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Abstract: Multiple kernel clustering based on local kernel alignment has achieved 
outstanding clustering performance by applying local kernel alignment on each sample. 
However, we observe that most of existing works usually assume that each local kernel 
alignment has the equal contribution to clustering performance, while local kernel 
alignment on different sample actually has different contribution to clustering performance. 
Therefore this assumption could have a negative effective on clustering performance. To 
solve this issue, we design a multiple kernel clustering algorithm based on self-weighted 
local kernel alignment, which can learn a proper weight to clustering performance for each 
local kernel alignment. Specifically, we introduce a new optimization variable- weight-to 
denote the contribution of each local kernel alignment to clustering performance, and then, 
weight, kernel combination coefficients and cluster membership are alternately optimized 
under kernel alignment frame. In addition, we develop a three-step alternate iterative 
optimization algorithm to address the resultant optimization problem. Broad experiments 
on five benchmark data sets have been put into effect to evaluate the clustering 
performance of the proposed algorithm. The experimental results distinctly demonstrate 
that the proposed algorithm outperforms the typical multiple kernel clustering algorithms, 
which illustrates the effectiveness of the proposed algorithm. 
 
Keywords: Multiple kernel clustering, kernel alignment, local kernel alignment, self-weighted. 

1 Introduction 
On the one hand, kernel-based clustering algorithms are simple and effective [Filippone, 
Camastra, Masulli et al. (2008); Tzortzis and Likas (2009)]; on the other hand, many 
typical clustering algorithms, such as spectral clustering and non-negative matrix 
factorization clustering, can be interpreted from the perspective of kernel [Dhillon, Guan 
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and Kulis (2007); Ding, He, Simon et al. (2005)]. Therefore, kernel-based clustering 
algorithms have been a research hot in various applications [Gnen and Margolin (2014); 
Li, Qin, Xiang et al. (2015)]. Compared with one kernel, multiple kernel can provides more 
useful and complementary information for clustering [Cai, Nie and Huang (2013); Cai, Jiao, 
Zhuge et al. (2018); Hou, Nie, Tao et al. (2017)]. Multiple kernel clustering (MKC) has 
attracted more and more attention, and a lot of MKC algorithms and their variants have 
been proposed recently [Han, Yang, Yang et al. (2018); Du, Zhou, Shi et al. (2015)]. 
MKC algorithms aim to improve the clustering performance by jointly optimizing a 
group of kernel combination coefficients and cluster membership [Liu, Dou, Yin et al. 
(2016)]. In light of the difference of optimization frame, existing MKC algorithms can be 
roughly grouped into two categories. The spirit of the first category is that the single 
kernel is replaced with a combined kernel in objective function of clustering, and the 
optimal kernel combination coefficients and cluster membership are solved under 
clustering frame. The algorithms with regard to this one mainly include: multiple kernel 
K-means [Huang, Chuang, Chen et al. (2012)], multiple kernel fuzzy C-means [Chen, 
Chen, Lu et al. (2011)], robust multiple kernel K-means [Du, Zhou, Shi et al. (2015)], 
optimal neighborhood clustering [Liu, Zhou, Wang et al. (2017)], etc. Instead, the idea of 
the other category is that the cluster membership is viewed as pseudo label, and then it is 
put in the objective of kernel alignment [Wang, Zhao, and Tian (2015)], which is a 
widely used learning criterion in supervised learning, and the optimal kernel combination 
coefficients and pseudo label are optimized under multiple kernel learning frame. Along 
this idea, Lu et al. [Lu, Wang, Lu et al. (2014)] proposed centered kernel alignment for 
multiple kernel clustering, Liu et al. [Liu, Dou, Yin et al. (2016)] proposed kernel 
alignment maximization for clustering, Li et al. [Li, Liu, Wang et al. (2016)] proposed 
multiple kernel clustering based on local kernel alignment, etc. our work in this paper 
pays close attention to the clustering algorithms belonging to the second category. 
Among these algorithms belonging to the second category, multiple kernel clustering based 
on local kernel alignment (LKAMKC) obtains prominent clustering performance by using 
local kernel to exploit the local structure information of data for clustering. Concretely, the 
sum of the objective of each local kernel alignment is defined as the optimization objective 
of LKAMKC, that is, it conducts local kernel alignment on each sample. 
However, LKAMKC has achieved significant clustering performance, we observe that 
most of existing works usually assume that each local kernel alignment has an equal 
contribution to clustering performance, that is, each local kernel alignment is equally 
considered in whole clustering period. Obviously, this assumption does not well take the 
difference of each local kernel alignment into count, which could hinder the improving of 
the clustering performance. To address this issue, we propose a multiple kernel clustering 
algorithm based on self-weighted local kernel alignment to improve clustering 
performance. In detail, we introduce a weight variable to denote the contribution of each 
local kernel alignment to clustering performance, and then, weight of each local kernel 
alignment, kernel combination coefficients and cluster membership are jointly optimized. 
The proposed algorithm improves clustering performance by imposing learned weight on 
each local kernel alignment. After that, we develop a three-step alternate iterative 
optimization algorithm to solve the new optimization problem. Broad experiments on five 
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benchmark data sets have been put into effect to evaluate the clustering performance of 
the proposed algorithm. The experimental results clearly show that the proposed 
algorithm outperforms the typically compared methods, which illustrates the 
effectiveness of the proposed algorithm. 

2 Related work 
In this section, we first review the related work about the kernel alignment and local 
kernel alignment for multiple kernel clustering.  

2.1 Kernel alignment for multiple kernel clustering 
Supposed a data set with n samples has m kernel feature matrices {𝐊𝐊i}i=1,⋯,m, and the 
data set needs to be divided into k clusters. Let 𝐇𝐇 ∈ ℝn×k  and 𝐊𝐊μ  denote the relaxed 
cluster membership matrix and the combined kernel respectively. 𝐊𝐊μ can be calculated as: 

𝐊𝐊𝛍𝛍 = ∑ 𝛍𝛍𝐩𝐩𝟐𝟐𝒎𝒎
𝒑𝒑=𝟏𝟏 𝐊𝐊𝐩𝐩                                                                                                               (1) 

where μp ≥ 0 denotes the combination coefficient of kernel matrix 𝐊𝐊p to 𝐊𝐊μ. 
According to Lu et al. [Lu, Wang, Lu et al. (2014)], 𝐇𝐇𝐇𝐇⊤ can be regarded as a pseudo 
ideal kernel matrix. By substituting the true deal kernel with 𝐇𝐇𝐇𝐇⊤, the objective of kernel 
alignment for multiple kernel clustering (KAMKC) can be expressed as: 

𝐦𝐦𝐦𝐦𝐦𝐦
𝐇𝐇∈ℝ𝒏𝒏×𝒌𝒌,𝛍𝛍∈ℝ+𝒎𝒎

⟨𝐊𝐊𝛍𝛍,𝐇𝐇𝐇𝐇⊤⟩𝐅𝐅
�⟨𝐊𝐊𝛍𝛍,𝐊𝐊𝛍𝛍⟩𝐅𝐅

  𝒔𝒔. 𝒕𝒕.𝐇𝐇⊤𝐇𝐇 = 𝐈𝐈𝒌𝒌, 𝛍𝛍⊤𝟏𝟏𝐦𝐦 = 𝟏𝟏                                                                   (2) 

where ⟨⋅,⋅⟩F denotes the Frobenius inner product of the two matrices and 𝛍𝛍 = [μ1,⋯ , μm]. 
𝐇𝐇⊤𝐇𝐇 = 𝐈𝐈k  means 𝐇𝐇  satisfies orthogonal constraint, 𝛍𝛍⊤𝟏𝟏m = 1  means 𝛍𝛍  satisfies one 
norm constraint. 
Because Eq. (2) is too complicated to directly optimize, Liu et al. [Liu, Dou, Yin et al. 
(2016)] not only theoretically discusses the connection between KAMKC and multiple 
kernel K-means (MKKM) but also derives an easy and equivalent optimization objective 
of KAMKC based on MKKM. The new optimization formula of KAMKC can be 
fulfilled as: 

min
𝐇𝐇∈ℝn×k,𝛍𝛍∈ℝ+m

Tr�𝐊𝐊μ(𝐈𝐈n − 𝐇𝐇𝐇𝐇⊤)� + λ
2
𝛍𝛍⊤𝐌𝐌𝛍𝛍

s. t. 𝐇𝐇⊤𝐇𝐇 = 𝐈𝐈k, 𝛍𝛍⊤𝟏𝟏m = 1
                                                                  (3)                                     

where 𝐌𝐌 with Mpq = Tr(𝐊𝐊p
⊤𝐊𝐊q) is a positive definite matrix to measure the correlation 

between kernels by pairwise comparison [Cortes, Mohri and Rostamizadeh (2012)]. 
Regularization parameter λ ≥ 0 balances the first item and the second one in objective. 
Clearly, if λ takes zero, KAMKC degenerates to the original MKKM. 

2.2 Local kernel alignment for multiple kernel clustering  
As seen from Eq. (2) or Eq. (3), KAMKC only utilizes the global structure information of 
kernel, while ignores its local structure information. Local kernel alignment for multiple 
kernel clustering (LKAMKC) enhances the clustering performance by exploiting the 
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local structure of each sample with local kernel. 

Let matrix S(i) ∈ {0,1}n×τ indicates the τ nearest neighbors of ith sample, and 𝐊𝐊μ
(i), 𝐇𝐇(i) 

and 𝐌𝐌(i) respectively denotes the corresponding local structure of ith sample. 𝐊𝐊μ
(i), 𝐇𝐇(i) 

and 𝐌𝐌(i) can be computed respectively as follows： 

𝐊𝐊μ
(i) = S(i)⊤𝐊𝐊μS(i)                                                                                                              (4) 

𝐇𝐇(i) = S(𝐢𝐢)⊤𝐇𝐇                                                                                                                     (5) 

𝐌𝐌(i)
pq = Tr(𝐊𝐊p

(i)⊤𝐊𝐊q
(i))                                                                                                 (6) 

Replacing the global 𝐊𝐊μ , 𝐇𝐇 and 𝐌𝐌 with the local 𝐊𝐊μ
(i) , 𝐇𝐇(i)  and 𝐌𝐌(i)  respectively, the 

objective of local kernel alignment (LKA) on ith sample can be written as: 

min
𝐇𝐇∈ℝn×k,𝛍𝛍∈ℝ+m

Tr �𝐊𝐊μ
(i)(𝐈𝐈τ − 𝐇𝐇(i)𝐇𝐇(i)⊤)�+ λ

2
𝛍𝛍⊤𝐌𝐌(i)𝛍𝛍

s. t. 𝐇𝐇⊤𝐇𝐇 = 𝐈𝐈k, 𝛍𝛍⊤𝟏𝟏𝐦𝐦 = 1
                                                     (7) 

By accumulating objective of each LKA one by one, the objective of LKAMKC can be 
written as: 

min
𝐇𝐇∈ℝn×k,𝛍𝛍∈ℝ+m

∑ �Tr�𝐊𝐊𝛍𝛍(A(i) − A(i)𝐇𝐇𝐇𝐇⊤A(i))�+ λ
2
𝛍𝛍⊤M(i)𝛍𝛍�n

i=1

s. t. 𝐇𝐇⊤𝐇𝐇 = 𝐈𝐈k, 𝛍𝛍⊤𝟏𝟏m = 1
                                     (8) 

where A(i) = S(i)S(i)⊤. 

3 Multiple kernel clustering based on self-weighted local kernel alignment  
3.1 The proposed formulation 
As shown from Eq. (8), LKAMKC equally considers each local kernel alignment, while 
inappropriately ignores the difference between each local kernel alignment. Thus, the 
contribution of each LKA to clustering performance is not properly exploited, which 
could hinder the improving of the clustering performance. To address the issue, we 
introduce a new weight variable to denote the contribution of each local kernel alignment 
to clustering performance. The new optimization variable and the old optimization 
variables in Eq. (8) are jointly optimized. By imposing a weight for each local kernel 
alignment on Eq. (8), the formulation of the proposed multiple kernel clustering 
algorithm can be written as: 

min
𝐇𝐇∈ℝn×k,𝛍𝛍∈ℝ+m,w

∑ wi
2n

i=1 �Tr�𝐊𝐊μ(A(i) − A(i)𝐇𝐇𝐇𝐇⊤A(i))�+ λ
2
μ⊤𝐌𝐌(i)μ�

s. t. 𝐇𝐇⊤𝐇𝐇 = 𝐈𝐈k, 𝛍𝛍⊤1m = 1, 𝐰𝐰⊤𝟏𝟏n = 1
                    (9) 

where 𝐰𝐰 = [w1, w2,⋯ , wn] is the weight of the each local kernel alignment, 𝐰𝐰⊤𝟏𝟏n = 1 
means w needs satisfy one norm constraint. 



 
 
  
Multiple Kernel Clustering Based on Self-Weighted                                           413 

3.2 Optimization 
Although the proposed algorithm introduces a new variable, the optimization problem in 
Eq. (9) can still be solved. Specifically, we proposed a three-step alternating iterative 
method to optimize Eq. (9). 
(i) Optimizing 𝐇𝐇 when 𝛍𝛍 and 𝐰𝐰 are given 
Supposed other two optimization variables are given beforehand, then Eq. (9) can be 
translated into the following optimization problem . 

max
H∈ℝn×k

Tr(𝐇𝐇⊤𝐕𝐕𝐇𝐇) s. t.𝐇𝐇⊤𝐇𝐇 = 𝐈𝐈k                                                                                  (10) 

where 𝐕𝐕 = ∑ wi
2n

i=1 (A(i)𝐊𝐊𝛍𝛍A(i)). 
Eq. (10) is a standard problem of kernel k-means, and the optimal 𝐇𝐇 can be comprised by 
the k eigenvectors that correspond to the k largest eigenvalues of 𝐕𝐕. 
(ii) Optimizing 𝛍𝛍 when 𝐇𝐇 and 𝐰𝐰 are given 
If 𝐇𝐇 and 𝐰𝐰 are fixed, Eq. (9) is equivalent to a quadratic programming problem about μ . 
min
𝛍𝛍∈ℝ+m

 𝛍𝛍⊤(𝟐𝟐𝟐𝟐 + λ𝐌𝐌)𝛍𝛍 s. t.  𝛍𝛍⊤𝟏𝟏m = 1                                                                          (11) 

where 𝟐𝟐 = diag([Tr(𝐊𝐊1𝐃𝐃),⋯ ,Tr(𝐊𝐊m𝐃𝐃)])  with 𝐃𝐃 = ∑ (n
i=1 wi

2(A(i) − A(i)𝐇𝐇𝐇𝐇⊤A(i))) 
and 𝐌𝐌pq = ∑ wi

2n
i=1 Tr(𝐊𝐊pA(i)𝐊𝐊qA(i)). 

Eq. (11) can be effectively solved by existing off-the-shelf packages. 
(iii) Optimizing 𝐰𝐰 when 𝐇𝐇 and 𝛍𝛍 are given 
If 𝐇𝐇 and 𝛍𝛍 are fixed, Eq. (9) is equivalent to the following optimization problem. 
min
𝐰𝐰∈ℝ+n

∑ wi
2n

i=1 ai  s. t. ∑ wi
n
i=1 = 1                                                                                (12) 

where ai = �Tr�𝐊𝐊𝛍𝛍(A(i) − A(i)𝐇𝐇𝐇𝐇⊤A(i))� + λ
2
𝛍𝛍⊤𝐌𝐌(i)𝛍𝛍�. 

Clearly, if ai is greater than zero, Eq. (12) is a convex quadratic programming problem, 
and it has an analytic solution. By applying the KKT condition on Eq. (12), the global 
optimal wi can be computed by the following. 

wi =
1
ai

∑ 1
ai

n
i=1

                                                                                                                       (13) 

To prove that ai  is greater than zero, we only need to prove that Tr�𝐊𝐊𝛍𝛍(A(i) −
A(i)𝐇𝐇𝐇𝐇⊤A(i))� is greater than zero because 𝛍𝛍⊤𝐌𝐌(i)𝛍𝛍 must be greater than zero since 𝐌𝐌(i) 
is a positive definite matrix. 
Theorem 1 Tr�𝐊𝐊𝛍𝛍(𝐈𝐈n − 𝐇𝐇𝐇𝐇⊤)� is greater than zero where 𝛍𝛍 is given [Liu, Dou, Yin et al. 
(2016)]. 
Proof: 𝐇𝐇⊤𝐇𝐇 = 𝐈𝐈k and 𝐇𝐇𝐇𝐇⊤𝐇𝐇 = 𝐇𝐇 because of 𝐇𝐇 is an orthogonal matrix. Let hi denote ith 
column of matrix 𝐇𝐇, where i >= 1 and i <= k. Clearly, 𝐇𝐇𝐇𝐇⊤hi = hi  which illustrates 
that 𝐇𝐇𝐇𝐇⊤ has k eigenvalue equalling to one and n − k eigenvalue equaling to zero. Alike, 
𝐈𝐈n − 𝐇𝐇𝐇𝐇⊤ has n − k eigenvalue equalling to one and k eigenvalue equaling to zero, so 
𝐈𝐈n − 𝐇𝐇𝐇𝐇⊤ is a positive definite matrix. In addition, 𝐊𝐊𝛍𝛍 is a positive definite kernel matrix, 
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therefore, Tr�𝐊𝐊𝛍𝛍(𝐈𝐈n − 𝐇𝐇𝐇𝐇⊤)� is greater than zero. 
Theorem 2 Tr�𝐊𝐊𝛍𝛍(A(i) − A(i)𝐇𝐇𝐇𝐇⊤A(i))� is greater than zero. 

Proof: We have A(i) = A(i) ∗ A(i)  and A(i) = A(i)⊤  since A(i) = S(i)S(i)⊤ . A(i) −
A(i)𝐇𝐇𝐇𝐇⊤A(i) = A(i)(𝐈𝐈n − 𝐇𝐇𝐇𝐇⊤)A(i) . Let y  is arbitrary vector. Clearly, y⊤A(i)(𝐈𝐈n −
𝐇𝐇𝐇𝐇⊤)A(i)y > 0 because (y⊤A(i))⊤ = A(i)y and 𝐈𝐈n − 𝐇𝐇𝐇𝐇⊤  is a positive definite matrix, 
which is justified by theorem 1. Therefore, A(i) − A(i)𝐇𝐇𝐇𝐇⊤A(i)  is a positive definite 
matrix, correspondingly, Tr�𝐊𝐊𝛍𝛍(A(i) − A(i)𝐇𝐇𝐇𝐇⊤A(i))� > 0. 

3.3 Analysis of convergence 
In the proposed algorithm, the neighborhood of samples is crucial while it is difficult to 
exactly define during clustering. To simplify the optimization problem, we keep the 
neighborhood of samples fixed in the while process of optimization. By doing so, Eq. (10) 
is a standard kernel k-means optimization problem, Eq. (11) is a convex quadratic 
programming problem and Eq. (12) is also a convex quadratic programming problem. 
They are all convergent. Besides, the objective of the proposed algorithm has a lower 
bound. Therefore, the proposed clustering algorithm is convergent. The following results 
of experiment can illustrate the convergence of proposed algorithm. 
We use Algorithm 1 to describe the implementation of the proposed algorithm, where t is 
the number of iteration. The input of Algorithm 1 includes kernel matrix {𝐊𝐊p}p=1m , the 
number k of clusters, regularization parameter λ and the threshold θ of convergence. The 
output includes the relaxed clustering membership 𝐇𝐇, kernel combination coefficients 𝛍𝛍 
and the weight 𝐰𝐰 of each local kernel alignment. The convergent condition of Algorithm 
1 is that the difference of the last two objectives is less than θ. 

Algorithm 1 Multiple Kernel Clustering based on Self-weighted Local Kernel Alignment 

Input: {𝐊𝐊𝑝𝑝}𝑝𝑝=1𝑚𝑚 , 𝑘𝑘, 𝜆𝜆, and 𝜃𝜃. 
Output: 𝛍𝛍 and 𝐰𝐰. 
Initialize A(𝑖𝑖) for ∀𝑖𝑖𝑡𝑡ℎ samples according to one criterion of 𝜏𝜏 nearest neighbors. 
Initialize 𝑡𝑡 = 1, 𝛍𝛍(𝑡𝑡) = 𝟏𝟏𝑚𝑚/𝑚𝑚 and 𝐰𝐰(𝑡𝑡) = 𝟏𝟏𝑛𝑛/𝑛𝑛. 
REPEAT 
    Computing 𝐊𝐊𝛍𝛍

(𝑡𝑡) via Eq.(1). 
    Update 𝐇𝐇(𝑡𝑡) via Eq.(10). 
    Update 𝛍𝛍(𝑡𝑡) via Eq.(11). 
    Update 𝐰𝐰(𝑡𝑡) via Eq.(13). 
    𝑡𝑡 = 𝑡𝑡 + 1. 
UNTIL(obj(𝑡𝑡−1) − obj(𝑡𝑡))/obj(𝑡𝑡) ≤ 𝜃𝜃 

4 Experiment 
In this section, we conduct a large number of experiments to evaluate the clustering 
performance of the proposed algorithms. Moreover, we compare the proposed algorithm 
with many state-of-the-art MKC algorithms proposed recently. 
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4.1 Data sets 
To conveniently and convincingly evaluate the clustering performance of the proposed 
algorithm, five benchmark data sets from multiple kernel learning, are adopted in our 
experiments. They are Yale 2 , Digital 3 , ProteinFold 4 , Movement 5 , Catech102 6 . The 
detailed number of samples, kernels and classes of these data sets are listed in Tab. 1. 

Table 1: The details of data sets in our experiments 

Dataset #Samples #Kernels #Classes 
Yale 165 5 15 
Digital 2000 3 10 
ProteinFold 694 12 27 
Movement 360 12 15 
Caltech102 1530 25 102 

4.2 Compared algorithms 
Local kernel alignment for multiple kernel clustering (LKAMKC) [Li, Liu, Wang et al. 
(2016)] is a strong baseline since the proposed clustering algorithm directly extends it. In 
addition, the compared algorithms also include many related and the state-of-the-art multiple 
kernel clustering algorithms. Details of compared algorithms are as follows: Multiple kernel 
K-means (MKKM) [Huang, Chuang, Chen et al. (2012)], Localized multiple kernel K-
means (LMKKM) [Gnen and Margolin (2014)], Robust multiple kernel K-means (RMKKM) 
[Du, Zhou, Shi et al. (2015)], Co-regularized spectral clustering (CRSC) [Kumar and Daumé 
(2011)], Robust multi-view spectral clustering (RMSC) [Xia, Pan, Du, et al. (2014)], Robust 
Multiple Kernel Clustering (RMKC) [Zhou, Du, Shi et al. (2015)], Kernel alignment for 
multiple kernel clustering (KAMKC) [Liu, Dou, Yin et al. (2016)], Optimal kernel 
clustering with multiple kernels (OKMKC) [Liu, Zhou, Wang et al. (2017)]. 

4.3 Experiment setup 
For movement data set, 12 kernel matrices are computed according to Zhou et al. [Zhou, 
Du, Shi et al. (2015)], and kernel matrices of the other data sets are downloaded from 
respective websites. To eliminate differences between kernels, we let the diagonal 
elements of all kernel matrices equal to one by applying centering and scaling on kernels 
[Cortes, Mohri and Rostamizadeh (2013)]. 
LKAMKC algorithm and the proposed algorithm has the same two parameters: the 
number of neighbors τ and regularization parameter λ. For the number of neighbors, we 

 
2 https://vismod.media.mit.edu/vismod/classes/mas62200/datasets/ 
3 https://ss.sysu.edu.cn/ py/ 
4 https://mkl.ucsd.edu/dataset/protein-fold-prediction 
5 https://archive.ics.uci.edu/ml/datasets/Libras+Movement 
6 https://mkl.ucsd.edu/dataset/ 
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respectively select the first kernel, the second kernel, the third kernel, and the average 
kernel to measure the neighborhood of samples, and the optimal τ is obtained by grid 
search from [0.05,0.1,⋯ ,0.95] ∗ n  where n is the number of samples. For the 
regularization parameter λ , the optimal value is chosen by grid search from 
[2−10, 2−13,⋯ , 210]. For the other compared algorithms, their parameters are set up 
according to the methods used in corresponding references. 
To objectively evaluate the performance of the clustering algorithms, in all experiments 
we use the true number of classes as the number of clusters, and we adopt clustering 
accuracy (ACC), normalized mutual information (NMI) and purity as the indicators of 
the clustering performance. For all experiments, the simulations of the proposed 
algorithm and compared algorithms are carried out in MATLAB 2013b environment with 
windows 8 operation system. To reduce the effect of randomness caused by K-means as 
much as possible, we repeat each experiment for 30 times and report the best result. 

Table 2: Clustering performance of all algorithms on all data sets 

Datasets MKK
M 

LMKK
M 

RMKK
M 

CRS
C 

RMS
C 

RMK
C 

KAMK
C 

OKMK
C 

LKAMK
C 

Propose
d 

ACC 
Rale 52.12 53.33 58.79 55.14 56.35 56.97 60.00 61.21 64.24 65.23 
Digital 48.16 48.24 46.78 73.51 81.80 80.88 83.22 83.96 91.65 94.88 
ProteinFol
d 

27.23 23.49 30.98 34.87 33.00 28.82 36.46 37.90 37.90 41.43 

movement 45.12 45.03 50.79 50.05 49.17 48.10 50.00 52.78 53.24 56.25 
Caltech102 34.77 27.97 29.67 33.33 31.50 35.56 35.82 37.32 39.48 43.61 

NMI 
Rale 54.16 55.59 59.70 56.89 59.11 57.69 61.29 62.27 65.10 66.68 
Digital 48.16 48.16 46.87 73.51 81.80 80.88 83.22 83.96 91.63 94.84 
ProteinFol
d 

37.16 34.92 38.78 43.34 43.91 39.46 45.32 46.93 44.46 47.68 

movement 59.17 58.59 61.70 58.89 61.11 61.69 61.29 62.27 63.10 65.30 
Caltech102 59.64 55.17 55.86 58.20 58.40 59.90 60.38 61.41 62.67 65.63 

Purity 
Rale 33.86 32.71 36.60 40.78 42.36 36.46 42.65 45.24 43.95 66.88 
Digital 49.70 49.70 44.20 77.75 82.90 88.90 90.40 91.05 96.25 97.11 
ProteinFol
d 

33.86 32.71 36.60 40.78 42.36 36.46 42.65 45.24 43.95 46.76 

Movement 49.73 45.58 53.09 50.56 50.00 49.78 50.56 52.82 63.85 56.45 
Caltech102 37.25 29.41 31.70 35.75 33.27 37.12 37.65 39.08 41.83 45.48 

4.4 Experimental results 
Tab. 2 reports the best experimental results of the proposed algorithm and all compared 
algorithm, and Tab. 3 reports the more detailed comparison results between the proposed 
algorithm and LKAMKC algorithm. In all experiment, the neighborhood of samples is 
fixed but the criterion to measure the neighborhood of samples is adjustable. In Tab. 2, 
LKAMKC and the proposed algorithm use the average combination kernel to measure 
the neighborhood of samples. In Tab. 3, LKAMKC-K1, LKAMKC-K2, LKAMKC-K3 
and LKAMKC-A denotes LKAMKC respectively adopts the first kernel, the second 
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kernel, the third kernel and the average combination kernel to measure the neighborhood 
of samples. Also proposed-K1, proposed-K2, proposed-K3 and proposed-A denotes the 
proposed algorithm respectively adopts the first kernel, the second kernel, the third kernel 
and the average combination kernel to measure the neighborhood of samples. From Table 
2, we have the following observation. 

Table 3: The detailed comparison between the proposed algorithm and LKAMKC  
Datasets LKAMKC-

K1 
LKAMKC-
K2 

LKAMKC-
K3 

LKAMKC-
A 

Proposed-K1 Proposed-K2 Proposed-K3 Proposed-
A 

ACC 

Rale 62.42 61.11 60.00 62.50 64.24 63.03 61.82 64.26 

Digital 89.90 86.48 92.24 93.10 91.25 89.75 95.00 95.70 

ProteinFold 32.11 29.00 32.00 34.76 34.73 30.84 36.74 39.48 

movement 47.20 51.00 49.10 51.05 48.17 52.24 50.09 52.68 

Caltech102 34.55 33.97 32.46 35.33 36.74 34.77 34.44 37.47 

NMI 

Rale 62.16 61.59 62.10 62.89 64.30 63.13 63.84 64.78 

Digital 48.16 48.16 46.87 73.51 84.11 82.19 88.95 90.74 

ProteinFold 42.12 38.22 43.78 44.84 44.82 41.02 45.29 46.58 

movement 60.00 62.59 61.20 64.11 61.45 64.58 62.29 65.27 

Caltech102 59.65 58.17 58.86 59.20 60.24 60.62 60.22 61.23 

Purity 

Rale 62.86 61.72 61.60 62.98 64.85 62.42 62.42 65.85 

Digital 89.70 86.70 92.20 92.75 91.25 89.75 95.0 95.70 

ProteinFold 40.86 35.71 41.90 42.68 42.07 37.75 44.24 44.81 

Movement 49.63 50.58 48.09 52.56 51.00 53.78 50.56 55.82 

Caltech102 35.25 35.41 35.70 36.75 37.72 37.58 36.54 38.99 

 
These clustering algorithms which utilize local kernel, including LKAMKC and the 
proposed algorithm, significantly outperform the compared ones, which do not utilize 
local kernel, and among them, OKMKC demonstrates the best performance. Taking the 
results of ACC for an example, the proposed algorithm exceeds OKMKC 4.02%, 10.92%, 
3.53%, 3.47%, and 6.29% on Rale, Digital, ProteinFold, Movement and Caltech102, 
respectively. Similar conclusion can also be found in light of NMI and purity. It clearly 
indicates the importance of the local geometrical structure of data for clustering. 
In terms of performance indicators: ACC, NMI and purity, the proposed algorithm 
obtains the best clustering performance on all data sets. Taking the results of ACC for an 
example, it exceeds LKAMKC, which is a strong baseline since the proposed algorithm 
directly extends it, by 0.99%, 3.23%, 3.53%, 3.01% and 4.13% on Rale, Digital, 
ProteinFold, ProteinFold, Movement and Caltech102, respectively. Also, the excellent 
performance of the proposed algorithm in terms of the NMI and purity can be seen from 
the Tab. 2, where similar observation can be found. It clearly shows the superiority of 
suitably utilizing the local kernel alignment. 
From Tab. 3, we can draw the following points: 
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Both LKAMKC and the proposed algorithm are sensitive to the neighborhood of samples. 
Taking Digital for an example, for LKAMKC and the proposed algorithm using the third 
kernel to measure the neighborhood of samples can achieve the better performance than 
using the first kernel to measure the neighborhood of samples. 
Using the average kernel to measure the neighborhood of samples can achieve the better 
performance than using the single kernel to measure it. Taking ACC for an example, 
Proposed-A and LKAMKC-A exceed Proposed-K1 and LKAMKC-K1 by 0.06% and 
0.08%, 3.45% and 3.20%, 5.75% and 2.65%, 4.51% and 2.85%, 0.73% and 0.78% on 
Yale, Digital, ProteinFold, Movement and Caltech102, respectively, which also shows 
that the combined kernel can contains more information of the neighborhood of samples 
than the single kernel contains. 
No matter which the neighborhood of samples is chosen, the proposed algorithm is 
always better than LKAMKC. Taking ACC for an example, Proposed-K1 exceed 
LKAMKC-K1 by 1.82%, 1.35%, 2.62%, 0.97%, 2.19% on Yale, Digital, ProteinFold, 
Movement and Caltech102, respectively, which confirms the superiority and 
effectiveness of the proposed algorithm again. 

4.5 Parameter selection and convergence 
When applying the proposed algorithm to cluster data, two parameters that contains the 
number τ  of the nearest neighbors and regularization parameter λ  need to be set up 
manually. Tab. 3 has analyzed the effect of the neighborhood of samples on the clustering 
performance. To evaluate the stability of the parameter λ, we select average kernel to 
measure the neighborhood of samples and fix the τ  firstly and carry out a series of 
experiments on all data sets. Both the experimental results of the proposed algorithm and 
a baseline, which is the best result of LKAMKC with the same set, are drawn in Fig. 1. 
From Fig. 1, the following observation can be found. 
1) The clustering performance of the proposed algorithm on all data sets is stable when 
parameter λ varies from a wide range; 2) For Yale, λ = 2−1 is a watershed, if λ is less than 
watershed the ACC of the proposed is higher than the baseline, or the ACC of proposed is 
lower than the baseline. 3) For Digital and Caltech, λ also has a watershed, differently, if λ 
is less than watershed the ACC of proposed is lower than the baseline, or the ACC of 
proposed is higher than the baseline. 4) For ProteinFold and Movement, The ACC of 
proposed is better than the baseline when λ varies from a bounded range. For instance, 
when 2−4.5 ≤ λ ≤ 28.5, the curve of the proposed algorithm is on the top of the baseline. 
To validate the convergence of the proposed algorithm, we record the objective value of 
the proposed algorithms at each iteration with fixing parameter τ and λ. Fig. 2 plots the 
number of iteration and the corresponding objective value of the proposed algorithms at 
one iteration. As seen from Fig. 2, the objective value of the proposed algorithm is 
monotonically decreasing with regard to the time of iteration, and the proposed algorithm 
quickly converged in less than eleven iterations, which confirm the convergence of the 
proposed algorithm from the view of experiment. 
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(a)                                           (b)                                           (c) 

 
(d)                                           (e) 

Figure 1: The performance of the proposed algorithm with regard to parameter λ 

 

  
(a)                                           (b)                                           (c) 

 
(d)                                           (e) 

Figure 2: The convergence of the proposed algorithm 

5 Conclusions and future work 
In this paper, we propose a multiple kernel clustering algorithm based on self-weighted 
local kernel alignment, which can improve the clustering performance by exploiting the 
contribution of each local kernel alignment to clustering performance more rationally. A 
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three-step alternate optimization algorithm with convergence is developed to address the 
subsequent optimization problem. Broad experiments on five benchmark data sets 
validate the effectiveness and superiority of the proposed algorithm. 
As shown from Eq. (8) and Eq. (9), both LKAMKC and the proposed algorithm utilize all 
local kernel to cluster. However, if the number of samples is big, the clustering 
algorithms based on local kernel alignment is very time-consuming. Therefore, a fast 
version of the proposed algorithm, which is suitable for the big data sets [Xiao, Wang, 
Liu et al. (2018)], is worth studying in the future. 
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