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Fast Scene Reconstruction Based on Improved SLAM 

Zhenlong Du1, *, Yun Ma1, Xiaoli Li1 and Huimin Lu2 

Abstract: Simultaneous location and mapping (SLAM) plays the crucial role in VR/AR 
application, autonomous robotics navigation, UAV remote control, etc. The traditional 
SLAM is not good at handle the data acquired by camera with fast movement or severe 
jittering, and the efficiency need to be improved. The paper proposes an improved SLAM 
algorithm, which mainly improves the real-time performance of classical SLAM 
algorithm, applies KDtree for efficient organizing feature points, and accelerates the 
feature points correspondence building. Moreover, the background map reconstruction 
thread is optimized, the SLAM parallel computation ability is increased. The color 
images experiments demonstrate that the improved SLAM algorithm holds better real-
time performance than the classical SLAM. 
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1 Introduction 
With the development of virtual reality (VR)/augmented reality (AR) technology and the 
hardware performance upgrading, more and more VR/AR applications have been 
involving into our life and bringing the great convenience to modern people. At the same 
time, VR/AR related technology has attracted the wide and extensive attention, and 
VR/AR requirements prompt the related investigation forward. Moreover, the scene 
localization and the mapping generation are required by automatous robotics navigation, 
it is urgent to capture the external environment information, reconstruct the previously 
unknown scene in real-time. In the paper the simultaneous localization and mapping 
(SLAM) [Zhou, Lian, Yang et al. (2018); Zhang, Liu, Dong et al. (2016); Zhang, He, 
Chen et al. (2016)] algorithm is investigated. 
Although SLAM has made some progresses in recent years, it still encountered some 
difficulties in practical applications [Cui, McIntosh and Sun (2018)]. Till now, SLAM 
includes MonoSLAM [Davison,  Reid,  Molton et al. (2007); Bresson,  Feraud,  Aufrere  
et al. (2015)], parallel tracking and mapping(PTAM) [Klein and Murray (2007)], large-
scale direct monocular SLAM(LSD-SLAM) [Engel, Schps and Cremers (2014)], EKF-
SLAM [Barrau and Bonnabel (2015)], SLAM with RGB-D camera (RGBD-SLAM) 
[Kerl, Stuckler and Cremers (2015)], these SLAM methods include tracking, depth map 
estimation and map optimization, three stages. The traditional SLAM is difficult to 
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achieve high performance [Davison, Reid, Molton et al. (2007)], is not good at process 
camera with fast movement and severe jittering. The powerful chip occurrence improves 
SLAM performance, furthermore SLAM operates from the offline to online processing. 
The vision technology and the sensor promotion make the map construction more 
intuitive, especially the positioning in the previously unknown scene. 
The paper presents an improved SLAM algorithm, which includes the feature point 
match acceleration based on KDtree, homography plane iterative estimation, and 
background process optimization for image prefetch, updation and expansion. The 
presented improved SLAM algorithm can handle camera with fast movement and rapid 
jittering, and fast reconstruct the prior unknown scene. Compared with the classical 
ORB-SLAM [Mur-Artal, Montiel and Tardos (2015)] and RGBD-SLAM [Kerl, Stuckler 
and Cremers (2015)], the improved SLAM algorithm could fast reconstruct the scene, 
optimize the camera trajectory according to the scene and camera posture, and achieve 
the lowest RMSE. 

2 Related works 
SLAM technique originally is applied to the autonomous robotics navigation, and it 
depends on the sensors such as laser range-finders and sonar for rapidly sensing the 
surrounding environment. Due to the camera holds the advantages of compact, accurate, 
noninvasive, cheap and ubiquitous, etc., the vision community has accumulated many 
achievements on structure-from-motion (SFM), recently sensor based SLAM has moved 
to the vision based SLAM. 
LSD-SLAM based on monocular vision [Engel, Schps and Cremers (2014)] performs 
semi-dense mapping on large-scale scene, could construct the camera trajectory, and 
detect the scale drift when the scene changes significantly. The depth map can be 
constructed by iterative introducing the keyframe, and the good pixels are selected for 
modeling both the depth restoration and the depth map updating. LSD-SLAM achieves 
the consistent map via the constraint optimization. In large-scale environment, LSD-
SLAM achieves the good semi-dense global consistency mapping, moreover it can run on 
CPU. Semi-direct visual odometry (SVO) [Forster, Pizzoli and Scaramuzza (2014)] 
directly on pixel intensities, estimates 3D points with the probabilistic mapping method 
that explicitly models outlier measurements, greatly eliminates the computation costs of 
feature point matching, can handle images at high rate acquisition. 
Kalman filter is generally used for estimating the system state with maximum likelihood, it 
is employed for the scene point prediction in EKF-SLAM [Barrau and Bonnabel (2015)]. 
EKF-SLAM inevitability includes the error accumulation, when the current state prediction 
is beyond the threshold, the system could not achieve the real-time performance. 
PTAM [Klein and Murray (2007)] is a keyframe-based monocular parallel SLAM 
algorithm, it adopts the two parallel threads, foreground threads mainly captures and 
matches the feature points and estimates the camera posture, while the background one 
mainly performs the map extension. FAST (features from accelerated segment testing) 
feature descriptor [Rosten, Porter and Drummond (2010)] is applied to extract the feature 
points within the region. The selected keyframes are cached in the keyframe queue, and the 
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mapping thread only extracts the feature points and reconstructs the 3D points from the 
keyframe queue. The camera tracking thread performs the feature points match, optimizes 
the camera posture of current frame according to the feature points correspondence. 

3 Fast scene reconstruction via the improved SLAM 
The improved SLAM adopts the parallel framework, the foreground thread manages the 
feature point match optimization and the local map expansion, the background thread 
performs the loop detection and improves the system efficiency. The improved SLAM 
algorithm includes the feature point match acceleration via KDtree, homography plane 
determination, and background thread optimization, mainly concentrates on the SLAM 
execution performance improvement. 

3.1 Perspective transformation 

3D point [ ], , ,1 T
w w wP x y z=  is transformed to 2D point  [ ], , ,1 T

c c cx y z by the acquisition 
device. Generally, operator takes the images with camera, mobile or Kinect. As Fig. 1 
illustration, camera captures multiple 3D points { }1 2 3, , ,p P P P=X  within object, and the 
camera performs continuous acquisition from multiple angles, such as, camera postures 

1C , 2C , 3C ,  . SLAM infers the camera position and posture from the successive images 
via multi-view geometry principle. The camera pose is composed of a 3× 3 rotation matrix 

nR and a translation vector nt . [ ], , ,1 T
w w wP x y z= is transformed from the world coordinate 

system to the local camera coordinate system as Eq. (1). 
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Figure 1: The camera takes object with multiple postures 
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Eq. (1) is the homogeneous coordinate representation of perspective transformation. Eq. 
(2) is the nonhomogeneous coordinate representation of Eq. (1). 
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In which K  is the camera parameter matrix, iR is the rotation matrix at posture iC , it  is 

the camera translational vector at iC . ( )τ   is a function as [ ] [ ]( ), , ,
T

x z y z x y zτ= . 

3.2 Feature points match acceleration 
Points match [Gao, Xia, Zhang et al. (2018)] plays an important role in SLAM, it 
searches the matched points among images for determining the camera posture and 
predicting the map expansion. ORB (Oriented FAST and Rotated BRIEF) [Mur-Artal, 
Montiel and Tardos (2015)] feature descriptor bears the strong feature extraction and 
representation ability, it is applied in SLAM for the feature points match. SLAM need 
handle gigantic feature points and quickly find the matched feature points, then, the 
search strategy is crucial for SLAM. ORB-SLAM need artificially set the threshold for 
feature points match. If the threshold is set inappropriately, the number of matched points 
is readily influenced, reduces the matching accuracy. In the paper, KDtree is employed 
for accelerating the feature points match. 
ORB-SLAM uses the brute force method for matching the feature points, as shown in Fig. 
2, the computation costs is heavy and the real-time performance is difficult guaranteed. 
Inspired by the work [Forster, Carlone, Dellaert et al. (2017)], KDtree is exploited for 
improving SLAM execution efficiency. Additionally, for further improving the feature 
points match efficiency, region of interest (ROI) is utilized, it reduces the region with few 
feature points, as Fig. 3 depiction. 

 

Figure 2: Conventional ORB-SLAM feature points match 

KDtree includes the search tree building and the search speeding strategy. The 
search tree building establishes the search space based on the distance measurement 
on the feature points in image tI and image 1tI + . Suppose im  as the base point, 
KDtree searches the matched feature points under the measurement criteria. The 
search tree building constructs the candidate points for each feature point. KDtree 
has the special search speeding strategy, for any point im in tI , it starts from the tree 
root node, firstly locates the starting branch based on the points similarity 
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measurement, then accesses the nodes of this branch for getting the mostly matched 
feature point. Meanwhile, backtracing is used to determine whether the branch holds 
the closer feature point. If the backtrace time is less than the threshold, the branch 
with the smallest distance is selected from the queue as points closer to im . The 
improved SLAM feature points correspondence procedure constructs matched 
feature point in 1tI + for any feature point in im in tI . 
 

 
Figure 3: Rich feature points region determination by ROI 

 

Figure 4: Feature points correspondence building by KDtree 

Fig. 4 demonstrates that the improved feature points approach can build the feature points 
correspondence, and the used feature point number is smaller than the one of ORB-SLAM. 

3.3 Homography plane determination 
When feature points fall within the same plane or the parallax of two images is small, the 
camera posture is restored with aid of the homography plane. There exist some planar 
planes (such as tables, walls, etc.) in the indoor scenario. 
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Figure 5: Homography plane 

As the Fig. 5 showing, feature points T
1 1 1m = (u ,v ,1) and 2 2 2( Tm = u ,v ,1)  separately on the 

image tI and 1tI + both fall within the plane γ  , which follow the equation. 

0Tn d+ =X                                                                                                                          (3) 

The plane is decided by , =  
TT dnγ , where n  is the unit normal vector in the camera 

coordinate system and d  is the depth from the camera center to γ . Meanwhile, the 
transformation between feature points ( )1 1 1, ,1 Tm u v= and ( )2 2 2, ,1 Tm u v= separately on 

tI and 1tI + is as the follow. 
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tnK R K                                                                                                       (4) 

In which K  is the camera intrinsic parameter matrix, R is the rotation matrix from tI to 
1tI + , t  is the translation vector from tI to 1tI + . 

Assume the homography matrix 3 3×H stands for 1( )T

d
−− tnK R K , then Eq. (4) has the 

following form. 
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11 1 12 1 13 31 1 2 32 1 2 33 2 0V u V v V V u u V v u V u+ + − − − =                                                                        (6) 

21 1 22 1 23 31 1 2 32 1 2 33 2 0V u V v V V u u V v v V v+ + − − − =                                                                        (7) 

H  is decided by Eq. (6) and Eq. (7). The improved SLAM exploits the homography 
feature tracking method for adapting the camera with strong rotation and fast movement. 
Homography plane estimation is heavy computation procedure, furthermore the 
homography evaluation of any image to current one also bears the high computation. In 
the paper for improving SLAM efficiency, the keyframe kF is served for the agent of 
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prefetch images, and the homography matrix between keyframe kF and current image 
jI is calculated, and it is expressed as the follow. 

1( ) −
→

 −
= +  + 

L

T T
j j k L kP T

k j j k T
L L k kd

R t t n R
H K R R K

n R t
                                                                          (8) 

In which jR  and jt  are separately the rotation matrix and translation vector of jI , 

{ }| 1, 2, ,LPP P
k j k j k jL N→ → →= =H H   represent the homography plane from kF to jI .  

3.4 Background thread optimization 
Background thread plays the important role in SLAM, it manages the region prefetch, 
updation and expansion. The traditional SLAM could generate a rather good result from the 
stable capture. For the inexperienced or novice operator sometimes manipulates SLAM, or 
the strong lens rotation and fast movement often occur, these captured data causes SLAM 
to lose keyframes or cannot achieve the matched feature points. At the same time, there 
exists some difference between the calculated feature point and the real point, the camera 
posture and the actual gesture. Latif et al. [Latif, Cadena and Neira (2013)] proposed a 
camera pose optimization method to correct the scale drift at the loop procedure. When the 
camera moves smoothly, a constant velocity motion model can be used to predict the 
camera pose location. 
Object point jP  is projected to the pixel jx  in iI under camera iC , this perspective 
transformation is represented by ( ),j i jx C P= F . In the paper, only the matched feature 
points are considered for being processed, thereafter ix represents any feature point in any 
image iI , it is the 2D point of jP . 
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F                                                                              (9)    

 ijm  stands for all feature points to its scene positions the in all images, Eq. (9) attempts to 
achieve all feature points corresponding to its scene position as close as possible, it is 
employed for background thread optimization for scene reconstruction. 

( )( )( )
( , )

arg min
j hi i

j i j iC H P x
K R P p x

δ
τ − −∑                                                                              (10) 

In which hδ  is the Huber loss function. Eq. (10) is optimized for scene prefetch by 
homography transformation. 
The improved SLAM foreground thread calculates the local camera posture. If a certain 
amount of error is below a certain threshold, the prediction based on the prior information 
might cause the error accumulation. Although background thread optimization can 
maximize a posterior error, it does not well eliminate this kind of error. 
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4 Experiments 
The improved SLAM algorithm proposed by the paper is implemented on the personal 
laptop with Intel(R) Core (TM)i5-6500 CPU@2.5 GHz, 8G RAM. The experiment 
deployment OS is 64-bit Ubuntu 16.04. The discussed algorithm runs online and handles 
the color images which are captured by the handhold Kinect within the indoor environment. 
The routine hosted by the improved algorithm is robot operating system (ROS), which is 
open source code maintained by Open Source Robotics Foundation Inc. ROS is a flexible 
framework for developing robot related software, is a collection of cross-platform tools, 
libraries, and conventions that aim to simplify the task of handling complex and robust 
robot behavior. ROS execution threads cover the foreground and background threads, the 
foreground thread mainly captures and matches the feature points and estimates the camera 
posture through the homography tracking, while the background one mainly performs map 
extension, system loop detection and bundle adjustment (BA) [Vo, Narasimhan and Sheikh 
(2016)] optimization on the data obtained by the foreground thread. 
The traditional SLAM prefers the gray images for the performance consideration and 
requires to input the gray images. Direct operating on color images brings on the more 
process data, requires the heavy computational cost, the interaction performance is 
influenced too. However, in the experiment the algorithm directly operates the color 
images, the entire data flow also is based on color images. Meanwhile the frame rate is 20 
frames per second, the algorithm real-time performance is improved than the 
conventional SLAM. 
In the paper the improved feature points match module is based on KDtree, it is used to 
rapidly match the feature points across frames via hierarchical manner with minimal 
matching error, greatly assures the real-time capability. Fig. 6 is the feature points match 
result by the improved SLAM algorithm. 

  

Figure 6: Feature points obtained by the improved SLAM algorithm 

For overall evaluating the algorithm performance, the videos involving rapid movement 
and strong rotation acquired by Kinect are testified by the experiment. The improved 
SLAM is able to process video with depth, as shown in Fig. 8, and the indoor scene is 
reconstructed with a sparse point cloud, and the red posture describes the keyframe location.  
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Figure 7: Scene layout 

     
(a) Before optimization                              (b) After optimization 

Figure 8: Camera trajectory optimization 

Fig. 7 describes the experiment scene, which is a lab and includes the workbench, chair, 
bookcase, bookshelf and electric fan, the scene length is 15310 mm and the scene width 
is 15200 mm, the door is at the right wall and its width is 1200 mm. In this scene, all 
camera postures constitute the camera trajectory which is shown by blue sign, and the 
current camera posture is depicted by red symbol. 
Within the same scene as Fig. 7, Fig. 8 shows the camera trajectory optimization result, Fig. 
8(a) gives the camera trajectory without optimization, while Fig. 8(b) demonstrates the 
camera trajectory with optimization. From camera trajectory comparison within the two 
brown rectangles in Fig. 8(a) and Fig. 8(b), it observed that the camera trajectory without 
optimization is rough, while the camera trajectory with optimization is more compact. 
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Fig. 9 shows the reconstructed scene with 3D point cloud, Fig. 9(a) is the viewed from 
45° view, and Fig. 9(b) is the viewed from right top. From two views of Fig. 9, it can be 
observed that the workbench, bookcase, bookshelf and chair are well reconstructed by the 
improved SLAM algorithm. 

       
(a) from 45 view                                       (b) top view 

                                   Figure 9: 3D point cloud of reconstructed scene 

Four data sets, Fr1/360, Fr1/floor and Fr1/desk and one real-time indoor data Indoor 
downloaded from https://vision.in.tum.de/data/datasets/ are employed for evaluating the 
algorithm performance among ORB-SLAM, RGBD-SLAM and the improved SLAM by 
the paper. RMSE is used as the comparison measure in Tab. 1, it is observed that the 
improved SLAM approach achieves the lowest RMSE than ORB-SLAM and RGBD-
SLAM in four datasets. Additionally, Tab. 1 shows that the proposed algorithm is more 
accurate than the original ORB-SLAM algorithm in positioning accuracy, it can fast 
restore depth map than RGBD-SLAM algorithm. The generated depth map by the 
improved SLAM algorithm is accurate and satisfies the real-time object insertion 
requirement, as Fig. 10 illustration. 

Table 1: Algorithms performance comparison 

Dataset ORB-SLAM RGBD-SLAM Ours 
Fr1/360 0.120 0.107 0.100 
Fr1/floor 0.024 0.039 0.016 
Fr1/desk 0.015 0.024 0.014 
Indoor 0.066 0.089 0.048 
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(a) Cube insertion                          (b) Cube and arch introduction 

Figure 10: Object real-time introduction 

5 Conclusion 
There exists monocular, stereo, RGB-D and ROS SLAM, these SLAM algorithms have 
been extensively investigated, and they can run on PC, mobile and robotics, three 
platforms. However, they still have the performance limitations, it is urgent for increasing 
SLAM real-time performance. With more types sensor involved by SLAM, more novel 
vision methods applied to SLAM, SLAM would be introduced and improved for 
handling more complicated scenario. 
In the paper an improved SLAM algorithm is proposed in which KDtree is introduced for 
accelerating the feature points match, therefore the efficiency of depth map acquisition 
and the map reconstruction are improved. Moreover, background map expansion thread 
is optimized and SLAM performance is increased via parallel threads. Additionally, the 
improved SLAM method processes color videos, while the classical SLAM deals with 
gray videos. 
With the big image/video emergence, such as, 4K, SLAM confronts to process much 
bigger images/videos, and its efficiency and performance improvement need to be 
investigated further. 
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