video (UHD) and then compresses and transmits them as 
side information with the original low-resolution video (e.g., full HD). Finally, the mobile 
client decodes the received content and integrates the SI and original content, which 
produces a high-quality video. In our extensive simulation experiments, we observed that 
the amount of computation needed to construct a UHD video in the client is 50%-60% 
lower than that required to decode UHD video compressed by legacy video encoding 
algorithms. Moreover, the bandwidth required to transmit a full HD video and its side 
information is around 70% lower than that required for a normal UHD video. The 
subjective quality of the enhanced UHD is similar to that of the original UHD video even 
though the client pays lower communication costs with reduced computing power. 
 
Keywords: 5G, video streaming, cloud, computation offloading, energy efficiency, 
upsampling, MOS. 

1 Introduction 
Immense demand for various video streaming services over wireless networks is exploding, 
especially for emerging, new bandwidth-hungry and delay-sensitive multimedia services. 
According to a report by CISCO, the global mobile data traffic is expected to reach to 77 
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exabytes per month by 2022, at which point nearly four-fifths of all mobile traffic will be 
composed of video services [CISCO (2019)]. One reason for the exploding demand is that 
modern mobile devices such as smartphones and tablets are becoming more powerful and 
affordable. Such devices are being used for a multitude of activities, including online 
multimedia applications such as Internet protocol television (IPTV), video on demand 
(VoD), video conferencing, multimedia-based learning, and game streaming and so on. 
Multimedia applications require significant network bandwidth, computation, and power 
to stream, decode, and display the content [Yadav, Zhang, Kaiwartya et al. (2018)]. 
These tasks have a deep correlation with one another. For example, the computation required 
for decoding, displaying, and quality enhancement has a trade-off relationship with network 
bandwidth and power consumption. Therefore, the current trend is to provide seamless 
streaming services by adjusting those parameters according to network conditions using 
adaptive video streaming technology. In addition, research is underway to minimize the 
effects of time-varying parameters by developing hardware technology and continuously 
developing intelligent software [Eswara, Manasa, Kommineni et al. (2018)]. Although 5G 
technologies will increase capacity and enable new video codecs such as high-efficiency 
video coding (HEVC) and provide higher video compression efficiency, network providers 
will continue to struggle with congestion [Concolato, Feuvre, Denoual et al. (2018); Habiba 
and Hossain (2018); Piran, Islam and Suh (2018); Jalil, Tran, Doug et al. (2017)].  
In addition to the network and video codec fields described above, the emerging 
multimedia services such as panorama, 360°, virtual reality (VR), and augmented reality 
(AR) have huge volume requirements. Therefore, for any purpose of processing or 
communications, those applications demand powerful processors and very high-capacity 
network links, i.e., high bandwidth. It is clear that traditional technologies cannot support 
those bandwidth-hungry and delay-sensitive applications [Zink, Sitaraman and Nahrstedt 
(2019); Fischbach, Wiebusch and Latoschik (2017); Yun, Jalil and Suh (2018)].  
Although quad-HD (QHD) and ultra-HD (UHD) screen resolutions are increasingly used 
in mobile devices, previous research has shown that UHD 2160p video resolution has little 
benefit in terms of user-perceived video quality over full-HD 1080p video resolution. 
Considering the quality of video that human can actually perceives, it is possible to provide 
a high-quality video service using less information than would be needed to directly 
transmit a high-quality video generated with a large computation and network burden 
[Cheon and Lee (2018); Ghadiyaram, Pan and Bovik (2019)]. 

1.1 Problem statement 
In the current video streaming frameworks that offer high-quality video to clients, a server 
first encodes a high-resolution (HR) video and then transmits it to a client. The client then 
decodes the received video bit stream to get the service of HR video. This process produces 
a large amount of network traffic [Fan, Yin, Min et al. (2017)]. As a solution, the 
upsampling algorithm has been used to improve the delivered video resolution. The 
upsampling algorithm for a video edge region requires a complicated computing process, 
which burdens the client and can cause mobile devices, which have limited electric power, 
to consume a lot of power. 
Generally, upsampling can be implemented by image interpolation, which is achieved by curve 
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fitting or a regression analysis. Bilinear, Bicubic, and Lanczos are the most widely available 
interpolation methods for resizing an image. Although these methods are fast in terms of speed, 
there is a disadvantage in that the distribution of pixel values is not smooth [Lo, Wang and Hua 
(2018)]. Bilinear has a smoothing effect that produces blurred but jagged edges. Bicubic keeps 
the edges smooth and increases the perceived contrast to some extent. Compared with the other 
two algorithms, Lanczos has the best performance and the best compromise in reducing aliasing, 
increasing sharpness, and minimizing ringing [Oh, Yea, Vetro et al. (2009); Wang, Wang, 
Wang et al. (2019)]. To improve video degradation, the upsampling method uses direction-
oriented interpolation (DOI) with edge information. That interpolation method shows higher 
performance in terms of objective and subjective evaluations than the existing interpolation 
method, but it requires a lot of complex computation. 
Recently computation offloading to the mobile cloud has attracted plenty of attention, as 
researchers tackle difficulties with the upsampling algorithms used for video services. 
Cloud computing is a web-based software service, in which programs are put in utility data 
servers and accessed over the Internet whenever necessary by computers or mobile phones 
[Akherfia, Gerndta and Harroud (2018)]. Particularly for video streaming services, a 
feasible architecture should be able to achieve maximum benefit through cloud computing.  

1.2 Our contributions 
To tackle the abovementioned issues with conventional video streaming, in this paper, we 
propose a framework to improve the quality of video streaming services in 5G. The goal is 
to offload all the complicated and heavy operations from the mobile client to the cloud, 
thereby reducing the computational complexity on the client side and minimizing the 
transmission bit rate, which decreases network traffic and client power consumption. Then, 
the mobile client that received the video content will upsample the content using side 
information (SI) and serves a high-quality video with improved quality of experience (QoE). 
In the proposed framework, we use cloud offloading and DOI with region matching as the 
upsampling algorithm to improve the quality of any low-resolution (LR) video with SI, i.e., 
edge information, without additional computation on the client side. Specifically, we 
modularize the proposed upsampling application and obtain an optimal offloading solution 
using a mathematical approach through optimization of the offloading decision. 
To do so, the mobile client first uses our proposed offloading decision optimizer to offload 
the modules with heavy computational complexity to the cloud servers. Second, the cloud 
server performs the DOI required to generate SI about the original LR video content. The 
DOI (edge detection and edge upsampling) detects the edge regions of the original video and 
interpolates them to create HR content. Third, the interpolated edge content is compressed 
by the proposed SI compressor. The compressed SI is then sent to the client along with the 
original video content. Thus, energy efficient (EE) is improved because the data rate is much 
lower than that is required to stream HR content using conventional streaming methods. 
Finally, the mobile client receives, decodes, and integrates the SI and original content, which 
produces an interpolated, high-quality video using the Bilinear metric. 
Our computation offloading to the mobile cloud computing (MCC) reduces computation 
on the client side compared with the existing methods, which require the clients to perform 
all processes. In other words, the cloud-offloading method can increase the availability of 
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the clients [You, Huang and Chae (2016)]. Moreover, the energy consumption of the 
mobile devices is reduced significantly. In terms of QoE, we found that the mean opinion 
score (MOS) differs little between the enhanced video and the original video, even though 
the amount of computation and bandwidth required for the cloud offloading are much less 
than those of the original. Consequently, our proposed framework enables users to enjoy 
high-quality video content while minimizing the bandwidth and power consumption 
[Kumcu, Bombeke, Platisa et al. (2017)]. 
The rest of this paper is organized as follows. We review the related works and discuss 
their drawbacks in Section 2. Our proposed framework for energy-efficient computation 
offloading in MCC for video streaming over 5G is presented in Section 3. In Section 4, we 
evaluate the performance of our proposed framework both objectively and subjectively. In 
Section 5, we draw conclusions. 

2 Related work  
In the literature, computation offloading to the cloud has been discussed by many 
researchers. In Guo et al. [Guo, Liu, Yang et al. (2019); Wang, Wu, Yuan, et al. (2019)], 
the authors used the concept of a collaborative mobile cloud (CMC) and proposed an 
energy-efficient offloading method to minimize mobile power consumption. In addition, 
as the concept of edge computing implies, they analyzed the collaboration between cloud 
computing and edge computing when distributing tasks among mobile devices at the edge 
nodes and the cloud server. 
In Boukerche et al. [Boukerche, Guan and Grande (2018)] suggested a dynamic algorithm 
to offload computation to the cloud. In their proposed method, the offloading decision is 
made using parameters such as communication topology, device energy, and the cost of 
offloading the computation. Unlike Guo et al. [Guo, Liu, Yang et al. (2019); Wang, Wu, 
Yuan et al. (2019); Boukerche, Guan and Grande (2018)], we focus on modularized 
applications and QoE, as well as cost and EE. Our proposed framework offloads the highly 
complicated edge detection and upsampling processes required to improve LR video to the 
cloud, a virtual environment in which users can rent as many computational resources as 
needed, and thus it alleviates the client’s burden [Raja, Chitra and Jonafark (2018)]. 
Because spatial edges, i.e., image boundaries, greatly influence user judgment about video 
quality [Panetta, Samani and Agaian (2018); Long, Li, Xie et al. (2018)], that edge 
information is sent to the client. In this paper, we call that edge information as SI.  
In Guan et al. [Guan and Melodia (2017)] studied the factors affecting the power 
consumption in MCC and found that MCC can save energy consumption when mobile 
users offload heavy operations. However, they considered only the factors affecting power 
consumption and ignored the quality of the delivered video and QoE. In Zhou et al. [Zhou, 
Dastjerdi, Calheiros et al. (2017)], the authors considered the limitations of battery capacity 
and computing capability in mobile. They proposed a computation offloading algorithm 
that could be used in various topologies.  
In Mahmoodi et al. [Mahmoodi, Uma and Subbalakshmi (2019)] optimized the problem 
for independent applications supported by a mobile device. They modularized a single 
application (interpolated video streaming) and performed optimization for a set of modules. 
However, they did not consider specific modules, e.g., decoder and renderer that cannot be 
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offloaded. In Lyu et al. [Lyu, Tian, Sengul et al. (2017)], the authors optimized for the 
number of independent applications supported by a mobile device. However, they limited 
their discussion to energy and cost efficiency, ignoring QoE.  
In this paper, we consider all the above issues that have not been addressed yet. More 
specifically, we investigate the issue of computation offloading for video services in 5G 
networks. Our goal is to obtain a high-quality video from information derived from a LR video 
with edge detection. The advantages of the proposed framework are multifold. First, it 
improves the quality of LR video content and thus enhances the QoE significantly. Second, it 
also reduces network traffic through a decrease in the transmission bit rate. Third, it minimizes 
client power consumption through a cloud-offloading-based computation reduction. 

3 Our proposed energy-efficient framework for computation offloading 
The framework proposed in this paper is intended to deliver high-quality video using 
information derived from a LR video and the edge detection of that video while reducing 
network traffic by decreasing the transmission bit rate and minimizing client power 
consumption by offloading computation to the cloud. Mobile devices necessarily have 
limited computation resources, power, and bandwidth [Xie, Zeng, Li et al. (2017)]. We 
introduce a framework for exploiting the abundant computation resources of the cloud for 
mobile video services. A considerable amount of processing for video enhancement could 
be offloaded from the client to the cloud, which would reduce the energy consumption in 
the mobile device. Consequently, users can enjoy high-quality video while minimizing 
their bandwidth and power consumption. 
Before we explain the proposed framework in detail, we will discuss an interesting video 
streaming technology developed by the Moving Picture Experts Group (MPEG), an 
international organization intended to establish global standards for various technologies, 
including video codec and transport protocols. Typically, the international standard for 
H.264/AVC (Advanced Video Coding) and H.265/HEVC (High Efficiency Video Coding) 
was published in the video codec field and the standards for dynamic adaptive streaming on 
HTTP (DASH) and MPEG media transport (MMT) were published in the transport protocol 
field. In recent years, standardization of network-based media processing (NBMP) has been 
actively under-way. NBMP is a standard technology that improves QoE by re-creating or 
transcoding media content through the intelligent middle of a network such as the cloud 
[ISO/IEC (2017); ISO/IEC (2019)]. The system architecture of NBMP is shown in Fig. 1. 
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Figure 1: The proposed method is applicable to the MPEG protocols e.g., NBMP, MMT 

However, NBMP is required to be based on the MPEG video codec and transport protocol 
standards named above, which is a disadvantage because it cannot be applied to new types 
of service models (such as our proposed model, which includes SI metadata) that can be 
used for improving the QoS/QoE of users. 

3.1 Problem formulation  
We use computation offloading in MCC to provide high-quality video with low energy and 
cost. Therefore, it is necessary to decide whether a module should be offloaded by using a 
mathematical optimization solution rather than a simple insight or empirical recognition. 
We consider a mobile device that is processing tasks 𝑗𝑗 = {1, … ,𝑛𝑛} on a single application. 
Let the binary variable 𝜌𝜌𝑗𝑗 ∈ {0,1} be the offloading index of modules; 𝜌𝜌𝑗𝑗 = 1 denotes 
that task 𝑗𝑗 is executed on the mobile device, and 𝜌𝜌𝑗𝑗 = 0 denotes that task 𝑗𝑗 is offloaded 
to the cloud server. Let 𝜉𝜉 ∈ {0,1} be the service index of a mobile device that can be 
derived as: 
𝜉𝜉 = 1 −∏ 𝜌𝜌𝑗𝑗𝑛𝑛

𝑗𝑗=1                                   ( 1 ) 
where 𝜉𝜉 = 0 denotes that all modules are executed locally on the mobile device, and 𝜉𝜉 =
1 denotes that at least one module is offloaded to the cloud server. 
We define the constraint functions for energy and cost efficiency (CE) as follows. 
• Total energy consumption constraint on the mobile device: We assume that 𝐸𝐸𝑗𝑗 is 

the energy required by a module handled on the mobile device, and 𝑟𝑟𝑗𝑗𝑡𝑡  is the 
transmission energy for the SI generated by cloud offloading. The constraint function 
for the total energy consumed by the mobile device 𝐸𝐸 is: 
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𝑚𝑚𝑚𝑚𝑛𝑛
𝜌𝜌𝑗𝑗

𝐸𝐸 = ∑ �𝜌𝜌𝑗𝑗𝐸𝐸𝑗𝑗 + (1 − 𝜌𝜌𝑗𝑗)𝑟𝑟𝑗𝑗𝑡𝑡�𝑛𝑛
𝑗𝑗=1                     ( 2 ) 

• Total cost consumption constraint: The constraint function for the total cost, 𝐶𝐶, which 
comprises 𝐸𝐸𝑗𝑗, transmission energy, and the time using the cloud server, is as follows: 

𝑚𝑚𝑚𝑚𝑛𝑛
𝜌𝜌𝑗𝑗

𝐶𝐶 = ∑ {𝜌𝜌𝑗𝑗(𝜆𝜆1𝐸𝐸𝑗𝑗) + (1 − 𝜌𝜌𝑗𝑗)(𝜆𝜆2𝑆𝑆𝑑𝑑𝑑𝑑𝑑𝑑𝑟𝑟𝑑𝑑𝑒𝑒𝑒𝑒𝑑𝑑)}𝑛𝑛
𝑗𝑗=1 − 𝜆𝜆3𝑇𝑇𝑑𝑑       (3) 

Details of the parameters in the functions are described in Subsection 4-2.  
• Complexity analysis: Based on those constraints, the optimization problem (linear 

programming formation) can be solved efficiently using IBM ILOG CPLEX. In other 
words, the optimum 𝜌𝜌𝑗𝑗 value for each module of the proposed system is derived using 
CPLEX [Borodin, Bourtembourg, Hnaien et al. (2018)]. 

Algorithm 1: The iterative approximation algorithm 

Input:  𝑛𝑛, 𝜆𝜆1, 𝜆𝜆2, 𝜆𝜆3, 𝐸𝐸𝑗𝑗, 𝑟𝑟𝑗𝑗𝑡𝑡, 𝑆𝑆𝑑𝑑𝑑𝑑𝑑𝑑𝑟𝑟𝑑𝑑𝑒𝑒𝑒𝑒𝑑𝑑, 𝑇𝑇𝑑𝑑 
Output: The offloading index of modules {𝜌𝜌𝑗𝑗} 
1: Initialization all 𝜌𝜌𝑗𝑗 = 0; 
2: while 𝜉𝜉 remains changing in the iteration 
3: do 
4:  Sort {𝜌𝜌𝑗𝑗} in ascending order; 
5:  Reset as many prior {𝜌𝜌𝑗𝑗}  as possible to 0 until 
constraints (2) and (3) are satisfied using CPLEX; 
6:  Update 𝜉𝜉 as (1); 
7: end while 

 
As illustrated in Algorithm 1, we calculate the offloading decision ρ𝑗𝑗 for each module of 
the mobile device in each iteration. The number of module (𝑛𝑛), cost coefficients (λ1, λ2, λ3), 
𝑟𝑟𝑗𝑗𝑡𝑡, 𝐸𝐸𝑗𝑗, 𝑆𝑆decrease, and time spent using the cloud server (𝑇𝑇𝑑𝑑) are considered as the input 
variables. 𝑇𝑇𝑑𝑑  represents the computational complexity of each module and a specific 
environment in cloud computing. As a result, we achieve the offloading decision index (ρ𝑗𝑗) 
of each module as the output. First, ρ𝑗𝑗  is initialized to 0, which means the task j is 
offloaded to the cloud server, and the algorithm finds the optimal value of ρ𝑗𝑗 by sorting 
and resetting the ρ𝑗𝑗 according to the constraints (2) and (3). The binary variable service 
flag ξ can be updated by Eq. (1). We repeat the process of the algorithm until ξ maintains 
the equal value in the iteration, which means the close-to-optimal offloading decisions at 
last. The results, the decision values of the modules obtained by the optimization problem, 
are represented in Fig. 2 and Tab. 1. 
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3.2 System architecture 
In our proposed framework, we use cloud computing to enhance spatial quality of video 
by upsampling algorithm, which uses many computational resources, e.g., conversion of a 
standard-definition video to an HD video. 

 

Figure 2: Architecture of the proposed framework 

This upsampling process is separated into two parts, and the part requiring heavy 
computation is performed in the cloud, as illustrated in Fig. 2. A server transmits a LR 
video to the cloud. The cloud uses the open source Sobel algorithm to detect the edge of 
the LR video. Entropy coding and run-length coding are used to encode and decode edge 
information, as detailed in Subsection 3-3. The edge video is upsampled using DOI with 
region-matching algorithm and encoded, and is then sent together with the LR video to the 
client. The client decodes the LR video and combines it with the decoded edge video using 
a simple Bilinear algorithm, producing a high-quality, HR video. As shown in Fig. 1, the 
H.264/AVC international standard is used to encode and decode the video content. 
Bilinear interpolation is used to interpolate the decoded videos at the client. The 
upsampling module in the cloud uses the DOI with region matching algorithm described 
in Subsection 3-4. As mentioned earlier, this module is an important operation to make the 
proposed video, which is considered an edge part of the video and has the most 
computational complexity, which is why we offload it to the cloud. The mobile client can 
then simply decode and interpolate the video, combining with the edge information to make 
a high-quality and HR video.  
Tab. 1 depicts the computational complexity of each module used to implement the 
framework proposed in this paper. The cloud modules (edge detection and upsampling) 
account for 78.6% of the total computations required, whereas the modules processed by 
the client account for only 21.4%. 
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As illustrated in Tab. 1, we found that the edge upsampling module has the greatest amount 
computation. That is to say, the upsampling algorithm presented in Subsection 3-4 needs a 
complex process since the algorithm should make the edge video, which has a good quality. 
Therefore, the system proposed in this paper offloads the edge upsampling module to the cloud.  

Table 1: Processing power required by each module (number of clocks×109) 

Host Modules 
Video sequence 

Aladdin Duck Old Town Park Run 

Cloud 
Edge detection 5.47×102 6.11×102 6.09×102 6.46×102 

Edge 
upsampling 

1.03×105 2.48×105 1.58×105 2.67×105 

Client 
Non-edge 

upsampling 
6.53×103 6.58×103 6.68×103 6.56×103 

Video decoding 3.50×104 5.37×104 3.16×104 5.14×104 
Total processing 1.45×105 3.08×105 1.97×105 3.25×105 

Cloud offloading rate [%] 71.4 80.4 80.6 82.2 
Client rate [%] 28.6 19.6 19.4 17.8 

 
In addition, the module that does not requires to process in the client part is offloaded to 
cloud. On the client side, processing and energy have a tradeoff relationship. In Meng et 
al. [Meng, Wolter, Wu et al. (2018)], the author shows the tradeoff between shortening the 
execution time and extending the battery life of mobile devices and evaluates the 
performance improvement when making offloading decisions. In this paper, we selectively 
offload modules to the cloud, as in You et al. [You, Huang, Chae et al. (2017)]. As a result, 
the amount of processing required at the mobile client is reduced by 78.6% and the energy 
consumed is reduced proportionally. 

3.3 SI processing 
In the cloud environment, the edges are detected in the LR video using the Sobel algorithm. 
The edges are upsampled using DOI with region matching, and compressed using their 
locations and values. 
In this section, to compress the HR edge video, we use the run-length encoding technique 
[Liaghati, Pan and Jiang (2017)] and the entropy coding technique for video compression 
[Manigandan and Deepa (2018)]. Our run-length encoding uses six types of edges 𝑋𝑋𝑖𝑖′s, (𝑚𝑚 =
0⋯𝑁𝑁 − 1) in 𝑁𝑁 edge directions. To apply the entropy coding technique, the total number 
of edges, 𝑋𝑋𝑇𝑇, and number of each edge type are calculated to draw the probability, 𝑝𝑝𝑖𝑖 =
𝑋𝑋𝑖𝑖/𝑋𝑋𝑇𝑇, of each type. The entropy H(𝑋𝑋) is obtained as:  
𝐻𝐻(𝑋𝑋) =  −∑ 𝑝𝑝𝑖𝑖 log2(𝑝𝑝𝑖𝑖)𝑁𝑁−1

𝑖𝑖=0              (4) 
where log2 𝑝𝑝𝑖𝑖 represents the optimal code-length of an edge type. 
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Figure 3: Region matching for estimating 𝑑𝑑 

3.4 Direction-oriented interpolation with region matching 
The upsampling algorithm proposed in this paper uses DOI with region matching. The 
weights and candidates of all pixels to be interpolated are saved into four steps, i.e., the 
down, up, left, and right directions. 
For any pixel 𝑓𝑓0(𝑥𝑥0,𝑦𝑦0) in the down-sampled image (𝑊𝑊0 × 𝐻𝐻0), a down direction 𝑑𝑑(𝑥𝑥0,𝑦𝑦0) 
is estimated by region matching as follows [Junya, Takuya, Takayoshi et al. (2019)]: 

𝑑𝑑(𝑥𝑥0,𝑦𝑦0)  = arg min
𝑥𝑥0−𝑥𝑥

�∑ |𝑓𝑓0(𝑥𝑥0 + 𝑚𝑚,𝑦𝑦0) − 𝑓𝑓0(𝑥𝑥0 + 𝑥𝑥 + 𝑚𝑚,𝑦𝑦0 + 1)|𝑛𝑛𝑚𝑚
𝑖𝑖=−𝑛𝑛𝑚𝑚 �    (5) 

where 2(𝑛𝑛𝑚𝑚 + 1) × 1 is the block size for matching, 2(𝑛𝑛𝑒𝑒 + 1) × 1 is the maximum 
range of search, and the range of the search region is −𝑛𝑛𝑚𝑚 + 𝑥𝑥0 ≤ 𝑥𝑥 ≤ 𝑛𝑛𝑒𝑒 + 𝑥𝑥0, as shown 
in Fig. 3. 
Candidate value and its weight of the upsampled image 𝑓𝑓1(𝑥𝑥1,𝑦𝑦1) are calculated and stored 
using 𝑑𝑑(𝑥𝑥0,𝑦𝑦0), as shown in Fig. 4, where the positions of 𝑓𝑓1(𝑥𝑥1,𝑦𝑦1) are calculated as: 

𝑓𝑓1 �γ𝑥𝑥𝑥𝑥0 + 𝑑𝑑(𝑥𝑥0,𝑦𝑦0)∆γ𝑥𝑥
γ𝑦𝑦

+ 𝑛𝑛𝑔𝑔, γ𝑦𝑦𝑦𝑦0 + ∆�           (6) 

where 𝑓𝑓1 is the upsampled image (𝑊𝑊1 × 𝐻𝐻1), γ𝑥𝑥 = 𝑊𝑊1/𝑊𝑊0, γ𝑦𝑦 = 𝐻𝐻1/𝐻𝐻0, 0 ≤ ∆≤ γ𝑦𝑦, 
and (2𝑛𝑛𝑔𝑔 + 1) × 1 is the interpolation mask. 
The candidate value and weight of 𝑓𝑓1(𝑥𝑥1,𝑦𝑦1) are calculated as: 
𝑐𝑐𝑖𝑖�𝑓𝑓1(𝑥𝑥1,𝑦𝑦1)� =  𝑓𝑓0�𝑥𝑥0 + 𝑛𝑛𝑔𝑔/γ𝑥𝑥,𝑦𝑦0�             (7) 
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Figure 4: Assignment of candidate values and their weights in the horizontal direction 

𝑤𝑤𝑖𝑖�𝑓𝑓1(𝑥𝑥1,𝑦𝑦1)� = 1
√2𝜋𝜋𝜎𝜎2

𝑒𝑒−
𝑛𝑛𝑔𝑔2

2𝜎𝜎2              (8) 

where 𝑐𝑐𝑖𝑖  and 𝑤𝑤𝑖𝑖  denote the 𝑚𝑚𝑡𝑡ℎ  candidate and weight, respectively, and 𝑤𝑤  is the 
Gaussian function of the magnitude of 𝑛𝑛𝑔𝑔, where the standard deviation is denoted by 𝜎𝜎. 
For any pixel 𝑓𝑓0(𝑥𝑥0,𝑦𝑦0), an up direction 𝑢𝑢(𝑥𝑥0,𝑦𝑦0) is estimated by region matching as 
follows: 

𝑢𝑢(𝑥𝑥0,𝑦𝑦0)  = arg min
𝑥𝑥0−𝑥𝑥

�∑ |𝑓𝑓0(𝑥𝑥0 + 𝑚𝑚,𝑦𝑦0) − 𝑓𝑓0(𝑥𝑥0 + 𝑥𝑥 + 𝑚𝑚, 𝑦𝑦0 − 1)|𝑛𝑛𝑚𝑚
𝑖𝑖=−𝑛𝑛𝑚𝑚 �     (9) 

and the method of calculation 𝑓𝑓1(𝑥𝑥1,𝑦𝑦1) equates to the down direction process, with a 
range of −γ𝑦𝑦 ≤ ∆≤ 0. 
For the horizontal axis, the left and right directions are estimated and candidate values and 
their weights are calculated in a manner similar to that used for the vertical axis. 
For any pixel 𝑓𝑓0(𝑥𝑥0,𝑦𝑦0) of the down-sampled image (𝑊𝑊0 × 𝐻𝐻0), a left direction 𝑙𝑙(𝑥𝑥0,𝑦𝑦0) 
is estimated by region matching as follows: 

𝑙𝑙(𝑥𝑥0,𝑦𝑦0)  = arg min
𝑦𝑦0−𝑦𝑦

�∑ |𝑓𝑓0(𝑥𝑥0,𝑦𝑦0 + 𝑚𝑚) − 𝑓𝑓0(𝑥𝑥0,𝑦𝑦0 + 𝑦𝑦 + 𝑚𝑚)|𝑛𝑛𝑚𝑚
𝑖𝑖=−𝑛𝑛𝑚𝑚 �    (10) 

where 2(𝑛𝑛𝑚𝑚 + 1) × 1 is the block size for matching, and the range of the search region is 
−𝑛𝑛𝑚𝑚 + 𝑦𝑦0 ≤ 𝑦𝑦 ≤ 𝑛𝑛𝑒𝑒 + 𝑦𝑦0.  
The candidate value and its weight for the up-sampled image 𝑓𝑓1(𝑥𝑥1,𝑦𝑦1) are calculated by: 

𝑓𝑓1 �γ𝑥𝑥𝑥𝑥0 + ∆, γ𝑦𝑦𝑦𝑦0 + 𝑙𝑙(𝑥𝑥0,𝑦𝑦0)∆γ𝑦𝑦
γ𝑥𝑥

+ 𝑛𝑛𝑔𝑔�          (11) 

where 𝑓𝑓1 is the upsampled image (𝑊𝑊1 × 𝐻𝐻1), γ𝑥𝑥 = 𝑊𝑊1/𝑊𝑊0, γ𝑦𝑦 = 𝐻𝐻1/𝐻𝐻0, −γ𝑥𝑥 ≤ ∆≤ 0, 
and (2𝑛𝑛𝑔𝑔 + 1) × 1 is the interpolation mask. 
The candidate value and weight of 𝑓𝑓1(𝑥𝑥1,𝑦𝑦1) are calculated as: 
𝑐𝑐𝑖𝑖�𝑓𝑓1(𝑥𝑥1,𝑦𝑦1)� =  𝑓𝑓0�𝑥𝑥0,𝑦𝑦0 + 𝑛𝑛𝑔𝑔/γ𝑦𝑦�           (12) 

𝑤𝑤𝑖𝑖�𝑓𝑓1(𝑥𝑥1,𝑦𝑦1)� = 1
√2𝜋𝜋𝜎𝜎2

𝑒𝑒−
𝑛𝑛𝑔𝑔2

2𝜎𝜎2            (13) 
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where 𝑐𝑐𝑖𝑖  and 𝑤𝑤𝑖𝑖  denote the 𝑚𝑚𝑡𝑡ℎ  candidate and weight, respectively, and 𝑤𝑤  is the 
Gaussian function of the magnitude of 𝑛𝑛𝑔𝑔, where the standard deviation is denoted by 𝜎𝜎. 

 

Figure 5: Interpolation results for the Foreman sequence 

For any pixel 𝑓𝑓0(𝑥𝑥0,𝑦𝑦0), a right direction 𝑟𝑟(𝑥𝑥0,𝑦𝑦0) is estimated by region matching as 
follows: 

𝑟𝑟(𝑥𝑥0,𝑦𝑦0)  = arg min
𝑥𝑥0−𝑥𝑥

�∑ |𝑓𝑓0(𝑥𝑥0,𝑦𝑦0 + 𝑚𝑚) − 𝑓𝑓0(𝑥𝑥0 + 1,𝑦𝑦0 + 𝑦𝑦 + 𝑚𝑚)|𝑛𝑛𝑚𝑚
𝑖𝑖=−𝑛𝑛𝑚𝑚 �   (14) 

and candidate values and their weights 𝑓𝑓1(𝑥𝑥1,𝑦𝑦1) are calculated in the range of 0 ≤ ∆≤ γ𝑥𝑥. 
After calculating all of the candidate values and their weights for four directions, the 
interpolated values 𝑓𝑓1(𝑥𝑥1,𝑦𝑦1)  are calculated using those candidate values and their 
weights. The 𝑓𝑓1(𝑥𝑥1,𝑦𝑦1) value is calculated using the weighted average of the candidate 
values by matching the four directions of the adjacent pixels, as follows: 

𝑓𝑓1(𝑥𝑥1,𝑦𝑦1) =  
∑ 𝑤𝑤𝑖𝑖�𝑓𝑓1(𝑥𝑥1,𝑦𝑦1)�𝑛𝑛(𝑥𝑥1,𝑦𝑦1)
𝑖𝑖=1 𝑑𝑑𝑖𝑖�𝑓𝑓1(𝑥𝑥1,𝑦𝑦1)�

∑ 𝑤𝑤𝑖𝑖�𝑓𝑓1(𝑥𝑥1,𝑦𝑦1)�𝑛𝑛(𝑥𝑥1,𝑦𝑦1)
𝑖𝑖=1

         (15) 

where 𝑛𝑛(𝑥𝑥1,𝑦𝑦1) is the number of candidates for 𝑓𝑓1(𝑥𝑥1,𝑦𝑦1). The sum of 𝑤𝑤𝑖𝑖�𝑓𝑓1(𝑥𝑥1,𝑦𝑦1)� is 
not normalized to 1, so the weighted sum should be divided by the sum of the weights. 
This method can preserve high-frequency information with reduced blurring and 
jaggedness. As shown in Fig. 5, high-frequency information is preserved better with the 
proposed framework than with the other methods. 
Although our upsampling algorithm provides higher quality video than existing 
upsampling algorithms, it requires the client to perform complicated operational processes. 
Therefore, our proposed framework offloads those complicated processes to the cloud to 
minimize the need for client computation. 
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4 Performance evaluation 
4.1 Simulation environment 
In this section, we conducted extensive simulation experiments to examine the 
performance of our proposed framework. The simulations were all performed on an IBM 
desktop computer (Intel® Core™2 Quad CPU Q6600 @2.40 GHz 2.40 GHz, 7 GB RAM, 
and 64 bit OS). We measured complexity as the number of clocks required for a certain 
computation because that is a generally meaningful metric in any computing environment. 
We used only a central processing unit (CPU) without a graphic processing unit (GPU) or 
any other special-purpose chips, which could have negatively affected on the performance. 
The characteristics of the videos used for the test are presented in Tab. 2. 
To test diversity, we included an animation video (Aladdin). To ensure the validity of the 
test result, we used the test sequences also used in ISO/IEC WG11 SC29 MPEG: Duck, 
Old Town, and Park Run. 
As stated earlier, the ultimate goal of this paper is to show how effective cloud offloading 
is in optimizing the energy, cost, and video quality of video streaming services. When used 
to change a LR video into a HR video, the transmission bit rate and computational burden 
in the client were noticeably reduced. 

Table 2: Characteristics of the video sequences 

Video sequence Aladdin Duck Old Town Park Run 
Resolution (LR) 640×360 640×360 640×360 640×360 
Resolution (HR) 1280×720 1280×720 1280×720 1280×720 
Frame rate [fps] 32 32 32 32 

Group of 
picture size 16 16 16 16 

Intra period 8 8 8 8 

Therefore, we compare the performance of the proposed framework with the conventional 
method, in which the client receives only the HR video from the server. More specifically, 
as performance evaluation metrics, we consider the transmission bit rate and decoding 
computational complexity on the client side. In addition, the video quality generated by the 
proposed framework is evaluated using MOS. We also considered throughput on the 
receiver side. The increase in the bandwidth required for the additional SI (i.e., edge 
information) proved to be much smaller than that required by the original HR video. 
Because we assumed that the computational resources of the cloud are infinite, we ignored 
the processing delay in the cloud. 

4.2 Objective metric-based evaluation 
We used the joint test model (JM) from H.264/AVC as the reference software to decode the 
four video sequences presented in Tab. 2, and we applied the Intel Parallel Studio program 
to measure the decoding time for each video and to predict its processing requirements. JM 
runs as a single thread, so the time is considered equal to the processing requirement. 
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Tab. 3 shows the transmission bit rate and operational requirement of the proposed 
framework. The data sent from the cloud to a client is the sum of LR video and edge 
information. The amount of a client’s computational complexity is calculated by adding 
the computational complexity of decoding the transmitted LR video and the bilinear 
upsampling operation. 

Table 3: Transmission bit rate and processing requirement of the proposed framework (the 
number of clocks×109) 

Video 
sequence 

Processing Transmission 
Bilinear 

upsampling 
[clocks×109] 

Decoding  
[clocks×109] 

LR 
[Mbps] 

Edge 
information 

[Mbps] 
Aladdin 6.53 10.09 0.75 0.4 

Duck 6.56 15.5 2.56 4.23 
Old Town 6.66 9.32 0.78 0.88 
Park Run 6.56 15.03 2.54 9.86 

Next, to test its validity, we compared the proposed framework with a conventional streaming 
method. In the conventional method, a client first receives a HR video from a server and then 
decodes the video. Tab. 4 shows the transmission bit rates and computational requirement 
for the conventional streaming method and the proposed framework. 
As shown in Tab. 4, the proposed method ensures a higher efficiency than the 
conventional streaming method. The computational complexity at the client side is 
reduced by almost 68.2% on average and the client`s transmission bit rate is reduced by 
almost 45.2% on average. 

Table 4: Transmission bit rates and computational requirements of the conventional 
streaming method and the proposed method (the number of clocks×109) 

Video 
Sequence 

Conventional method Proposed method 
Computation 
[clocks×109] 

Data size 
[kbps] 

Computation 
[clocks×109] 

Data size 
[kbps] 

Aladdin 47.5 2.10×103 16.6 1.13×103 
Duck 74.5 1.08×104 22.0 6.78×103 

Old Town 46.4 5.10×103 15.0 1.67×103 
Park Run 76.4 1.79×104 21.6 1.24×104 

Table 5: Efficiency of the proposed method compared with the conventional streaming method 

Video Sequence Computation (%) Bit rate (%) 
Aladdin 35.0 53.5 

Duck 29.6 62.6 
Old Town 34.4 32.7 
Park Run 28.3 69.4 
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Tab. 5 presents the efficiency of the proposed method as a percentage, where the 
transmission bit rate and computational complexity for processing HR video content 
through the conventional streaming method are 100%. 
As shown in Fig. 6, the computational efficiency and transmission bit rate differ according 
to the scene complexity in the video contents. For example, the animated Aladdin content 
has a comparatively low scene complexity. Therefore, both the computational complexity 
and transmission bit rate are highly efficient. Because the Old Town content also has lower 
complexity than the Park Run or Duck content, we got efficiencies of more than 50% for 
both computation and bit rate. 
On the other hand, the Duck content is mostly a waveform, and the Park Run content has 
a well-wooded background. Because most of the computational complexity is offloaded to 
the cloud in those cases, both those videos show a higher computational efficiency than the 
Aladdin and Old Town videos (which are not complex). However, because the video 
content is complex in terms of scenes, the number of data to be transmitted increases, so 
both those video contents show a less efficient transmission bit rate of about 30%. 
For another objective evaluation, Fig. 7 represents the structural similarity index (SSIM) 
for the proposed framework, and Fig. 8 presents value of the peak signal-to-noise ratio 
(PSNR) for the proposed framework.  

 

Figure 6: The efficiency of the proposed framework compared with the conventional one 
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Figure 7: Structural similarity index measurement for each video 

 
Figure 8: PSNR measurement for each video sequence 

Tab. 6 presents the average SSIM and PSNR values for each video. The SSIM is a 
framework for predicting the perceived quality of digital images and videos [Wu, Li, Meng 
et al. (2018)]. As shown in Fig. 7 and Fig. 8 and Tab. 6, the average SSIM value is about 
0.9, and the average PSNR value is about 29.63 dB. 

Table 6: Measured SSIM and PSNR values 

Metric 
Video Sequence 

Aladdin Duck Old Town Park Run 
SSIM 0.89 0.9 0.9 0.89 

PSNR [dB] 30.6 28.43 30.69 28.79 
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So far, we have examined the improvement in computation and the transmission bit rate 
for the proposed framework and compared the quality of the different video contents in 
various ways. Next, we analyze the EE of the proposed framework, which is driven by the 
energy needed to generate and transmit the SI. In other words, the energy of the 
computational complexity that is offloaded from the mobile client to the cloud server is a 
profit, while the energy required to transmit the SI from the cloud server to the client is a 
loss. Thus, the sum of those energies is the total energy gain. CE is driven by the cost of 
using the cloud server to generate and transmit the SI and the cost of battery consumption 
at the mobile client [Sadooghi, Martin, Li et al. (2017); Nan, Li, Bao et al. (2017)]. 
Our simulation environment for the energy and CE analyses includes one mobile device 
(Samsung Galaxy S4) that is connected to LTE TCP network and an Amazon web services 
(AWS) on demand server. The parameters used in the equations that analyze EE and shows the 
energy consumption with three CPU specifications are presented in Tabs. 7 and 8 respectively. 
First, we calculate the energy consumed (𝐸𝐸𝑗𝑗) by the modules offloaded from the mobile 
client to the cloud server as:  

𝐸𝐸𝑗𝑗 = 𝐶𝐶𝑗𝑗
𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑀𝑀 𝑃𝑃𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖𝑙𝑙𝑑𝑑               (16) 

Table 7: Parameter descriptions 

Parameter Description 
𝑪𝑪𝒄𝒄𝒄𝒄𝒄𝒄𝑴𝑴  CPU specifications on the mobile device used for the simulation 
𝑪𝑪𝒋𝒋 Computational amount for module 𝑗𝑗 

𝑷𝑷𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴 Energy consumption by the CPU 
𝑫𝑫𝑺𝑺𝑺𝑺 Side information data size 
𝑻𝑻𝒙𝒙 Transmission energy per 100 KB in LTE 
𝑩𝑩 LTE network bandwidth in the simulation 
𝝀𝝀𝟏𝟏 Consumption power per dollar for the Galaxy S4 
𝝀𝝀𝟐𝟐 Transmission data per dollar 
𝝀𝝀𝟑𝟑 Usable time per dollar on the cloud server (AWS) 

𝑺𝑺𝒅𝒅𝑴𝑴𝒄𝒄𝒅𝒅𝑴𝑴𝒅𝒅𝒅𝒅𝑴𝑴 Decrease in required data caused by the proposed framework 
𝑃𝑃∆ Increment of core energy consumption in the CPU 

Table 8: Power consumption for different CPU specifications 

𝑪𝑪𝒄𝒄𝒄𝒄𝒄𝒄𝑴𝑴  384 MHz 1026 MHz 1890 MHz 

Power (𝐦𝐦𝐦𝐦) 
𝑷𝑷𝑩𝑩 𝑷𝑷∆ 𝑷𝑷𝑩𝑩 𝑷𝑷∆ 𝑷𝑷𝑩𝑩 𝑷𝑷∆ 
86 207 86 438 86 1358 
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Tab. 9 shows the power required to transmit 100 KB data across the LTE network.  
Then, we calculate the transmission energy (𝑟𝑟𝑗𝑗𝑡𝑡) required for module 𝑗𝑗 to transmit the SI 
data, which is generated in the cloud server, as: 

𝑟𝑟𝑗𝑗𝑡𝑡 = 𝐷𝐷𝑆𝑆𝑆𝑆
𝐵𝐵
𝑇𝑇𝑥𝑥                (17) 

Finally, the total EE, 𝐸𝐸𝑑𝑑𝑓𝑓𝑓𝑓𝑖𝑖, for the proposed framework is obtained as: 
𝐸𝐸𝑑𝑑𝑓𝑓𝑓𝑓𝑖𝑖 = �∑ 𝐸𝐸𝑗𝑗𝑛𝑛

𝑗𝑗=1 − 𝑟𝑟𝑗𝑗𝑡𝑡�              (18) 

Table 9: Power required to transmit 100 KB across the cellular network 

Samsung Galaxy S4 LTE (100KB) 
Power [dBm] 𝑻𝑻𝒙𝒙 [mW] 𝑹𝑹𝒙𝒙 [mW] 

-85 1177 938 
-95 1849 1110 

-105 1699 1140 

Fig. 9 and Tab. 10 depict the EE of the proposed framework at three CPU specifications 
(384 MHz, 1026 MHz, 1890 MHz) for the cloud server and three channel conditions (-85 
dBm, -95 dBm, -105 dBm) for the cellular network. In terms of the CPU specifications, 
the EE depends on the CPU processing per second (𝐶𝐶𝑑𝑑𝑐𝑐𝑐𝑐𝑀𝑀 ) and the consumed power 
(𝑃𝑃𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖𝑙𝑙𝑑𝑑), which is caused by the CPU. In terms of the channel condition, better network 
conditions produce better EE by reducing the transmission energy. 

Table 10:  EE of the proposed framework 

𝑬𝑬𝑴𝑴𝒆𝒆𝒆𝒆𝑴𝑴 
[𝑘𝑘𝑘𝑘] 

𝑪𝑪𝒄𝒄𝒄𝒄𝒄𝒄𝑴𝑴  
[MHz] 

𝑻𝑻𝒙𝒙 
[dBm] 

Video Sequence 

Aladdin Duck Old 
Town 

Park 
Run 

384 
-85 78.53 184.62 119.97 192.38 
-95 78.44 183.69 119.77 190.21 

-105 78.42 183.52 119.74 189.83 

1026 
-85 52.40 121.89 79.95 124.85 
-95 52.32 120.96 79.75 122.68 

-105 52.30 120.80 79.72 122.30 

1890 
-85 78.63 184.87 120.12 192.65 
-95 78.54 183.93 119.93 190.48 

-105 78.53 183.77 119.90 190.10 

Tab. 7 shows the cost coefficients, battery consumption at mobile terminal 𝜆𝜆1, data usage 
in cellular network 𝜆𝜆2, and spent time on the cloud server (AWS on demand) 𝜆𝜆3. Let 
𝑆𝑆𝑑𝑑𝑑𝑑𝑑𝑑𝑟𝑟𝑑𝑑𝑒𝑒𝑒𝑒𝑑𝑑 be the decreased data resulted by the proposed method and 𝑇𝑇𝑑𝑑 denotes the time 
spent using the cloud server. We can derive the CE (𝐶𝐶𝑗𝑗) for module 𝑗𝑗 as follows: 
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𝐶𝐶𝑗𝑗 = �𝜆𝜆1𝐸𝐸𝑗𝑗 + 𝜆𝜆2𝑆𝑆𝑑𝑑𝑑𝑑𝑑𝑑𝑟𝑟𝑑𝑑𝑒𝑒𝑒𝑒𝑑𝑑� − 𝜆𝜆3𝑇𝑇𝑑𝑑           (19) 

 
(a) 384 MHz                               (b) 1026 MHz  

 
       (c) 1890 MHz 

Figure 9: EE of the proposed framework examined by different mobile phones with 
different CPU capability 

Then, the total CE is: 
𝐶𝐶 = ∑ (𝜆𝜆1𝐸𝐸𝑗𝑗)𝑛𝑛

𝑗𝑗=1 + 𝜆𝜆2𝑆𝑆𝑑𝑑𝑑𝑑𝑑𝑑𝑟𝑟𝑑𝑑𝑒𝑒𝑒𝑒𝑑𝑑 − 𝜆𝜆3𝑇𝑇𝑑𝑑          (20) 

 
(a) 384 MHz                        (b) 1026 MHz 
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                            (c) 1890 MHz 

Figure 10: CE of the proposed framework is examined by different mobile phones with 
different CPU capability 

Fig. 10 and Tab. 11 show the CE calculated by Eq. (20). When we analyzed the CE 
according to the CPU specifications and channel conditions, the results show the same 
pattern as the EE. 

Table 11:  CE of the proposed framework 

𝑪𝑪[$] 

𝑪𝑪𝒄𝒄𝒄𝒄𝒄𝒄𝑴𝑴  
[MHz] 

𝑻𝑻𝒙𝒙 
[dBm] 

Video Sequence 

Aladdin Duck Old 
Town 

Park 
Run 

384 

-85 2.21 5.20 3.38 5.42 

-95 2.21 5.17 3.38 5.36 

-105 2.21 5.17 3.38 5.35 

1026 

-85 1.48 3.44 2.26 3.52 

-95 1.47 3.41 2.25 3.46 

-105 1.47 3.41 2.25 3.45 

1890 

-85 2.21 5.21 3.39 5.43 

-95 2.21 5.18 3.38 5.37 

-105 2.21 5.18 3.38 5.36  

In the next subsection, we present the subjective evaluation for the proposed framework in 
terms of MOS. 
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4.3 Subjective evaluation  
Typically, a LR video is upsampled to HR video, and then compared with original HR 
video. In this paper, we assume a specific simulation environment in which there is no 
original HR video, so we use the MOS metric for our subjective evaluation. In other words, 
our framework is intended for originally low-quality video content, such as social sharing 
by normal users. 
We already have PSNR and SSIM metrics to evaluate the proposed framework and to 
acquire them, we have to use an original HR video to prove the performance of our 
proposed upsampling algorithm. In the MOS measurement, we use the same original HR 
video to evaluate the proposed framework, but our participants do not know what the 
original videos are. 
We measured MOS to examine the video quality produced by our proposed framework. 
Tab. 12 shows the scale to determine the quality of each video [Lopes, Ascenso, Rodrigues 
et al. (2018); Fan, Jiang and Huang (2017)], based on which the HR videos that are 
generated by the proposed framework are measured by participants. 

Table 12: Perceptual video quality scale for MOS 

MOS Quality Impairment 
5 Excellent Very satisfied 
4 Good Satisfied 
3 Fair Some users dissatisfied 
2 Poor Many users dissatisfied 
1 Bad Nearly all user dissatisfied 

 
We used the following conditions for the experiment: 
• The participants were 20 image-process majors and 10 ordinary persons. 
• The proposed HR and original HR video were played at the same time. Here, the 

participants did not recognize whether it is original HD or proposed HD videos. 
• The participants scored each video using the scale in Tab. 12. 

Table 13: MOS scores of the proposed HR videos 

Video 
Sequence Aladdin Duck Old Town Park Run 

Average 
MOS 3.5 3.7 2.9 3.5 

Tab. 13 presents the average MOS for each video sequence. The overall MOS for the 
videos was 3.4, indicating good quality. Tab. 14 illustrates the MOS results for both the 
proposed HR and original HR videos. The original videos did not get a perfect score when 
the participants did not know which videos were original and proposed. 
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Table 14: MOS scores for both the proposed HR and original HR videos 
Video Sequence Aladdin Duck Old Town Park Run 

MOS 
Original 4.3 4 3.9 3.7 
Proposed 

framework 4.5 3.9 4.1 3.9 

The MOS values for the upsampled videos are almost the same as those of the original 
videos even though the transmission bit rate and computational requirements for the cloud-
enhanced videos are much smaller than those for the originals. 

5 Conclusion 
In this paper, we have shown how effective cloud offloading can be for video streaming 
services. In terms of computational complexity on the client side, transmission bit rate, and 
evaluation of video quality, we found cloud offloading to be effective, with the proposed 
framework improving the QoE of the client. Cloud computing is currently developing, and 
the 5G network, which will be able to transmit more data more rapidly than existing 
technology, is on its way. At this time, the framework proposed in this paper is a future-
oriented technology that is suitable for wireless communication and networking and next 
generation multimedia applications. Furthermore, various engineering fields are continuing 
to research deep learning technologies (especially deep reinforcement learning), as well as 
video codec and network management technology. In accordance with those trends, as our 
future work, we intend to improve the performance of our proposed framework in terms of 
cost efficiency, EE, latency, and QoE for the emerging services such as high-quality 
immersive multimedia services. 
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